

Features

- Compliant with 155 Mbps ATM and SONET OC-3 SDH STM-1
- Industry standard 1×9 footprint
- SC duplex connector
- Single power supply 3.3 V
- Differential PECL inputs and outputs
- Compatible with solder and aqueous wash processes
- Class 1 laser product complies with EN 60825-1

Ordering Information

PART NUMBER	WAVELENGTH	INPUT/OUTPUT	SIGNAL DETECT	VOLTAGE	TEMPERATURE
LS42-A3L-PC-N47	1470 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C
LS42-A3L-PC-N49	1490 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C
LS42-A3L-PC-N51	1510 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C
LS42-A3L-PC-N53	1530 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C
LS42-A3L-PC-N55	1550 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C
LS42-A3L-PC-N57	1570 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C
LS42-A3L-PC-N59	1590 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C
LS42-A3L-PC-N61	1610 nm	DC/DC	PECL	3.3V	0° C to 70 $^{\circ}$ C

Page 1 of 11 Version 1.0 Date:11/30/2005

Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Storage Temperature	T_S	-40	85	°C	
Supply Voltage	Vcc	-0.5	4.0	V	
Input Voltage	V_{IN}	-0.5	Vcc	V	
Output Current	I_o		50	mA	
Operating Current	I_{OP}		400	mA	
Soldering Temperature	T _{SOLD}		260	°C	10 seconds on leads

Operating Environment

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Ambient Operating Temperature	T_{AMB}	0	70	°C	
Supply Voltage	Vcc	3.1	3.5	V	

Page 2 of 11 Version 1.0 Date:11/30/2005

Transmitter Electro-optical Characteristics

$(Vcc = 3.1 \text{ V to } 3.5 \text{ V}, T_A = 0 \degree \text{C to } 70 \degree \text{C})$

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
Data Rate	В	50	155	200	Mb/s	
Output Optical Power 9/125 μm fiber	Pout	-4		+3	dBm	Average
Extinction Ratio	ER	10			dB	
Central Wavelength	λ_C	X-5.5	X+1	X+7.5	nm	
Spectral Width (-20dB)	$\Delta\lambda$			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Rise/Fall Time (10–90%)	$T_{r,f}$		1	2	ns	
Output Eye	Complia	nt with Telco	ordia GR-253	-CORE Issue 3	and ITU-T reco	ommendation G-957
Power Supply Current	I_{CC}			180	mA	Note 1
Transmitter Data Input Voltage-High	$V_{IH} - V_{CC}$	-1.1		-0.74	V	Note 2
Transmitter Data Input Voltage-Low	$V_{IL} - V_{CC}$	-2.0		-1.58	V	Note 2
Transmitter Data Input Differential Voltage	V _{DIFF}	0.3		1.6	V	Note 2

Note 1: Not including the terminations.

Note 2: These inputs are compatible with 10K, 10KH and 100K ECL and PECL input.

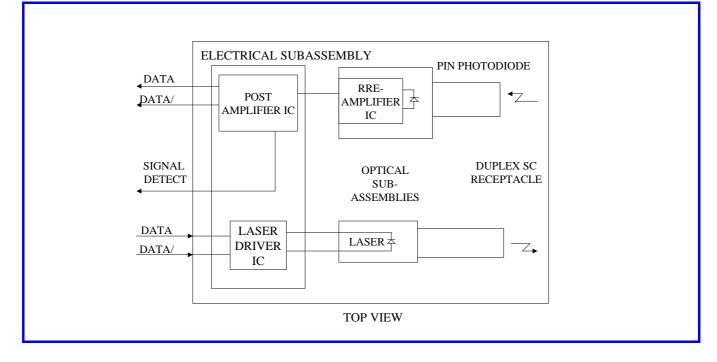
Page 3 of 11 Version 1.0 Date:11/30/2005

Receiver Electro-optical Characteristics

$(Vcc = 3.1 \text{ V to } 3.5 \text{ V}, T_A = 0 \degree \text{C to } 70 \degree \text{C})$

