
Zynq UltraScale+
MPSoC: Embedded
Design Tutorial

A Hands-On Guide to Effective
Embedded System Design

UG1209 (v2019.2) October 30, 2019

See all versions
of this document

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1209

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 2
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
10/30/2019 Version 2019.2

Updated for Vitis™ unified software platform Migrated the flow to Vitis™ unified software platform.
General updates Validated with Vitis IDE and PetaLinux 2019.2.

07/03/2019 Version 2019.1
General updates Validated with Vivado® Design Suite and PetaLinux

2019.1.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=2

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 3
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Table of Contents
Revision History . 2

Chapter 1: Introduction
About This Guide . 5
How Zynq UltraScale+ Devices Offer a Single Chip Solution. 6
How the Xilinx Design Tools Expedite the Design Process . 9
What You Need to Set Up Before Starting . 10

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration
Zynq UltraScale+ System Configuration . 13
Example Project: Creating a New Embedded Project with Zynq UltraScale+ MPSoC 14

Chapter 3: Build Software for PS Subsystems
Processing Units in Zynq UltraScale+ . 29
Example Project: Running the “Hello World” Application from Arm Cortex-A53 30
Example Project: Running the “Hello World” Application from Arm Cortex-R5 34
Additional Information . 37
Example Project: Create a Bare-Metal Application Project in the Vitis IDE. 38
Reviewing Software Projects in the Platform . 42
Example Project: Create Linux Images using PetaLinux . 47

Chapter 4: Debugging with the Vitis Debugger
Xilinx System Debugger . 53
Debugging Software Using the Vitis Debugger . 55
Debugging Using XSCT . 58

Chapter 5: Boot and Configuration
System Software . 69
Linux on APU and Bare-Metal on RPU . 71
Boot Sequence for SD-Boot. 71
Boot Sequence for QSPI Boot Mode. 81
Boot Sequence for QSPI-Boot Mode Using JTAG. 94
Boot Sequence for USB Boot Mode . 97

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=3

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 4
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Secure Boot Sequence . 104

Chapter 6: System Design Examples
Design Example 1: Using GPIOs, Timers, and Interrupts . 137
Design Example 2: Example Setup for Graphics and Display Port Based Sub-System 158

Appendix A: Debugging Problems with Secure Boot
Determine if PUF Registration is Running . 165
Read the Boot Image . 165

Appendix B: Additional Resources and Legal Notices
Xilinx Resources . 166
Solution Centers. 166
Documentation Navigator and Design Hubs . 166
Design Files for This Tutorial . 167
Xilinx Resources . 167
Training Resources. 168
Please Read: Important Legal Notices . 169

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=4

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 5
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1

Introduction

About This Guide
This document provides an introduction to using the Xilinx® Vivado® Design Suite flow for
using the Zynq® UltraScale+™ MPSoC device. The examples are targeted for the Xilinx
ZCU102 Rev 1.0 and Rev 1.1 evaluation boards. The tool used is the Vitis™ unified software
platform.

The examples in this document were created using the Xilinx tools running on Windows 10,
64-bit operating system, and PetaLinux on Linux 64-bit operating system. Other versions of
the tools running on other Window installs might provide varied results. These examples
focus on introducing you to the following aspects of embedded design.

Note: The sequence mentioned in the tutorial steps for booting Linux on the hardware is specific to
the PetaLinux tools released for 2019.2, which must be installed on the Linux host machine for
exercising the Linux portions of this document.
• Chapter 2, Zynq UltraScale+ MPSoC Processing System Configuration describes the

creation of a system with the Zynq UltraScale+ MPSoC Processing System (PS) and the
creation of a hardware platform for Zynq Ultrascale+ MPSoC. This chapter is an
introduction to the hardware and software tools using a simple design as the example.

• Chapter 3, Build Software for PS Subsystems describes the steps to configure and build
software for processing blocks in processing system, including application processing
unit (APU), real-time processing unit (RPU). Creation of bare metal applications
targeting on application processing unit (APU) and RPU is also included. Review of boot
components in hardware platform.

• Chapter 4, Debugging with the Vitis Debugger provides an introduction to debugging
software using the debug features of the Vitis IDE. This chapter uses the previous
design and runs the software bare metal (without an OS) to show how to debug. This
chapter also lists Debug configurations for Zynq UltraScale+ MPSoC.

• Chapter 5, Boot and Configuration shows integration of components to configure and
create Boot images for a Zynq UltraScale+ system. The purpose of this chapter is to
understand how to integrate and load Boot loaders.

• Chapter 6, System Design Examples highlights how you can use the software blocks you
configured in Chapter 3 to create a Zynq UltraScale+ system.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=5

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 6
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1: Introduction

Document Audience and Scope
The purpose of this guide is to familiarize software application developers, system software
designers, and system hardware designers by providing the following:

• Tutorials for creating a Zynq UltraScale+ MPSoc System
• Tutorials on building software for the PS subsystem
• Tutorials on debugging using the Vitis IDE
• System design examples

Example Project
The best way to learn a tool is to use it. This guide provides opportunities for you to work
with the tools under discussion. Specifications for sample projects are given in the example
sections, along with an explanation of what is happening behind the scenes. Each chapter
and examples are meant to showcase different aspects of embedded design. The example
takes you through the entire flow to complete the learning and then moves on to another
topic.

Additional Documentation
Additional documentation is listed in Appendix B, Additional Resources and Legal Notices.

How Zynq UltraScale+ Devices Offer a Single Chip
Solution
Zynq UltraScale+ MPSoC, the next generation Zynq device, is designed with the idea of
using the right engine for the right task. The Zynq UltraScale+ comes with a versatile
Processing System (PS) integrated with a highly flexible and high-performance
Programmable Logic (PL) section, all on a single System on Chip (SoC). The Zynq
UltraScale+ MPSoC PS block includes engines such as the following:

• Quad-core Arm Cortex-A53 based Application Processing Unit (APU)
• Dual-core Arm Cortex-R5 based Real Time Processing Unit (RPU)
• Arm Mali-400 MP2 based Graphics Processing Unit (GPU)
• Dedicated Platform Management Unit (PMU) and Configuration Security Unit (CSU)
• List of High Speed peripherals, including Display port and SATA

The Programmable Logic Section, in addition to the programmable logic cells, also comes
integrated with few high performance peripherals, including the following:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=6

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 7
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1: Introduction

• Integrated Block for PCI Express
• Integrated Block for Interlaken
• Integrated Block for 100G Ethernet
• System Monitor
• Video Codec Unit

The PS and the PL in Zynq UltraScale+ can be tightly or loosely coupled with a variety of
high performance and high bandwidth PS-PL interfaces.

