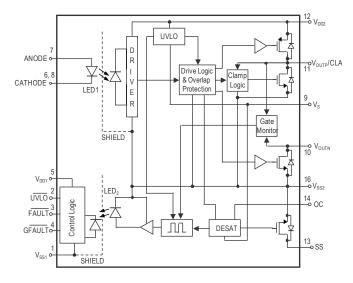
ACPL-352J and ACFJ-3520

5.0 Amp Output Current IGBT and SiC MOSFET Gate Drive Optocoupler with Integrated Over Current Sensing, Fault, Gate and UVLO Status Feedback


Data Sheet

Description

The ACPL-352J and ACFJ-3520 are advanced 5.0 A output current, easy-to-use, intelligent IGBT and SiC MOSFET gate drive optocoupler.. The high operating voltage range and peak output current of the output stage makes it ideally suited for driving IGBT or SiC MOSFET directly in motor control and inverter applications

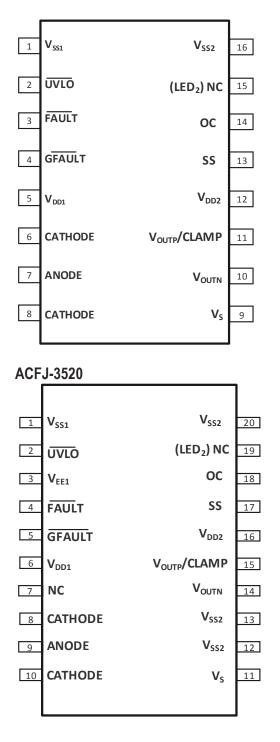
The ACPL-352J/ACFJ-3520 contains AlGaAs LED. The LED is optically coupled to an integrated circuit with two power output stages (V_{OUTP} and V_{OUTN}) with non-overlapping timing to control the turning on and off timing separately. It is also integrated with features such as over current detection, under voltage lockout (UVLO), "soft" turn-off, and isolated fault feedback to provide maximum design flexibility and circuit protection. The ACPL-352J/ACFJ-3520 has an insulation voltage of V_{IORM} = 1414 V_{peak}.

ACPL-352J Functional Diagram

Features

- 5.0 A maximum peak output current
- 4.5 A minimum peak output current
- Dual output drive to control turning on and off time
- Over current detection
- Open drain isolated FAULT, GATE and UVLO status feedback
- Configurable "Soft" shutdown during fault
- Under Voltage Lock-Out Protection (UVLO) with Hysteresis
- 150 ns maximum propagation delay over temperature range.
- 50 kV/µs Minimum Common Mode Rejection (CMR) at V_{CM} = 1500 V
- Wide Operating V_{DD2} Range: 15 to 30 Volts
- Industrial temperature range: -40°C to 105°C
- Package, Creepage and Clearance
 - ACPL-352J SO16 8.3mm
 - ACFJ-3520 SO20 10mm
 - Safety Approval Pending
 - UL Recognized 5000 V_{RMS} for 1min.
 - CSA
 - IEC/EN/DIN EN 60747-5-5 V_{IORM} = 1414 Vpeak

Applications


- IGBT/SiC MOSFET gate drive
- AC and brushless DC motor drives
- Renewable energy inverters
- Industrial Inverters
- Switching power supplies

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this datasheet are not to be used in military or aerospace applications or environments

Pin Description

ACPL-352J

Pin	Symbol	Description
1	V _{SS1}	Input ground
2	UVLO	V _{DD2} under voltage lock out feedback
3	FAULT	Over current fault feedback
4	GFAULT	IGBT or MOSFET Gate status feedback
5	V _{DD1}	Input power supply
6	CATHODE	Input LED cathode
7	ANODE	Input LED anode
8	CATHODE	Input LED Cathode
9	Vs	Common (IGBT emitter or MOSFET source)
9	vs	output supply voltage.
10	Voutn	Driver output to turn off IGBT or MOSFET Gate
11	VOUTP/CLAMP	Driver output to turn on IGBT or MOSFET Gate /
		Miller Clamp
12	V _{DD2}	Positive output power supply
13	SS	Soft shutdown
14	OC	Over current input pin. When the voltage on OC
		pin exceeds an internal reference voltage of 7 V
		while the IGBT is on, FAULT output is changed
		from logic high to low state.
15	(LED ₂)NC	No connection
16	Vss2	Negative output power supply