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNITS	NOTE
Data Rate	В	50	155	200	Mb/s	
Optical Input Power-maximum	P _{IN}	0			dBm	Note 1
Optical Input Power-minimum (Sensitivity)	P _{IN}			-35	dBm	Note 1
Operating Center Wavelength	λ_C	1260		1620	nm	
Signal Detect-Asserted	P_A			-35	dBm	Average
Signal Detect-Deasserted	P_D	-45			dBm	Average
Signal Detect-Hysteresis	$P_A - P_D$	1.0			dB	
Signal Detect Output voltage-High	$V_{OH} - V_{CC}$	-1.1		-0.74	V	Note 2
Signal Detect Output voltage-Low	$V_{OL} - V_{CC}$	-2.0		-1.58	V	Note 2
Power Supply Current	I_{CC}			100	mA	Note 3
Data Output Rise, Fall Time (10–90%)	$T_{r,f}$		1	2	ns	
Data Output Voltage-High	$V_{OH} - V_{CC}$	-1.1		-0.74	V	Note 2
Data Output Voltage-Low	$V_{OL} - V_{CC}$	-2.0		-1.58	V	Note 2

Note 1: The input data is at 155.52 Mbps, 2^{23} -1 PRBS data pattern with 72 "1"s and 72 "0"s inserted per the ITU-T recommendation G.958 Appendix 1. The receiver is guaranteed to provide output data with Bit Error Rate (BER) better than or equal to 1×10^{-10} .


Note 2: These outputs are compatible with 10K, 10KH and 100K ECL and PECL input.

Note 3: The current exclude the output load current.

Page 4 of 11 Version 1.0 Date:11/30/2005

Block Diagram of Transceiver

Transmitter Section

The transmitter section consists of a 1550 nm InGaAsP laser in an eye safe optical subassembly (OSA) which mates to the fiber cable. The laser OSA is driven by a LD driver IC which converts differential input PECL logic signals into an analog laser driving current.

Receiver Section

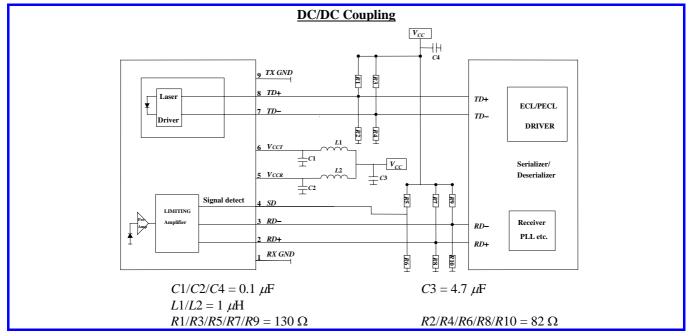
The receiver utilizes an InGaAs PIN photodiode mounted together with a trans-impedance preamplifier IC in an OSA. This OSA is connected to a circuit providing post-amplification quantization, and optical signal detection.

Receiver Signal Detect

Signal Detect is a basic fiber failure indicator. This is a single-ended PECL output. As the input optical power is decreased, Signal Detect will switch from high to low (deassert point) somewhere between sensitivity and the no light input level. As the input optical power is increased from very low levels, Signal Detect will switch back from low to high (assert point). The assert level will be at least 1.0 dB higher than the deassert level.

Page 5 of 11 Version 1.0 Date:11/30/2005

Connection Diagram

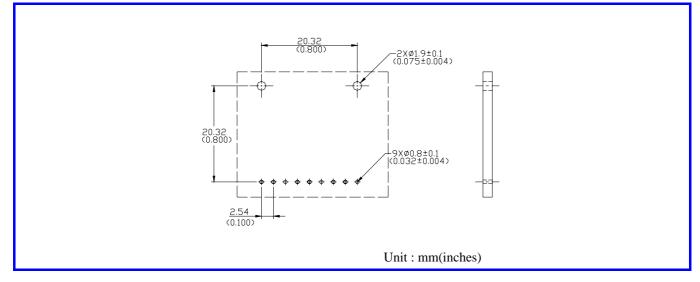

1. RX GND		7
2. <i>RD</i> +	O ^{N/C}	
3. <i>RD</i> -		
4. <i>SD</i>	TOP VIEW	
5. <i>VCCR</i>		
6. VCCT		
7. <i>TD</i> -		
8. <i>TD</i> +	\bigcirc N/C	
9. TX GND	\cup	