To simplify the design process for such sophisticated devices, Xilinx offers the Vivado
Design Suite, Vitis IDE, and PetaLinux Tools for Linux. This set of tools provides you with
everything you need to simplify embedded system design for a device that merges an SoC
with an FPGA. This combination of tools enables hardware and software application design,
code execution and debug, and transfer of the design onto actual boards for verification
and validation.

Vitis Integrated Design Environment (IDE)
The Vitis™ unified software platform is an integrated development environment (IDE) for
the development of embedded software applications targeted towards Xilinx® embedded
processors. The Vitis software platform works with hardware designs created with Vivado®
Design Suite. The Vitis software platform is based on the Eclipse open source standard and
the features for software developers include:

• Feature-rich C/C++ code editor and compilation environment.
• Project management.
• Application build configuration and automatic Makefile generation.
• Error navigation.
• Integrated environment for seamless debugging and profiling of embedded targets.
• Source code version control.
• System-level performance analysis.
• Focused special tools to configure FPGAs.
• Bootable image creation.
• Flash programming.
• Script-based command-line tool.

For more information about the Eclipse development environment, refer to
http://www.eclipse.org.

Other components include:

Send Feedback

https://www.xilinx.com
http://www.eclipse.org
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=7

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 8
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1: Introduction

• Drivers and libraries for embedded software development
• Linaro GCC compiler for C/C++ software development targeting the Arm Cortex-A53

and Arm Cortex-R5F MPCore processors in the Zynq UltraScale+ Processing System.

The Vivado Design Suite
The Vivado Design Suite offers a broad range of development system tools for FPGA
implementation. It can be installed as a standalone tool when software programming is not
required. It is also a part of the Vitis IDE installation. Various Vivado Design Suite editions
can be used for embedded system development. In this guide the System Edition installed
with the Vitis IDE is used. The Vivado Design Suite editions are shown in the following
figure.
X-Ref Target - Figure 1-1

Figure 1-1: Vivado Design Suite Editions

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=8

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 9
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1: Introduction

Other Vivado Components
Other Vivado components include:

• Embedded/Soft IP for the Xilinx embedded processors
• Documentation
• Sample projects

PetaLinux Tools
The PetaLinux tools set is an Embedded Linux System Development Kit. It offers a
multi-faceted Linux tool flow, which enables complete configuration, build, and deploy
environment for Linux OS for the Xilinx Zynq devices, including Zynq UltraScale+.

For more information, see the PetaLinux Tools Documentation: Reference Guide (UG1144)
[Ref 7].

The PetaLinux Tools design hub provides information and links to documentation specific to
PetaLinux Tools. For more information, see Documentation Navigator and Design Hubs.

How the Xilinx Design Tools Expedite the Design
Process
You can use the Vivado Design Suite tools to add design sources to your hardware. These
include the IP integrator, which simplifies the process of adding IP to your existing project
and creating connections for ports (such as clock and reset).

You can accomplish all your hardware system development using the Vivado tools along
with IP integrator. This includes specification of the Zynq UltraScale+ Processing System,
peripherals, and the interconnection of these components, along with their respective
detailed configuration.

The Vitis IDE can be used for software development, hardware acceleration, and platform
development. It also be used to debug software applications.

The Zynq UltraScale+ Processing System (PS) can be booted and run without programming
the FPGA (programmable logic or PL). However, in order to use any soft IP in the fabric, or
to bond out PS peripherals using EMIO, programming of the PL is required. You can
program the PL using the Vitis IDE or using the Vivado Hardware Manager.

For more information on the embedded design process, refer to the Vivado Design Suite
Tutorial: Embedded Processor Hardware Design (UG940) [Ref 2].

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=9

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 10
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1: Introduction

For more information about the Zynq UltraScale+ Processing System, refer to the Zynq
UltraScale+ Processing System Product Guide (PG201) [Ref 8].

What You Need to Set Up Before Starting
Before discussing the tools in depth, you should make sure they are installed properly and
your environments match the requirements mentioned in the "Example Project" section of
this guide.

Hardware Requirements for this Guide
This tutorial targets the Zynq UltraScale+ ZCU102 evaluation board. The examples in this
tutorial were tested using the ZCU102 Rev 1 board. To use this guide, you need the
following hardware items, which are included with the evaluation board:

• ZCU102 Rev1 evaluation board
• AC power adapter (12 VDC)
• USB Type-A to USB Micro cable (for UART communications)
• USB Micro cable for programming and debugging via USB-Micro JTAG connection
• SD-MMC flash card for Linux booting
• Ethernet cable to connect target board with host machine
• Monitor with Display Port (DP) capability and at least 1080P resolution.
• DP cable to connect the Display output from ZCU102 Board to a DP monitor.

Installation Requirements

Vitis Integrated Design Environment and Vivado Design Suite

Make sure that you have installed the 2019.2 Vitis IDE. Visit
https://www.xilinx.com/support/download.html to confirm that you have the latest tools
version.

Ensure that you have the Vitits 2019.2 software development platform installed. The Vitis
IDE is a Xilinx unified tool which comes with all the hardware and software as a package. If
you install the Vitis IDE, you will automatically get both the Vivado Design Suite and the
Vitis IDE. You do not have to make any extra selections in the installer. The installation and
selection window is shown below.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/download.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=10

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 11
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1: Introduction

For more information on installing the Vivado Design Suite, refer to the Vitis Embedded
Software Development Flow Documentation [Ref 13].

PetaLinux Tools

Install the PetaLinux Tools to run through the Linux portion of this tutorial. PetaLinux tools
run under the Linux host system running one of the following:

• Red Hat Enterprise Workstation/Server 7.4, 7.5, 7.6 (64-bit)
• CentOS Workstation/Server 7.4, 7.5, 7.6 (64-bit)
• Ubuntu Linux Workstation/Server 16.04.5, 16.04.6, 18.04.1, 18.04.02 (64-bit)

This can use either a dedicated Linux host system or a virtual machine running one of these
Linux operating systems on your Windows development platform.

When you install PetaLinux Tools on your system of choice, you must do the following:

• Download PetaLinux 2019.2 software from the Xilinx Website.
• Download the ZCU102 PetaLinux BSP (ZCU102 BSP (prod-silicon)) from the

2019.2 downloads page.
• Add common system packages and libraries to the workstation or virtual machine. For

more information, see the Installation Requirements from the PetaLinux Tools
Documentation: Reference Guide (UG1144) [Ref 7].

X-Ref Target - Figure 1-2

Figure 1-2: Vitis IDE Installer with Vivado

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/member/forms/download/xef.html?filename=petalinux-v2019.1-final-installer.run
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.htmltools/2019-2.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=11

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 12
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 1: Introduction

Prerequisites

• 8 GB RAM (recommended minimum for Xilinx tools)
• 2 GHz CPU clock or equivalent (minimum of 8cores)
• 100 GB free HDD space

Extract the PetaLinux Package

PetaLinux tools installation is straight-forward. Without any options, the PetaLinux tools are
installed into the current working directory. Alternatively, an installation path may be
specified.