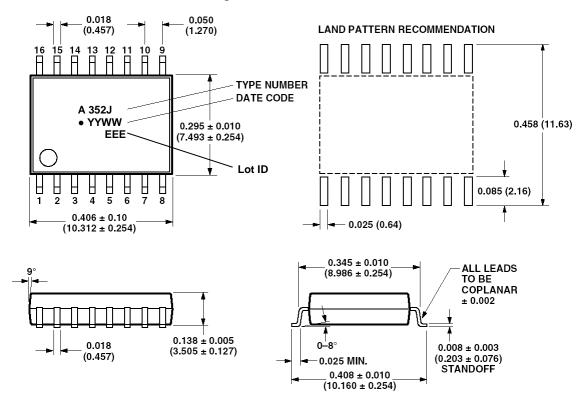
Pin	Symbol	Description
1	V _{SS1}	Input ground
2	UVLO	VDD2 under voltage lock out feedback
3	V _{SS1}	Input ground
4	FAULT	Over current fault feedback
5	GFAULT	IGBT or MOSFET Gate status feedback
6	V _{DD1}	Input power supply
7	NC	No connection
8	CATHODE	Input LED cathode
9	ANODE	Input LED anode
10	CATHODE	Input LED cathode
11	Vs	Common (IGBT emitter or MOSFET source)
	VS	output supply voltage.
12	V _{SS2}	Negative output power supply
13	V _{SS2}	Negative output power supply
14	Voutn	Driver output to turn off IGBT or MOSFET Gate
15	VOUTP/CLAMP	Driver output to turn on IGBT or MOSFET Gate /
15		Miller Clamp
16	V _{DD2}	Positive output power supply
17	SS	Soft shutdown
18	OC	Over current input pin. When the voltage on OC
		pin exceeds an internal reference voltage of 7 V
		while the IGBT is on, FAULT output is changed
		from logic high to low state.
19	(LED ₂)NC	No connection
20	V _{SS2}	Secondary ground

Ordering Information

ACPL-352J/ACFJ-3520 is UL Recognized with 5000 Vrms for 1 minute per UL1577.

	Option					
Part number	RoHS Compliant	Package	Surface Mount	Tape & Reel	IEC/EN/DIN EN 60747-5-5	Quantity
ACPL-352J	-000E	SO 46	Х		X	45 per tube
	-500E	SO-16	Х	X	X	850 per reel
ACFJ-3520	-000E	SO 20	Х		X	45 per tube
	-500E	SO-20	Х	Х	X	850 per reel

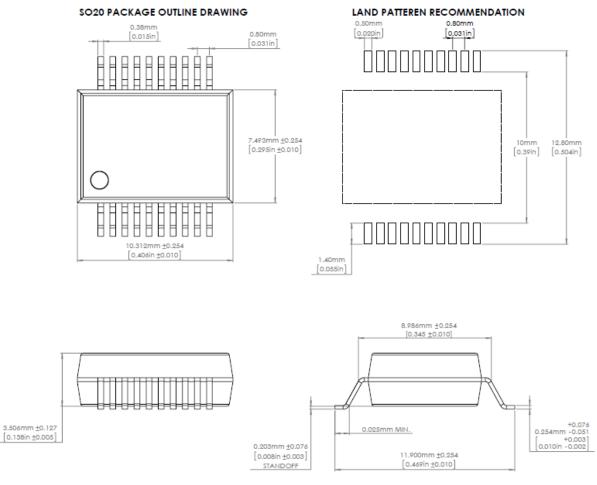
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.


Example 1:

ACPL-352J-500E to order product of SO-16 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings


ACPL-352J 16-Lead Surface Mount Package

Dimensions in inches (millimeters)

Floating Lead Protrusion is 0.25 mm (10 mils) max.

ACFJ-3520 20-Lead Surface Mount Package

DIMENSIONS IN MILLIMETRES (INCHES)

Notes: Initial and continued variation in the color of the ACPL-352J/ACFJ-3520's white mold compound is normal and does not affect device performance or reliability.

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non- Halide Flux should be used.

Regulatory Information

The ACPL-352J/ACFJ-3520 is pending approval by the following organizations:

IEC/EN/DIN EN 60747-5-5

Maximum working insulation voltage VIORM = 1414VPEAK

UL

Approval under UL 1577, component recognition program up to V_{ISO} = 5000 V_{RMS} . File E55361.

CSA

Approval under CSA Component Acceptance Notice #5, File CA 88324.

Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/39, Table 1			
for rated mains voltage \leq 150 V _{rms}		I – IV	
for rated mains voltage \leq 300 V _{rms}		I – IV	
for rated mains voltage \leq 600 V _{rms}		I – IV	
for rated mains voltage \leq 1000 V _{ms}		I – III	
Climatic Classification		40/105/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	1414	V _{peak}
Input to Output Test Voltage, Method b**	V _{PR}	2652	V _{peak}
V _{IORM} x 1.875=V _{PR} , 100% Production Test with t _m =1 sec, Partial discharge < 5 pC	VPR	2002	v peak
Input to Output Test Voltage, Method a**	VPR	2262	V _{peak}
VIORM x 1.6=VPR, Type and Sample Test, tm=10 sec, Partial discharge < 5 pC	VPK	2202	v peak
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60 sec)	VIOTM	8000	V _{peak}
Safety-limiting values – maximum values allowed in the event of a failure.			
Case Temperature	Ts	175	С°
Input Current	IS, INPUT	400	mA
Output Power	Ps, output	1200	mW
Insulation Resistance at Ts, VIO = 500 V	Rs	>109	Ω

* Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. Surface mount classification is class A in accordance with CECCO0802.

** Refer to IEC/EN/DIN EN 60747-5-5 Optoisolator Safety Standard section of the Avago Regulatory Guide to Isolation Circuits, AV02-2041EN for a detailed description of Method a and Method b partial discharge test profiles.

Parameter	Symbol	ACPL-352J	ACFJ-3520	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	8.3	10	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	8.3	10	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.5	0.5	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	>175	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa	Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Table 2. Insulation and Safety Related Specifications

Notes: All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the recommended Land Pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearance swill also change depending on factors such as pollution degree and insulation level.

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	125	°C	
Operating Temperature	T _A	-40	105	°C	
Output IC Junction Temperature	TJ		125	°C	
Average Input Current	I _{F(AVG)}		25	mA	1
Peak Transient Input Current (<1 µs pulse width, 300pps)	I _{F(TRAN)}		1.0	А	
Reverse Input Voltage	VR		5	V	
"High" Peak Output Current	IOH(PEAK)		5	А	2
"Low" Peak Output Current	IOL(PEAK)		5	А	2
Positive Input Supply Voltage	V _{DD1}	0	7	V	
FAULT Output Current	I _{FAULT}		8	mA	
FAULT Pin Voltage	VFAULT	-0.5	V _{DD1}	V	
Total Output Supply Voltage	(V _{DD2} - V _{SS2})	-0.5	35	V	
Negative Output Supply Voltage	$(V_{S} - V_{SS2})$	-0.5	17	V	
Positive Output Supply Voltage	$(V_{DD2} - V_S)$	-0.5	35 - (V _S - V _{SS2})	V	
Input Current (Rise/Fall Time)	$t_{r(IN)}/t_{f(IN)}$		500	ns	
High Side Pull Up Voltage	VOUTP	V _{SS2} - 0.5	V _{DD2} + 0.5	V	
Low Side Pull Down Voltage	V _{OUTN}	V _{SS2} - 0.5	V _{DD2} + 0.5	V	
Over Current Pin Voltage	Voc	Vs - 0.5	V _{DD2} + 0.5	V	
Output IC Power Dissipation	Po		600	mW	3
Input LED Power Dissipation	Pi		110	mW	4

Notes:

1. Derate linearly above 70°C free-air temperature at a rate of 0.3 mA/ °C.

2. Maximum pulse width = 10µs. The output must be limited to -5.0 A / 5.0 A of peak current by external resistors and connected to total load bigger than 2nF during all applications or board testing.

3. Derate linearly above 95°C free-air temperature at a rate of 20 mW/ °C.

4. Derate linearly above 95°C free-air temperature at a rate of 3.7 mW/ °C. The maximum LED junction temperature should not exceed 125°C.