PIN	SYMBOI	DESCRIPTION					
1	RX GND	Receiver Signal Ground.					
		Directly connect this pin to the receiver ground plane. RD+ is an open-emitter output circuit.					
2	רחת						
2	RD+	Terminate this high-speed differential LVPECL output with standard LVPECL techniques at the follow-on device input pin. (See recommended circuit schematic)					
		RD- is an open-emitter output circuit .					
3	RD-	Terminate this high-speed differential LVPECL output with standard LVPECL techniques at the					
5	KD-	follow-on device input pin. (See recommended circuit schematic)					
		Signal Detect.					
		Normal optical input levels to the receiver result in a logic "1" output, V_{OH} , asserted. Low input optical					
		levels to the receiver result in a fault condition indicated by a logic "0" output V_{OL} , deasserted Signal					
		Detect is a single-ended LVPECL output. SD can be terminated with LVPECL techniques via 50 Ω to					
4	4 <i>SD</i>	$V_{CCR} - 2$ V. Alternatively, SD can be loaded with a 180 Ω resistor to RX GND to conserve electrical					
		$V_{CCR} - 2$ V. Alternatively, 5D can be loaded with a 180 Ω festsion to RX GND to conserve electrical power with small compromise to signal quality. If Signal Detect output is not used, leave it					
		open-circuited. This Signal Detect output can be used to drive a PECL input on an upstream circuit, such					
		as, Signal Detect input or Loss of Signal-bar.					
		Receiver Power Supply.					
5	V_{CCR}	Provide +3.3 Vdc via the recommended receiver power supply filter circuit. Locate the power supply					
5	V CCR	filter circuit as close as possible to the V_{CCR} pin.					
		Transmitter Power Supply.					
6	V_{CCT}	Provide +3.3 Vdc via the recommended transmitter power supply filter circuit. Locate the power supply					
0	V CCT	filter circuit as close as possible to the V_{CCT} pin.					
		Transmitter Data In-Bar.					
7	TD-	Terminate this high-speed differential PECL input with standard LVPECL techniques at the transmitter					
,	ID^{-}	input pin. (See recommended circuit schematic)					
		Transmitter Data In.					
8	TD+	Terminate this high-speed differential PECL input with standard LVPECL techniques at the transmitter					
0	ID I	input pin. (See recommended circuit schematic)					
		Transmitter Signal Ground.					
9	TX GND	Directly connect this pin to the transmitter signal ground plane. Directly connect this pin to the					
/	11 0110	transmitter ground plane.					
D	. C . C 11	Hardenseters					
Page	e 6 of 11	Headquarters :					

Page 6 of 11 Version 1.0 Date:11/30/2005

Recommended Circuit Schematic

In order to get proper functionality, a recommended circuit is provided in above recommended circuit schematic. When designing the circuit interface, there are a few fundamental guidelines to follow.