For example: To install PetaLinux tools under /opt/pkg/petalinux/2019.2:

$ mkdir -p /opt/pkg/petalinux/2019.2
$./petalinux-v2019.2-final-installer.run /opt/pkg/petalinux/2019.2

For more information, see PetaLinux Tools Documentation: Reference Guide [Ref 7].

Software Licensing

Xilinx software uses FLEXnet licensing. When the software is first run, it performs a license
verification process. If the license verification does not find a valid license, the license
wizard guides you through the process of obtaining a license and ensuring that the license
can be used with the tools installed. If you do not need the full version of the software, you
can use an evaluation license.For installation instructions and information, see the Vivado
Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) [Ref 3].

Tutorial Design Files

See Design Files for This Tutorial for information about downloading the design files for this
tutorial.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=12

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 13
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2

Zynq UltraScale+ MPSoC Processing
System Configuration

Now that you have been introduced to the Xilinx® Vivado® Design Suite, you will learn
how to use it to develop an embedded system using the Zynq® UltraScale+™ MPSoC
Processing System (PS).

The Zynq UltraScale+ device consists of Quad-Core Arm® Cortex®-A53 based APU,
Dual-Core Arm Cortex-R5 RPU, Mali 400 MP2 GPU, and many hard Intellectual Property
components (IPs), and Programmable Logic (PL). This offering can be used in two ways:

• The Zynq UltraScale+ PS can be used in a standalone mode, without attaching any
additional fabric IP.

• IP cores can be instantiated in fabric and attached to the Zynq UltraScale+ PS as a
PS+PL combination.

Zynq UltraScale+ System Configuration
Creation of a Zynq UltraScale+ system design involves configuring the PS to select the
appropriate boot devices and peripherals. To start with, as long as the PS peripherals and
available MIO connections meet the design requirements, no bitstream is required. This
chapter guides you through creating a simple PS-based design that does not require a
bitstream.

In addition to the basic PS configuration, this chapter will briefly touch upon the concept of
Isolation Configuration to create subsystems with protected memory and peripherals. This
advanced configuration mode in the PS Block enables you to setup subsystems comprising
Masters with dedicated memory and peripherals. The protection is provided by the XMPU
and the XPPU in Zynq UltraScale+ PS block. The isolation configuration also allows the
TrustZone settings for components to create and configure the systems in Secure and
Non-Secure Environments.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=13

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 14
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Example Project: Creating a New Embedded Project
with Zynq UltraScale+ MPSoC
For this example, you will launch the Vivado Design Suite and create a project with an
embedded processor system as the top level.

Starting Your Design
1. Start the Vivado Design Suite.
2. In the Vivado Quick Start page, click Create Project to open the New Project wizard.
3. Use the information in the table below to make selections in each of the wizard screens.

4. Click Finish. The New Project wizard closes and the project you just created opens in the
Vivado design tool.

Creating a Block Design Project
You will now use the IP Integrator to create a Block Design project.

1. In the Flow Navigator, under IP Integrator, click Create Block Design.

Table 2-1: New Project Wizard Options
Wizard Screen System Property Setting or Command to Use

Project Name Project name edt_zcu102

Project Location C:/edt

Create Project Subdirectory Leave this checked
Project Type Specify the type of sources for your

design. You can start with RTL or a
synthesized EDIF.

RTL Project

Do not specify sources at this time
check box

Leave this unchecked.

Add Sources Do not make any changes to this screen.
Add Constraints Do not make any changes to this screen.
Default Part Select Boards

Display Name Zynq UltraScale+ ZCU102
Evaluation Board

New Project Summary Project Summary Review the project summary

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=14

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 15
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

The Create Block Design wizard opens.

2. Use the following information to make selections in the Create Block Design wizard.

3. Click OK.

The Diagram window view opens with a message that states that this design is empty. To
get started, you will next add some IP from the catalog.

4. Click the Add IP button .
5. In the search box, type zynq to find the Zynq device IP.
6. Double-click the ZYNQ UltraScale+ MPSoC IP to add it to the Block Design.

The Zynq UltraScale+ MPSoC processing system IP block appears in the Diagram view,
as shown in the following figure.

X-Ref Target - Figure 2-1

Figure 2-1: Create Block Design Button

Table 2-2: Setting in Create Block Design Wizard
Wizard Screen System Property Setting or Command to Use

Create Block Design Design Name edt_zcu102

Directory <Local to Project>

Specify Source Set Design Sources

X-Ref Target - Figure 2-2

Figure 2-2: Zynq UltraScale+ MPSoC Processing System IP Block

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=15

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 16
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

Managing the Zynq UltraScale+ Processing System in Vivado
Now that you have added the processor system for the Zynq MPSoC to the design, you can
begin managing the available options.

1. Double-click the ZYNQ UltraScale+ Processing System block in the Block Diagram
window.

The Re-customize IP dialog box opens, as shown in the following figure. Notice that by
default, the processor system does not have any peripherals connected

2. Click Cancel to exit the dialog box without making changes to the design.

TIP: In the Block Diagram window, notice the message stating that designer assistance is available, as
shown in the following figure. When designer assistance is available, you can click the link to have
Vivado perform that step in your design.

X-Ref Target - Figure 2-3

Figure 2-3: Re-customize IP Dialog Box

X-Ref Target - Figure 2-4

Figure 2-4: Designer Assistance Link

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=16

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 17
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

3. You will now use a preset template created for the ZCU102 board. Click the Run Block
Automation Link.

The Run Block Automation dialog box opens.

4. Click OK to accept the default processor system options and make default pin
connections.

This configuration wizard enables many peripherals in the Processing System with some
multiplexed I/O (MIO) pins assigned to them according to the board layout of the
ZCU102 board. For example, UART0 and UART1 are enabled. The UART signals are
connected to a USB-UART connector through UART to the USB converter chip on the
ZCU102 board.

5. To verify, double-click on the Zynq UltraScale+ Processing System block in the block
diagram window.

Note the check marks that appear next to each peripheral name in the Zynq UltraScale+
device block diagram, signifying the I/O Peripherals that are active.

X-Ref Target - Figure 2-5

Figure 2-5: I/O Unit with Active Peripherals Identified

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=17

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 18
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

6. In the block diagram, click one of the green I/O Peripherals, as shown in the previous
figure. The I/O Configuration dialog box opens for the selected peripheral.

This page enables you to configure low speed and high speed peripherals. For this
example, you will continue with the basic connection enabled using Board preset for
ZCU102.

7. In the Page Navigator, select PS-PL Configuration.
8. In PS-PL Configuration, expand PS-PL Interfaces and expand the Master Interface.

For this example, because there is no design in PL, you can disable the PS-PL interface.
In this case, AXI HPM0 FPD and AXI HPM1 FPD Master Interfaces can be disabled.