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Operating Temperature	TA	- 40	105	°C	
Positive input supply voltage	V _{DD1}	4.5	5.5	V	
Total Output Supply Voltage	(V _{DD2} - V _{SS2})	15	30	V	
Negative Output Supply Voltage	(Vs – Vss2)	0	15	V	
Positive Output Supply Voltage	(V _{DD2} - V _S)	15	30 - (Vs - Vss2)	V	
Input Current (ON)	I _{F(ON)}	6	10	mA	
Input Voltage (OFF)	VF(OFF)	- 3.6	0.8	V	

Table 5. Electrical Specifications (DC)

All typical values at $T_A = 25^{\circ}$ C, $V_{DD1} = 5$ V, $V_{DD2} - V_S = 15$ V, $V_S - V_{SS2} = 15$ V; All minimum and maximum specifications are at recommended operating conditions, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
VOUTP High Level Peak Output Current	Іон	-4.5	TBD		A	Vdd2 - Voutp =15V		1
VOUTN Low Level Peak Output Current	Іон	4.5	TBD		A	V _{OUTN} – V _{SS2} = 15V		1
VOUTP Output PMOS RDS(ON)	ROUTP	TBD	0.7	1	Ω	I _{OP} = -4.5 A, I _F = 8mA,		1
VOUTN Output NMOS RDS(ON)	ROUTN	TBD	0.6	1	Ω	$I_{ON} = 4.5 \text{ A}, V_F = 0 \text{V},$		1
VOUTP Output Voltage	V _{OH}	V _{DD2} - 0.60	V _{DD2} - 0.06		V	I _{OP} = -100mA, I _F = 8mA		2, 3
VOUTN Output Voltage	Vol		V _{SS2} + 0.04	V _{SS2} + 0.60	V	I _{ON} = 100mA, V _F = 0V		
Clamp Threshold Voltage	VTH_CLAMP		2	3	V			
Clamp Low Level Sinking Current	ICLAMP	2	2.9		А	V _{CLAMP} =V _{SS2} +2.5V		
Clamp Output Transistor RDS(ON)	Rds,clamp		0.8		Ω	Iclamp=2.5A		
SS Pull Down Current	loss	100			mA	SS - V _{SS2} ≥ 5V, I _F = 8mA , OC= Open		
SS RDSON	Routss		16	TBD	Ω	I _{ss} = 100mA, I _F =8mA , OC = Open		
High Level Output Supply Current (V _{DD2})	Idd2h		6.1	TBD	mA	l⊧= 8 mÅ, No Load,		
Low Level Output Supply Current (V _{DD2)}	Idd2l		5.1	TBD	mA	V _F = 0 V, No Load,		
High Level Output Supply Current (Vss2)	Issh	TBD	-1.75		mA	l⊧= 8 mA, No Load,		
Low Level Output Supply Current (Vss2)	I _{SSL}	TBD	-0.75		mA	V _F = 0 V, No Load,		
Threshold Input Current Low to High	Iflh		2.3	TBD	mA			
Threshold Input Voltage High to Low	V _{FHL}	TBD			V			
Input Forward Voltage	VF		1.55		V	I _F = 8 mA		
Temperature Coefficient of Input Forward Voltage	$\Delta V_F / \Delta T_A$		-1.7		mV/°C	I _F = 8 mA		
Input Reverse Breakdown Voltage	BV _R	5			V	I _R = 100 μA		
Input Capacitance	CIN		70		рF	f = 1 MHz, V _F = 0 V		

UVLO Threshold, VDD2-Vs	VUVLO+	TBD	12.9	TBD	V	$I_F = 8mA$, $V_{OUTP} - V_E > 5$	2,3,4
	VUVLO-	TBD	11.9	TBD	V	IF = 8 mA, V _{OUTP} - V _E < 5	2,3,5
UVLO Hysteresis, V _{DD2} -V _S	V _{UVLO+} -V _{UVLO-}		1		V	V	
OC Sensing Voltage Threshold	Voc	TBD	9	TBD	V	$V_{DD2} - V_S > V_{UVLO+}$	3
Blanking Capacitor	I _{CHG}	0.92	1.1	1.08	mA	V _{OC} = 2 V	3, 6
Charging Current							
OC Low Voltage when Blanking	VDSCHG		1.1	3	V	IDSCHG = 50mA	3, 6
Capacitor Discharge							
Input Supply Current (VDD1)	IDD1		1.6	TBD	mA		
FAULT Logic Low Output Current	IFAULTL	4	9.2		mA	V _{FAULT} = 0.4 V V _{DD1} = 5 V	
FAULT Logic High Output Current	IFAULTH			20	μA	V _{FAULT} = V _{DD1} = 5 V	
UVLO Logic Low Output Current	IUVLOL	4	9.2		mA	V _{UVLO} = 0.4 V V _{DD1} = 5 V	
UVLO Logic High Output Current	IUVLOH			20	μA	$V_{UVLO} = V_{DD1} = 5 V$	
GFAULT Logic Low Output Current	IGFAULTL	4	9.2		mA	V _{GFAULT} = 0.4 V V _{DD1} = 5	
						V	
GFAULT Logic High Output	IGFAULTH			20	μA	V _{GFAULT} = V _{DD1} = 5 V	
Current							