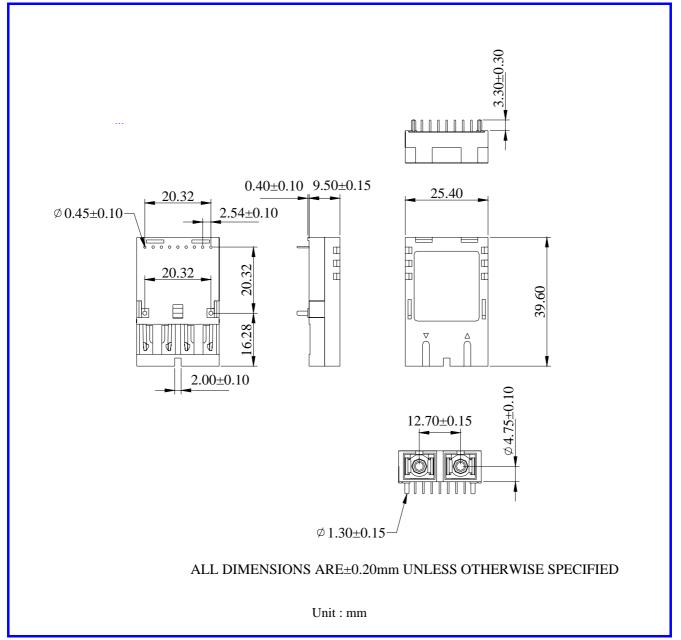

- (1) The differential data lines should be treated as 50Ω Micro strip or strip line transmission lines. This will help to minimize the parasitic inductance and capacitance effects. Locate termination at the received signal end of the transmission line. The length of these lines should be kept short and of equal length.
- (2) For the high speed signal lines, differential signals should be used, not single-ended signals, and these differential signals need to be loaded symmetrically to prevent unbalanced currents which will cause distortion in the signal.
- (3) Multi layer plane PCB is best for distribution of V_{CC} , returning ground currents, forming transmission lines and shielding, Also, it is important to suppress noise from influencing the fiber-optic transceiver performance, especially the receiver circuit.
- (4) A separate proper power supply filter circuits shown in Figure for the transmitter and receiver sections. These filter circuits suppress V_{CC} noise over a broad frequency range, this prevents receiver sensitivity degradation due to V_{CC} noise.
- (5) Surface-mount components are recommended. Use ceramic bypass capacitors for the 0.1 μ F capacitors and a surface-mount coil inductor for 1 μ H inductor. Ferrite beads can be used to replace the coil inductors when using quieter V_{CC} supplies, but a coil inductor is recommended over a ferrite bead. All power supply components need to be placed physically next to the V_{CC} pins of the receiver and transmitter.
- (6) Use a good, uniform ground plane with a minimum number of holes to provide a low-inductance ground current return for the power supply currents.

Page 7 of 11 Version 1.0 Date:11/30/2005

RoHS compliant CWDM 1550nm Single-mode Transceiver (31dB margin) 1x9, SC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

Recommended Board Layout Hole Pattern

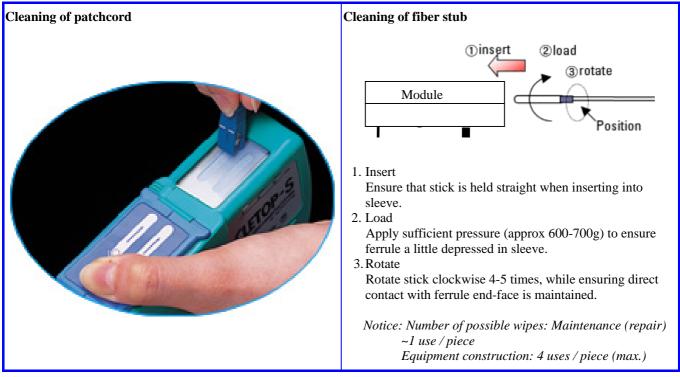
This transceiver is compatible with industry standard wave or hand solder processes. After wash process, all moisture must be completely remove from the module. The transceiver is supplied with a process plug to prevent contamination during wave solder and aqueous rinse as well as during handling, shipping or storage.


Solder fluxes should be water-soluble, organic solder fluxes. Recommended cleaning and degreasing chemicals for these transceivers are alcohol's (methyl, isopropyl, isobutyl), aliphatics (hexane, heptane) and other chemicals, such as soap solution or naphtha. Do not use partially halogenated hydrocarbons for cleaning/degreasing.

Page 8 of 11 Version 1.0 Date:11/30/2005

RoHS compliant CWDM 1550nm Single-mode Transceiver (31dB margin) 1x9, SC Duplex Connector, 3.3 V 155 Mbps ATM/SONET OC-3/SDH STM-1/Fast Ethernet

Drawing Dimensions



Page 9 of 11 Version 1.0 Date:11/30/2005

Optical Receptacle Cleaning Recommendations

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patchcord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Page 10 of 11 Version 1.0 Date:11/30/2005

Eye Safety Mark

The LS4 series Single-mode transceiver is a class 1 laser product. It complies with EN 60825-1 and FDA 21 CFR 1040.10 and 1040.11. In order to meet laser safety requirements the transceiver shall be operated within the Absolute Maximum Ratings. <u>Caution</u> All adjustments have been done at the factory before the shipment of the devices. No maintenance and user serviceable part is required. Tampering with and modifying the performance of the device will result in voided product warranty.	Required Mark Class 1 Laser Product Complies with 21 CFR 1040.10 and 1040.11
--	---

Note : All information contained in this document is subject to change without notice.

Page 11 of 11 Version 1.0 Date:11/30/2005