9. De-select AXI HPM0 FPD and AXI HPM1 FPD.

X-Ref Target - Figure 2-6

Figure 2-6: I/O Configuration Page of the Re-customize IP Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=18

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 19
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

The PS-PL configuration looks like following figure.

10. Click OK to close the Re-customize IP wizard.

Isolation Configuration
This section is for reference only. It explains the importance of Isolation Configuration
settings for different use-cases. Different use-cases may need to establish Isolation
Configurations on an as-need basis. Isolation configuration is optional and you can set it as
per your system requirement. Safety/Security critical use cases typically require isolation
between safe/non-safe or secure/non-secure portions of the design. This requires a
safe/secure region that contains a master (such as the RPU) along with its slaves (memory
regions and peripherals) to be isolated from non-safe or non-secure portions of the design.
In such cases, the TrustZone attribute can be applied to the dedicated peripherals or
memory locations. In this way only a valid and trusted master can access the secure slaves.
An other use-case requiring Isolation is for Platform and Power management. In this case,
independent subsystems can be created with Masters and slaves. This is used to identify
dependencies during run-time power management or warm restart for upgrade or recovery.
An example of this use-case can be found on the Zynq UltraScale+ Restart solution wiki
page. The Xilinx Memory Protection Unit (XMPU) and Xilinx Peripheral Protection Unit
(XPPU) in Zynq UltraScale+ provide hardware protection for memory and peripherals. These
protection units complement the isolation provided by TrustZone (TZ) and the Zynq
UltraScale+ MPSoC SMMU.

The XMPU and XPPU in Zynq UltraScale+ allow Isolation of resources at SoC level. Arm
MMU and Trustzone enable Isolation within Arm Cortex-A53 Core APU. Hypervisor and
SMMU allows setting Isolation between Cortex-A53 cores. From a tools standpoint, these
Protection Units can be configured using Isolation Configuration in Zynq UltraScale+ PS IP
wizard. The Isolation settings are exported as an initialization file which is loaded as a part

X-Ref Target - Figure 2-7

Figure 2-7: PS-PL Configuration

Send Feedback

https://www.xilinx.com
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841820/Zynq+UltraScale+Plus+Restart+solution
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=19

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 20
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

of the bootloader, in this case the First Stage Boot Loader (FSBL). For more details, see the
Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085) [Ref 5].

1. Double-click the Zynq UltraScale+ Processing System in the block diagram window, if
it is not open.

2. Select Switch To Advanced Mode.

Notice the protection elements indicated by red blocks in the wizard.

3. To create an isolation setup, click Isolation Configuration.

This tutorial does not use Isolation Configuration and hence, no Isolation related
settings are requested.

4. Click OK to close the Re-customize IP wizard.
Note: For detailed steps to create isolation configuration, see XAPP1320.

Validating the Design and Connecting Ports
Use the following steps to validate the design:

1. Right-click in the white space of the Block Diagram view and select Validate Design.
Alternatively, you can press the F6 key.

2. A message dialog box opens and states "Validation successful. There are no errors or
critical warnings in this design."

X-Ref Target - Figure 2-8

Figure 2-8: PS Configuration Advanced Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/documentation/application_notes/xapp1320-isolation-methods.pdf
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=20

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 21
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

3. Click OK to close the message.
4. In the Block Design view, click the Sources tab.
5. Click Hierarchy.
6. Under Design Sources, right-click edt_zcu102 and select Create HDL Wrapper.

The Create HDL Wrapper dialog box opens. You will use this dialog box to create a HDL
wrapper file for the processor subsystem.

TIP: The HDL wrapper is a top-level entity required by the design tools.

7. Select Let Vivado manage wrapper and auto-update and click OK.
8. In the Block Diagram, Sources window, under Design Sources, expand

edt_zcu102_wrapper.
9. Right-click the top-level block diagram, titled edt_zcu102_i : edt_zcu102

(edt_zcu102.bd) and select Generate Output Products.

The Generate Output Products dialog box opens, as shown in the following figure.

Note: If you are running the Vivado Design Suite on a Linux host machine, you might see
additional options under Run Settings. In this case, continue with the default settings.

10. Click Generate.

This step builds all required output products for the selected source. For example,
constraints do not need to be manually created for the IP processor system. The Vivado
tools automatically generate the XDC file for the processor subsystem when Generate
Output Products is selected.

X-Ref Target - Figure 2-9

Figure 2-9: Generate Output Products Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=21

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 22
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

11. Click OK, if you see the message: “Out-of-context module run was launched for
generating output products”.

12. When the Generate Output Products process completes, click OK.
13. In the Block Diagram Sources window, click the IP Sources tab. Here you may see the

output products that you just generated, as shown in the following figure.

Exporting Hardware
1. Select File > Export > Export Hardware.

The Export Hardware dialog box opens. Provide the location for exporting hardware in
local path.

X-Ref Target - Figure 2-10

Figure 2-10: Outputs Generated Under IP Sources

X-Ref Target - Figure 2-11

Figure 2-11: Export Hardware

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=22

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 23
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

2. Click OK.

TIP: The hardware is exported in a ZIP file (<project wrapper>.xsa). When you create the
platform in Vitis IDE using hardware .xsa, the ZIP file automatically unzips and files are created in the
project platform folder.

Creating a Hardware Platform using Vitis IDE

1. Launch the Vitis IDE from Windows start menu shortcut or by double-clicking the
C:\Xilinx\Vitis\2019.2\bin\vitis.bat file.

2. Select the workspace and continue.

3. In the Vitis IDE, go to File > New > Platform Project.
4. Enter the Hardware Platform name and click Next.

X-Ref Target - Figure 2-12

Figure 2-12: Launching the Vitis IDE

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=23

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 24
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

5. Select Create from hardware specification (XSA/DSA), then click Next.

6. Browse the .xsa/.dsa file which is generated from Vivado.

X-Ref Target - Figure 2-13

Figure 2-13: New Platform Window

X-Ref Target - Figure 2-14

Figure 2-14: Selecting Custom Hardware

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=24

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 25
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

7. Click Finish.
8. In a few minutes, the Vitis IDE generates the platform. The files that are generated are

displayed in the explorer window as shown in the following figure.

X-Ref Target - Figure 2-15

Figure 2-15: Selecting Hardware Specification

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=25

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 26
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

9. Default FSBL and PMU firmware comes with the platform project and psu_cortexa53_0
domain also added to the platform. We can add multiple domains to platform and we
can also create FSBL like any other application.

Note: To add the following libraries by modifying the standalone on psu_cortexa53_0 domain,
follow these steps:

a. Double-click the standalone on psu_cortexa53_0 BSP.
b. Click Modify BSP Settings.
c. On the Overview page, select the xilffs, xilpm, xilsecure libraries.