Notes:

1. Output is sourced at -4.5 A /4.5 A with a maximum pulse width = 10 μ s.

2. 15 V is the recommended minimum operating positive supply voltage (V_{DD2} - V_S) to ensure adequate margin in excess of the maximum V_{UVL0+} threshold of TBD V. For High Level Output Voltage testing, V_{OUTP} is measured with a 50us pulse load current. When driving capacitive loads, V_{OUTP} will approach V_{DD2} as louTP approaches zero units.

3. Once the system is out of UVLO ($V_{DD2} - V_S > V_{UVLO+}$), the OC detection feature of the ACPL-352J/ACFJ-3520 will be the primary source of IGBT protection. UVLO needs to be unlocked to ensure DESAT is functional. Once V_{DD2} exceeds V_{UVLO+} threshold, DESAT will remain functional until V_{DD2} is below V_{UVLO-} threshold. The OC detection and UVLO features of the ACPL-352J/ACFJ-3520 work in conjunction to ensure constant IGBT / MOSFET protection.

4. This is the "increasing" (i.e. turn-on or "positive going" direction) of V_{DD2} - V_S.

5. This is the "decreasing" (i.e. turn-off or "negative going" direction) of $V_{DD2} - V_S$.

6. See the over current fault detection blanking time section in the applications notes at the end of this data sheet for further details.

Table 6. Switching Specifications (AC)

All typical values at $T_A = 25^{\circ}$ C, $V_{DD1} = 5$ V, $V_{DD2} - V_S = 15$ V, $V_S - V_{SS2} = 15$ V; All minimum and maximum specifications are at recommended operating conditions, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to High V _{OUTP} Output Level	tрін	TBD	100	150	ns	$R_{GP} = 5\Omega, R_{GN} = 5\Omega,$	2	1
Propagation Delay Time to Low V _{OUTN} Output Level	t _{PHL}	TBD	90	150	ns	C _G = 5nF, f = 20 kHz, Duty Cycle = 50%, I _F = 6 → mA to 10 mA.		2
Pulse Width Distortion	PWD	-75	10	75	ns			3
Propagation Delay Difference Between Any Two Parts	PDD (tplh - tphl)	-75		75	ns	_		4
Propagation Delay Skew	t _{PSK}			60	ns			5
10% to 90% Rise Time on VOUTP	t _R		37		ns	$R_{GP} = 5\Omega, R_{GN} = 5\Omega,$	2	
90% to 10% Fall Time on V_{OUTN}	t⊧		30		ns	$C_G = 2nF$, f = 20 kHz, Duty Cycle = 50%, I _F = 8mA.		
OC Blanking Time	toc(blanking)		0.78	TBD	us	$R_{GP} = 5\Omega, R_{GN} = 5\Omega,$	5	6
OC Detection to 90% VGATE Delay	toc(90%)		0.28		us	$C_G = 5 \text{ nF}, f = 100 \text{ Hz},$ Duty Cycle = 50%, I _F = 8	5	7
OC Detection to V _{GATE} =2V Delay	t _{OC(2V)}		2.5		us	mA, R _{SS} =133Ω, C _F =	5	8
OC Detection to OC Pull Low Propagation Delay	toc(LOW)		0.25		us	330 pF, R _F = 10 kΩ,	5	9
OC Detection to SS Pull Low Propagation Delay	tss(low)		0.2	TBD	us	_	5	10
OC Detection to Low Level FAULT Signal Delay	toc(fault)		1.7	3	us	_	5	11
Output Mute Time due to Over Current	toc(mute)	TBD	3	TBD	ms		5	12
Time Input Kept Low Before Fault Reset to High	toc(reset)	TBD	3	TBD	ms	C _F = 330 pF, R _F = 10 kΩ	5	13
VDD2 to UVLO High Delay	tplh_uvlo		13.5	TBD	us	C_{U} = 330 pF, R_{U} = 10 k Ω	4	14
VDD2 to UVLO Low Delay	tphl_uvlo		13.5	TBD	us	C_{U} = 330 pF, R_{U} = 10 k Ω	4	15
VDD2 UVLO to VOUTP High Delay	tuvlo_on		4		us		4	16
VDD2 UVLO to VOUTN Low Delay	tuvlo_off		1.5		us		4	17
Delay Time to V _{GATE} Status Check	t GFAULT	7.5	9.5	13	us		6	18
V _{GATE} Status Check to Low Level GFAULT Signal Delay	tgfault(10%)		13.5	TBD	us	C_{GF} =330 pF, R_{GF} = 10 k Ω	6	19
Input Logic Change to High Level GFAULT Signal Delay	tgfault(90%)		10	TBD	us	C_{GF} = 330 pF, R_{GF} = 10 $k\Omega$	6	20
Output High Level Common Mode Transient Immunity	CM _H	50			kV/µs	$\begin{array}{l} T_{A} = 25^{\circ}C, \ V_{CM} = 2000 \\ V, \ V_{DD1} = 5 \ V, \ C_{F} = 330 \\ pF, \ R_{F} = 10 \ k\Omega, \ I_{F} = 8 \\ mA \end{array}$		21, 23
Output Low Level Common Mode Transient Immunity	CM∟	50			kV/µs	$ T_{A} = 25^{\circ}C, V_{CM} = 2000 V, V_{DD1} = 5 V, C_{F} = 330 $		22,23