10. Now build the hardware by right-clicking on Platform > Build project.

X-Ref Target - Figure 2-16

Figure 2-16: Adding a Custom Platform

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=26

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 27
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

The hardware platform is ready. You can create applications using this platform and test
on zcu102 hardware.

Creating a Vitis Domain for cortexr5_0

To create a Vitis domain for cotexr5_0, follow these steps:

1. The edt_zcu102_wrapper platform is, by default, assigned the default domain for
psu_cortexa53_0. For applications targeting the RPU, you have to create a domain for
cortexr5_0

2. Double click platform.spr. The platform explorer opens.
3. Click the + in the top right corner to add the domain.
4. Create a domain with the following settings:

X-Ref Target - Figure 2-17

Figure 2-17: Building Hardware Platform

Table 2-3: Settings to Create a New Domain
System Properties Setting or Command to Use

Name psu_cortexr5_0
Display name psu_cortexr5_0
OS Standalone
Version Standalone (7.1)
Processor psu_cortexr5_0
Supported Runtime C/C++

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=27

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 28
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 2: Zynq UltraScale+ MPSoC Processing System Configuration

5. The Vitis IDE creates a new domain and psu_cortexr5_0 appears under the
edt_zcu102_wrapper platform.
Note: Add the xilffs, xilpm, and xilsecure libraries by modifying psu_cortexr5_0 domain. To do
so, double-click on standalone on psu_cortexr5_0 bsp, then click Modify BSP Settings. On the
Overview page, select the desired libraries.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=28

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 29
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3

Build Software for PS Subsystems
This chapter lists the steps to configure and build software for PS subsystems. In this
chapter, you will use the Zynq® UltraScale™+ hardware platform (hardware definition file)
configured in the Vivado® Design Suite.

In Chapter 2, you created and exported the hardware platform from Vivado. This hardware
platform contains the hardware handoff file, the processing system initialization files
(psu_init), and the PL bitstream. In this chapter, you will use the hardware platform in the
Vitis IDE and PetaLinux to configure software for the processing system.

This chapter serves two important purposes. One, it helps you build and configure the
software components that can be used in future chapters. Second, it describes the build
steps for a specific PS subsystem.

Processing Units in Zynq UltraScale+
The main processing units in the processing system in Zynq UltraScale+™ are listed below.

• Application Processing Unit: Quad-core Arm® Cortex®-A53 MPCore Processors
• Real Time Processing Unit: Dual-core Arm Cortex-R5 MPCore Processors
• Graphics Processing Unit: Arm Mali 400 MP2 GPU
• Platform Management Unit (PMU)

This section demonstrates configuring these units using system software. This can be
achieved either at the boot level using First Stage Boot Loader (FSBL) or via system
firmware, which is applicable to the platform management unit (PMU).

You will use the Zynq UltraScale+ hardware platform in the Vitis IDE to perform the
following tasks:

1. Create a First Stage Boot Loader (FSBL) for the Arm Cortex-A53 64-bit quad-core
processor unit (APU) and the Cortex-R5 dual-core real-time processor unit (RPU).

2. Create bare-metal applications for APU and RPU.
3. Create platform management unit (PMU) firmware for the platform management unit

using the Vitis IDE.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=29

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 30
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

In addition to the bare-metal applications, this chapter also describes building U-Boot and
Linux Images for the APU. The Linux images and U-Boot can be configured and built using
the PetaLinux build system.

Example Project: Running the “Hello World”
Application from Arm Cortex-A53
In this example, you will learn how to manage the board settings, make cable connections,
connect to the board through your PC, and run a simple hello world software application
from Arm Cortex-A53 in JTAG mode using System Debugger in the Vitis IDE.

1. Connect the power cable to the board.
2. Connect a USB Micro cable between the Windows Host machine and J2 USB JTAG

connector on the Target board.
3. Connect a USB micro cable to connector J83 on the target board with the Windows Host

machine. This is used for USB to serial transfer.

IMPORTANT: Ensure that SW6 Switch, on the bottom right, is set to JTAG boot mode as shown in the
following figure.

4. Power on the ZCU102 board using the switch indicated in the figure below.

X-Ref Target - Figure 3-1

Figure 3-1: SW6 Switch Settings for JTAG Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=30

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 31
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

Note: If the Vitis IDE is already running, jump to step 6.
5. Open the Vitis IDE and set the workspace path to your project file, which in this example

is C:\edt

Alternately, you can open the Vitis IDE with a default workspace and later switch it to the
correct workspace by selecting File > Switch Workspace and then selecting the
workspace.

6. Open a serial communication utility for the COM port assigned on your system. The Vitis
IDE provides a serial terminal utility, which will be used throughout the tutorial; select
Window > Show View > Other > Terminal to open it.

7. Click the Connect button to set the serial configuration and connect it.

8. To modify, disconnect the connection by clicking the Disconnect button.

X-Ref Target - Figure 3-2

Figure 3-2: ZCU102 Board Power Switch

X-Ref Target - Figure 3-3

Figure 3-3: Terminal Window Header Bar

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=31

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 32
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

9. Click the Settings button to open the Terminal Settings dialog box.
10. Verify the port details in the device manager.

UART-0 terminal corresponds to COM port with Interface-0. For this example, UART-0
terminal is set by default, so for the COM port, select the port with interface-0.

The following figure shows the standard configuration for the Zynq UltraScale+ MPSoC
Processing System.

11. Select File > New > Application Project.

The new Project wizard opens.

12. Use the information in the table below to make your selections in the wizard screens.

X-Ref Target - Figure 3-4

Figure 3-4: Terminal Settings Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=32

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 33
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

The Vitis IDE creates the test_a53 application project and test_a53_system project
under the Project Explorer. Right-click on the test_a53 application project and select
build option to build the application.

13. Right-click test_a53 and select Run as > Run Configurations.
14. Right-click Xilinx Application Debugger and click New Configuration.

The Vitis IDE creates the new run configuration, named
Debugger_test_a53-Default.

The configurations associated with the application are pre-populated in the Main tab of
the launch configurations.

15. Click the Target Setup tab and review the settings.
Note: The board should be in JTAG boot mode before power cycling.

16. Power cycle the board.
17. Click Run.

"Hello World" appears on the serial communication utility in Terminal 1, as shown in
the following figure.

Table 3-1: New Application Project Settings for Standalone APU Application
Wizard Screen System Properties Setting or Command to Use

Application Project Project Name test_a53

Use Default Location Select this option
System Project Create New
Platform edt_zcu102_wrapper
Domain standalone on psu_cortexa53_0

Language C
CPU psu_cortexa53_0

OS Standalone
Templates Available Templates Hello World

X-Ref Target - Figure 3-5

Figure 3-5: Output on Serial Terminal

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=33

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 34
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

Note: There was no bitstream download required for the above software application to be
executed on the Zynq UltraScale+ evaluation board. The Arm Cortex-A53 quad core is already
present in the processing system. Basic initialization of this system to run a simple application is
done by the Device initialization Tcl script.

18. Power cycle the board and retain same connections and board settings for the next
section.

What Just Happened?
The application software sent the "Hello World" string to the UART0 peripheral of the PS
section.

From UART0, the "Hello world" string goes byte-by-byte to the serial terminal application
running on the host machine, which displays it as a string.

Example Project: Running the “Hello World”
Application from Arm Cortex-R5
In this example, you will learn how to manage the board settings, make cable connections,
connect to the board through your PC, and run a simple hello world software application
from Arm Cortex-R5 in JTAG mode using System Debugger in the Vitis IDE.

Note: If you have already set up the board, skip to step 5.
1. Connect the power cable to the board.
2. Connect a USB Micro cable between the Windows Host machine and the J2 USB JTAG

connector on the Target board.
3. Connect a USB cable to connector J83 on the target board with the Windows Host

machine. This is used for USB to serial transfer.
4. Power on the ZCU102 board using the switch indicated in Figure 3-1.

IMPORTANT: Ensure that the SW6 switch is set to JTAG boot mode as shown in Figure 3-1.

Note: If the Vitis IDE is already open, jump to step 6.
5. Launch the Vitis IDE and set the workspace path to your project file, which in this

example is
C:\edt\.

Alternately, you can open the Vitis IDE with a default workspace and later switch it to the
correct workspace by selecting File > Switch Workspace and then selecting the
workspace.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=34

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 35
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

6. Open a serial communication utility for the COM port assigned on your system. The Vitis
IDE provides a serial terminal utility, which will be used throughout the tutorial; select
Window > Show View > Terminal to open it.

7. Click the Connect button to set the serial configuration and connect it.
8. Click the Settings button to open the Terminal Settings dialog box.

The Com -port details can be found in the device manager on host machine. UART-0
terminal corresponds to Com-Port with Interface-0. For this example, UART-0 terminal is
set by default, so for the Com-port, select the port with interface-0.

The following figure shows the standard configuration for the Zynq UltraScale+ MPSoC
Processing System.

9. In the Vitis IDE, switch back from Debug perspective to C/C++ perspective. For this you
have to click Windows > Open Perspective > C/C++.

Ignore this step, if the Vitis IDE is in C/C++ perspective already.

10. Select File > New > Application Project.

The New Project wizard opens.

X-Ref Target - Figure 3-6

Figure 3-6: Terminal Window Header Bar

X-Ref Target - Figure 3-7

Figure 3-7: Terminal Settings Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=35

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 36
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

11. Use the information in the following table to make your selections in the wizard screens.

The Vitis IDE creates the hello_world_r5 application project and
hello_world_r5_system project under the Project Explorer. You have to compile the
application manually.

12. Right-click hello_world_r5 and select Run as > Run Configurations.
13. Right-click Xilinx Application Debugger and click New Configuration.

The Vitis IDE creates the new run configuration, named
Debugger_hello_world_r5-Default. The configurations associated with the application
are pre-populated in the Main tab of the launch configurations.

14. Click the Target Setup tab and review the settings.

This file is exported when you create the platform using the Vitis IDE; it contains the
initialization information for the processing system.

15. Click Run.

"Hello World" appears on the serial communication utility in Terminal 1, as shown in
the following figure.

Wizard Screen System Properties Setting or Command to Use
Application Project Project Name hello_world_r5

Use Default Location Select this option
System Project Create New
Platform edt_zcu102_wrapper
Domain psu_cortexr5_0
Language C
CPU psu_cortexr5_0
OS standalone

Templates Available Templates Hello World

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=36

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 37
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

Note: There was no bitstream download required for the above software application to be
executed on the Zynq UltraScale+ evaluation board. The Arm Cortex-R5 dual core is already
present on the board. Basic initialization of this system to run a simple application is done by the
Device initialization Tcl script.

What Just Happened?
The application software sent the "Hello World” string to the UART0 peripheral of the PS
section.

From UART0, the "Hello world" string goes byte-by-byte to the serial terminal
application running on the host machine, which displays it as a string.

Additional Information
Domain
A domain can refer to the settings and files of a standalone BSP, a Linux OS, a third-party
OS/BSP like FreeRTOS, or a component like the device tree generator.

Board Support Package
The board support package (BSP) is the support code for a given hardware platform or
board that helps in basic initialization at power up and helps software applications to be run
on top of it. It can be specific to some operating systems with boot loader and device
drivers.

X-Ref Target - Figure 3-8

Figure 3-8: Output on Serial Terminal

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=37

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 38
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

TIP: To reset the BSP source, double-click platform.prj, select a BSP in a domain, and click Reset BSP
Source. This action only resets the source files while settings are not touched.

To change the target domain after an application project creation, double-click the project.prj file in
Explorer view. In the Application Project Settings, select Domain --> Domain change option -->
Drop-down Domain, then select available domains for this application.

Standalone BSP
Standalone is a simple, low-level software layer. It provides access to basic processor
features such as caches, interrupts, and exceptions, as well as the basic processor features
of a hosted environment. These basic features include standard input/output, profiling,
abort, and exit. It is a single threaded semi-hosted environment.

Example Project: Create a Bare-Metal Application
Project in the Vitis IDE
For this example, you will launch the Vitis IDE and create a bare-metal application using the
hardware platform for Zynq UltraScale+ created using the Vivado Design Suite. Figure 3-13
shows the New Application Project dialog box and possible options for creating bare-metal
(Standalone) applications for processing subsystems in Zynq UltraScale+ devices.

Create Bare-Metal Application for Arm Cortex-A53 based APU
Now that the FSBL is created, you will now create a simple bare-metal application targeted
for an Arm A53 Core 0.

For this example, you will use the test_a53 application that you created in Example Project:
Running the “Hello World” Application from Arm Cortex-A53.

In test_a53, you selected a simple Hello World application. This application can be loaded
on APU by FSBL running on either APU or RPU.

 also provides few other bare-metal applications templates to make it easy to start running
applications on Zynq UltraScale+ devices. Alternatively, you can also select the Empty
Application template and copy or create your custom application source code in the
application folder structure.

Modify the Application Source Code

1. In the Project Explorer, click test_a53 > src > helloworld.c.

This opens the helloworld.c source file for the test_a53 application.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=38

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 39
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

2. Modify the arguments in the print command, as shown below.
Print("Hello World from APU\n\r");

3. Type Ctrl + S to save the changes.
4. Right-click the test_a53 project and select Build Project.
5. Verify that the application is compiled and linked successfully and the test_a53.elf

file is generated in the test_a53 > Debug folder.