			pF, R _F = 10 k Ω , V _F = 0 V	
Notes:				

1. t_{PLH} is defined as propagation delay from 50% of LED input I_{F.} to 50% of V_{OUTP} high level output.

2. tPHL is defined as propagation delay from 50% of LED input IF, to 50% of VOUTN low level output.

3. Pulse Width Distortion (PWD) is defined as |tPHL - tPLH| for any given unit.

4. Propagation Delay Difference (PDD) is the difference between tPHL and tPLH between any two units under the same test condition.

5. Propagation Delay Skew (tPSK) is the difference in tPHL or tPLH between any two units under the same test condition.

6. The internal delay time to respond to a OC fault condition without any external blanking capacitor.

7. The amount of time from when OC threshold is exceeded to 90% of V_{GATE} at mentioned test conditions.

8. The amount of time from when OC threshold is exceeded to V_{GATE} at 2 V at mentioned test conditions.

9. The amount of time from when OC threshold is exceeded to 10% of OC low voltage.

10. The amount of time from when OC threshold is exceeded to 10% of SS(Soft Shut) low voltage.

11. The amount of time from when OC threshold is exceeded to FAULT output low.

12. The amount of time when OC threshold is exceeded, output is muted to LED input.

13. The amount of time when OC mute time is expired, LED input must be kept low for FAULT status to return to High.

14. The delay time when V_{DD2} exceeds UVLO+ threshold to UVLO high – 50% of UVLO positive-going edge.

15. The delay time when V $_{\text{DD2}}$ exceeds UVLO- threshold to UVLO low – 50% of UVLO negative-going edge.

16. The delay time when V $_{\text{DD2}}$ exceeds UVLO+ threshold to 50% of V_{\text{OUTP}} high level output.

17. The delay time when V $_{\text{DD2}}$ exceeds UVLO- threshold to 50% of V_{\text{OUTN}} low level output.

18. The delay to allow sufficient time for the gate to charge or discharge to its final level before checking gate voltage corresponds to LED input logic.

19. The delay time when gate voltage does not correspond to LED input logic to GFAULT output low.

20. The delay time when GFAULT returns to high after LED input logic change or gate voltage crosses the intended level threshold.

21. Common mode transient immunity in the high state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in the high state (i.e., $V_{DD2}-V_{OUTP} < 1.0$ V or FAULT > 2V). V_{DD2} must be higher than V_{UVLO+} .

22. Common mode transient immunity in the low state is the maximum tolerable dV_{CM}/dt of the common mode pulse, V_{CM} , to assure that the output will remain in a low state (i.e., $V_{OUTN} - V_{SS2} < 1.0$ V or FAULT > 2 V). V_{DD2} must be higher than V_{UVLO+} .