Create Bare-Metal Application for Arm Cortex-R5 based RPU
In this example, you will create a bare-metal application project for Arm Cortex-R5 based
RPU. For this project, you will need to import the application source files available in the
Design Files ZIP file released with this tutorial. For information about locating these design
files, refer to Design Files for This Tutorial in Appendix B.

Creating the Application Project

1. In the Vitis IDE, select File > New > Application Project to open the New Project
wizard.

2. Use the information in the following table to make your selections in the wizard.

X-Ref Target - Figure 3-9

Figure 3-9: Application Source Code Snippet: Print Command

X-Ref Target - Figure 3-10

Figure 3-10: CDT Build Console

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=39

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 40
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

3. Click Finish.

The New Project wizard closes and the Vitis IDE creates the testapp_r5 application
project, which can be found in the Project Explorer.

4. In the Project Explorer tab, expand the testapp_r5 project.
5. Right-click the src directory, and select Import to open the Import dialog box.
6. Expand General in the Import dialog box and select File System.
7. Click Next.
8. Select Browse and navigate to the design files folder, which you saved earlier (see

Design Files for This Tutorial in Appendix B).
9. Click OK.
10. Select the testapp.c file.
11. Click Finish.
12. Open testapp.c to review the source code for this application. The application

configures the UART interrupt and sets the Processor to WFI mode. This application is
reused and explained during run time in Chapter 5, Boot and Configuration.

Modifying the Linker Script

1. In the Project Explorer, expand the testapp_r5 project.
2. In the src directory, double-click lscript.ld to open the linker script for this project.
3. In the linker script, in Available Memory Regions, modify following attributes for

psu_r5_ddr_0_MEM_0 :

° Base Address: 0x70000000

° Size: 0x10000000

Table 3-2: Settings to Create New RPU Application Project
Wizard Screen System Properties Setting or Command to Use

Application Project Project Name testapp_r5

Use Default Location Select this option
System Project Create New
Platform edt_zcu102_wrapper
Domain psu_cortexr5_0

Language C
CPU psu_cortexr5_0

OS Standalone
Templates Available Templates Empty Application

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=40

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 41
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

The linker script modification is shown in following figure. The following figure is for
representation only. Actual memory regions may vary in case of Isolation settings.

This modification in the linker script ensures that the RPU bare-metal application
resides above 0x70000000 base address in the DDR, and occupies no more than 256 MB
of size.

4. Type Ctrl + S to save the changes.
5. Right-click the testapp_r5 project and select Build Project.
6. Verify that the application is compiled and linked successfully and that the

testapp_r5.elf file was generated in the testapp_r5 > Debug folder.

Modifying the Board Support Package

The ZCU102 Evaluation kit has a USB-TO-QUAD-UART Bridge IC from Silicon Labs (CP2108).
This enables you to select a different UART port for applications running on A53 and R5
Cores. For this example, let A53 use the UART 0 by default, and send and receive RPU serial
data over UART 1. This requires a small modification in the r5_bsp file.

1. Navigate to psu_cortexr5_0 domain BSP settings, click modify BSP settings >
standalone. Change the stdin and stdout to psu_uart_1.

2. Click Standalone.
3. Modify the stdin and stdout values to psu_uart_1, as shown in the figure below.

X-Ref Target - Figure 3-11

Figure 3-11: Linker Script Modification

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=41

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 42
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

4. Click OK.
5. Build psu_cortexr5_0 domain and testapp_r5 application.
6. Verify that the application is compiled and linked successfully and that the

testapp_r5.elf was generated in the testapp_r5 > Debug folder.

Reviewing Software Projects in the Platform
Review of FSBL in Platform
To review the FSBL in platform, follow these steps:

1. Click the edt_zcu102_wrapper platform drop-down menu, then click the drop-down
menu next to the zynqmp_fsbl to see the FSBL source code for zynqmp. You can edit
this source for customizations.

2. The platform generated FSBL is involved in PS initialization while launching standalone
applications using JTAG.

3. This FSBL is created for the psu_cortexa53_0, but you can also re-target the FSBL to
psu_cortexr5_0 using the re-target to psu_cortexr5_0 option in the zynqmp_fsbl
domain settings.

Review of PMU Firmware in Platform

To review the FSBL in platform, follow these steps:

X-Ref Target - Figure 3-12

Figure 3-12: Board Support Package Settings for psu_cortexr5_0 domain

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=42

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 43
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

1. Click the desired platform drop-down menu to see the zynqmp_pmufw software
project that was created within the platform by default.

2. zynqmp_pmufw contains the source code of PMU firmware for psu_pmu_0. Compile
and run the firmware on psu_pmu_0.

The psu_pmu_0 processor domain is created automatically for zynqmp_pmufw.

Create First Stage Boot Loader for Arm Cortex-A53-Based APU
FSBL can load the required application or data to memory and launch applications on the
target CPU core. One FSBL has been provided in the platform project but you can create an
additional FSBL application as a general application for further modification or debugging
purposes.

In this example, you will create an FSBL image targeted for Arm Cortex-A53 core 0.

1. Launch the Vitis IDE if it is not already open.
2. Set the Workspace path based on the project you created in Chapter 2. For example,

C:\edt.
3. Select File > New > Application Project.

The New Project dialog box opens.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=43

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 44
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

4. Use the information in the following table to make your selections in the New Project
wizard:

X-Ref Target - Figure 3-13

Figure 3-13: Application Project Page of New Project Wizard

Table 3-3: Settings to Create New Application Project - FSBL_A53
Wizard Screen System Properties Setting or Command

Application Project Project Name fsbl_a53

Use Default Location Select this option
System Project Create New
Platform edt_zcu102_wrapper
Domain Standalone on psu_cortexa53_0
Language C
CPU psu_cortexa53_0

OS Standalone

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=44

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 45
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

5. In the Templates page, select Zynq MP FSBL:
.

6. Click Finish.

The Vitis IDE creates the System project and FSBL application.

By default, the FSBL is configured to show basic print messages. Next, you will modify the
FSBL build settings to enable debug prints.

For a list of the possible debug options for FSBL, refer to the fsbl_a53 > src >
xfsbl_debug.h file.

Click Next
Templates Available Templates Zynq MP FSBL

X-Ref Target - Figure 3-14

Figure 3-14: Templates Page of the New Project Wizard

Table 3-3: Settings to Create New Application Project - FSBL_A53 (Cont’d)

Wizard Screen System Properties Setting or Command

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=45

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 46
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

For this example, enable FSBL_DEBUG_INFO by doing the following:

1. In the Project Explorer folder, right-click the fsbl_a53 application.
2. Click C/C++ Build Settings.
3. Select Settings > ARM V8 gcc compiler > Symbols.
4. Click the Add button .
5. Enter FSBL_DEBUG_INFO.

The Symbols settings are as shown in the following figure.