23. Split resistor network in the ratio 3:1 with 324 Ω at the anode and 107 Ω at the cathode.

Table 7. Package Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage	VISO	5000			Vrms	RH < 50%, t = 1 min., T _A = 25°C		1, 2
Input-Output Resistance	RI-0		> 109		Ω	V _{I-O} = 500 V		2
Input-Output Capacitance	CI-O		1.3		pF	freq=1 MHz		

Notes

1. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage \geq 6000 Vrms for 1 second. This test is performed before the 100% production test for partial discharge (method b) shown in IEC/EN/DIN EN 60747-5-5 Insulation Characteristic Table, if applicable. 2. Device considered a two-terminal device: For ACPL-352J, pins 1 to 8 are shorted together and pins 9 to 16 are shorted together. For ACFJ-3520, pins 1 to 10 are shorted together and pins 11 to 20 are shorted together.

Applications Information

Product Overview Description

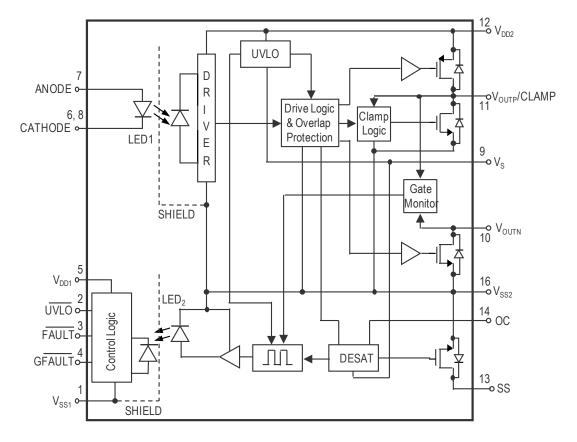


Figure 1.Block Diagram of ACPL-352J

Recommended Application Circuit

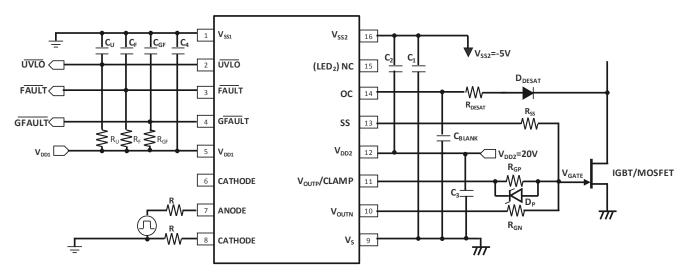


Figure 2.Recommended application circuit with over current detection and fault feedback for ACPL-352J

Output Control

The outputs (V_{OUTP} , V_{OUTN} , FAULT and UVLO) of the ACPL-352J/ACFJ-3520 are controlled by the combination of V_{DD1} , V_{DD2} , LED current I_F and over current condition. The table below shows the logic truth table for these outputs.

Condition	Inputs				Outputs				
	V _{DD1}	V _{DD2}	lF	OC	Voutn	VOUTP/CLAMP	SS	FAULT	UVLO
V _{DD1} Under	Low	High	Low	Х	Low	Low	High-Z	Low	Low
Voltage	Low	High	High	Low	High-Z	High	High-Z	Low	Low
V _{DD2} UVLO	Low	Low	Х	Х	Low	Low	High-Z	Low	Low
	High	Low	Х	Х	Low	Low	High-Z	High	Low
Over Current	Low	High	High	High	High-Z	Low	Low	Low	Low
	High	High	High	High	High-Z	Low	Low	Low	High
Normal	High	High	Low	Х	Low	Low	High-Z	High	High
Switching	High	High	High	Low	High-Z	High	High-Z	High	High

The logic level is defined by the respective threshold of each function pin.

Description of Gate Driver and Miller Clamping

The gate driver is directly controlled by the LED current. When LED current is driven high the output of ACPL-352J/ACFJ-3520 is capable of delivering 5A sourcing current to drive the IGBT's/MOSFET's gate. While LED is switched off the gate driver can provide 5A sinking current to switch the gate off fast. Additional miller clamping pull-down transistor is activated when output voltage reaches about 2V with respect to V_{SS2} to provide low impedance path to miller current as shown

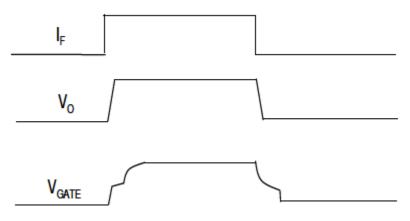


Figure 3.Gate Drive Signal Behavior

Description of Under Voltage Lock Out (Refer to Figure 4)

Insufficient gate voltage to IGBT/MOSFET can increase turn on resistance of IGBT/MOSFET, resulting a large power loss and IGBT/MOSFET damage due to high heat dissipation. ACPL-352J/ACFJ-3520 monitors the output power supply constantly. When output power supply is lower than under voltage lockout (UVLO) threshold gate driver output will shut off to protect IGBT/MOSFET from low voltage bias. During power up, the UVLO feature forces the gate driver output to low to prevent unwanted turn on at lower supply voltage.

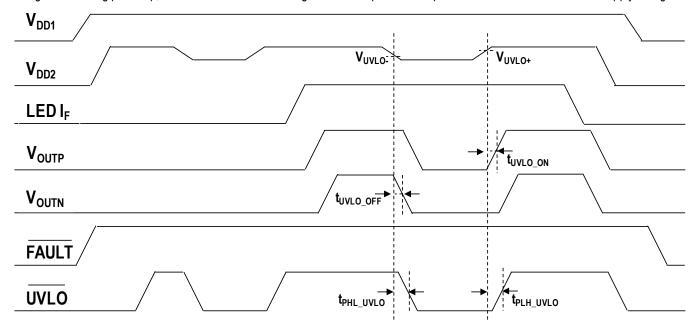


Figure 4.Circuit behaviors at power up and power down

Description of Operation during Over Current Condition (Refer to Figure 5)

- 1. OC terminal monitors IGBTs V_{CE} or MOSFET V_{DS} voltage.
- When the voltage on the OC terminal exceeds 9 volts, the output voltages (V_{OUTP} and V_{OUTN}) go to Hi-Z state and the SS pull down the V_{GATE} slowly via resistor Rss.
- 3. FAULT output goes low, notifying the microcontroller of the fault condition.
- 4. Microcontroller takes appropriate action.
- 5. When toc(MUTES) expires, LED input need to be kept low for tRESET(SS) before fault condition is cleared. FAULT status will return to high and SS output will return to Hi-Z state.
- 6. V_{GATE} starts to respond to LED input after fault condition is cleared.

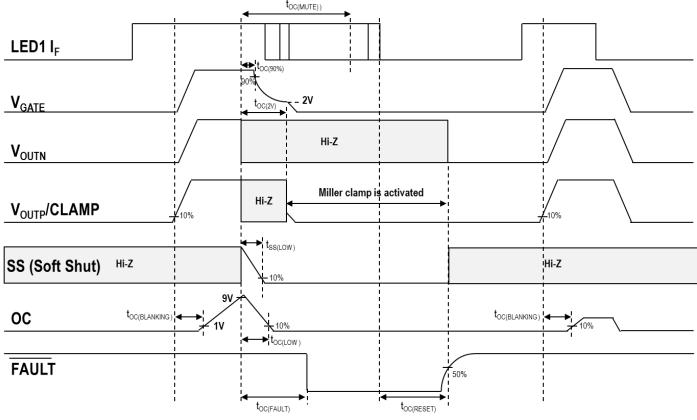


Figure 5.Circuit behaviors during over current event

Description of Gate Status Monitoring (Refer to Figure 6)

The status of the IGBT/MOSFET gate voltage is monitored by output pins V_{OUTP} and V_{OUTN}. The GFAULT output goes low when the gate voltage does not correspond to the LED input logic. The status of the gate is checked after a minimum delay time t_{GFAULT} to allow sufficient time for the gate to charge or discharge to its final level. There will no check for short input pulses to prevent false GFAULT reporting since the gate will not be able to reach its intended level.

When the LED input logic is high, V_{OUTN} will be sensed to check if the gate voltage is higher than V_{DD2} -2V after t_{GFAULT} delay. GFAULT output will go low if gate voltage is lower than V_{DD2} -2V. Likewise, when the LED input logic is low, V_{OUTP} will be sensed to check if the gate voltage is lower than V_{SS2} +2V. GFAULT output will return to high upon input logic change or if the gate voltage manages to cross the threshold of V_{DD2} -2V or V_{SS2} +2V.

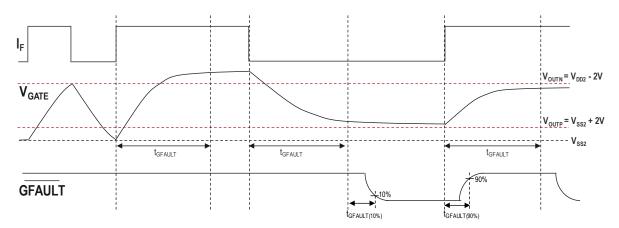


Figure 6.Circuit behaviors during gate status monitoring