6. Click OK to accept the changes and close the Settings dialog box.
7. Navigate BSP settings. Under Overview > Drivers > psu_cortexa53_0 >

extra_compiler_flags, edit extra_compiler_flags to append " -Os -flto -ffat-lto-objects".
8. Right-click the fsbl_a53 application and select Build Project.
9. The FSBL executable is now saved as fsbl_a53 > debug > fsbl_a53.elf.

X-Ref Target - Figure 3-15

Figure 3-15: Enter Value Dialog Box

X-Ref Target - Figure 3-16

Figure 3-16: Symbols Settings for fsbl_a53 Application

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=46

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 47
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

In this tutorial, the application name fsbl_a53 is to identify that the FSBL is targeted for
APU (the Arm Cortex-A53 core).

Note: If the system design demands, the FSBL can be targeted to run on RPU, which can then load
rest of the software stack on RPU and APU.

Example Project: Create Linux Images using
PetaLinux
The earlier example highlighted creation of the bootloader images and bare-metal
applications for APU, RPU, and PMU using the Vitis IDE. In this chapter, you will configure
and build Linux Operating System Platform for Arm Cortex A53 core based APU on Zynq
UltraScale+. The PetaLinux tool flow, along with the board-specific BSP, can be used to
configure and build Linux images.

IMPORTANT: This example needs a Linux Host machine. PetaLinux Tools Documentation: Reference
Guide (UG1144) [Ref 7] for information about dependencies for PetaLinux 2019.2.

IMPORTANT: This example uses the ZCU102 PetaLinux BSP to create a PetaLinux project. Ensure that
you have downloaded the ZCU102 BSP for PetaLinux as instructed in PetaLinux Tools, page 11.

1. Create a PetaLinux project using the following command:
$petalinux-create -t project -s <path to the directory that has
xilinx-zcu102-v2019.2-final.bsp>

Note: xilinx-zcu102-v2019.2-final.bsp is the PetaLinux BSP for ZCU102 Production
Silicon Rev1.0 Board. Use xilinx-zcu102-ZU9-ES2-Rev1.0-v2019.2-final.bsp, if you
are using ES2 Silicon on Rev 1.0 board.

The above step creates a PetaLinux Project Directory, such as:
xilinx-zcu102-2019.2.

2. Change to the PetaLinux project directory using the following command:
$ cd xilinx-zcu102-2019.2

The ZCU102 Petalinux-BSP is the default ZCU102 Linux BSP. For this example, you
reconfigure the PetaLinux Project based on the Zynq UltraScale+ hardware platform that
you configured using Vivado Design Suite in Chapter 2.

3. Copy the hardware platform edt_zcu102_wrapper.xsa to the Linux Host machine.
4. Reconfigure the project using the following command:

$ petalinux-config --get-hw-description=<path containing edt_zcu102_wrapper.xsa>/

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=47

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 48
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

This command opens the PetaLinux Configuration window. If required, make changes in
the configuration. For this example, the default settings from the BSP are sufficient to
generate required boot images.

The following steps will verify if PetaLinux is configured to create Linux and boot images
for SD Boot.

5. Select Subsystem AUTO Hardware Settings.
6. Select Advanced Bootable Images Storage Settings.

a. Select boot image settings.
b. Select Image Storage Media.
c. Select primary sd as the boot device.

7. Under the Advanced Bootable Images Storage Settings submenu, do the following:
a. Select kernel image settings.
b. Select Image Storage Media.
c. Select primary sd as the storage device.

8. Under Subsystem AUTO Hardware Settings, select Memory Settings and set the
System Memory Size to 0x6FFFFFFF

9. Save the configuration settings and exit the Configuration wizard.
10. Wait until PetaLinux reconfigures the project.

The following steps will build the Linux images, verify them, and generate the boot
image.

11. Modify Device Tree to disable Heartbeat LED and SW19 push button, from the device
tree. Due to this the RPU R5-0 can use PS LED and SW19 switch for other designs in this
tutorial. This can be done by adding the following to the system-user.dtsi which
can be found in the following location:

<PetaLinux-project>/project-spec/meta-user/recipes-bsp/device-tr
ee/files/system-user.dtsi

12. Add the following to system-user.dtsi, so that it looks like:
/include/ "system-conf.dtsi"
/ {
gpio-keys {
sw19 {
status = "disabled";

};
};
leds {
heartbeat_led {
status = "disabled";

};

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=48

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 49
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

};
};
&uart1
{
status = "disabled";

};

13. In <PetaLinux-project>, build the Linux images using the following command:
$ petalinux-build

14. After the above statement executes successfully, verify the images and the timestamp in
the images directory in the PetaLinux project folder using the following commands:
$ cd images/linux/
$ ls -al

15. Generate the Boot image using the following command:
$ petalinux-package --boot --fsbl zynqmp_fsbl.elf --u-boot

This creates a BOOT.BIN image file in the following directory:
<petalinux-project>/images/linux/BOOT.BIN

The Logs indicate that the above command includes PMU_FW and ATF in BOOT.BIN. You
can also add --pmufw <PMUFW_ELF> and --atf <ATF_ELF> in the above command.
Refer $ petalinux-package --boot --help for more details.

Note: The option to add bitstream, that is --fpga is missing from above command intentionally. This
is because the hardware configuration so far is only based on PS with no design in PL. In case a
bitstream is present in the design, --fpga can be added in the petalinux-package command as
shown below:

petalinux-package --boot --fsbl zynqmp_fsbl.elf --fpga system.bit --pmufw pmufw.elf
--atf bl31.elf --u-boot u-boot.elf

Verify the Image on the ZCU102 Board
To verify the image:

1. Copy files BOOT.BIN and image.ub to an SD card.
2. Load the SD card into the ZCU102 board, in the J100 connector.
3. Connect a Micro USB cable from ZCU102 Board USB UART port (J83), to USB port on the

host Machine.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=49

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 50
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

4. Configure the Board to Boot in SD-Boot mode by setting switch SW6 as shown in the
following figure.

5. Connect 12V Power to the ZCU102 6-Pin Molex connector.
6. Start a terminal session, using Tera Term or Minicom depending on the host machine

being used. set the COM port and baud rate for your system, as shown in the following
figure.

7. For port settings, verify COM port in the device manager and select the COM port with
interface-0.

8. Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.

Create Linux Images using PetaLinux for QSPI Flash
The earlier example highlighted creation of the Linux Images and Boot images to boot from
an SD card. This section explains the configuration of PetaLinux to generate Linux images

X-Ref Target - Figure 3-17

Figure 3-17: SW6 Switch Settings for SD Boot Mode

X-Ref Target - Figure 3-18

Figure 3-18: COM Port Set Up

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=50

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 51
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

for QSPI flash. For more information about the dependencies for PetaLinux 2019.2, see the
PetaLinux Tools Documentation: Reference Guide (UG1144) [Ref 7].

1. Before starting this example, create a backup of the boot images created for SD card
setup using the following commands:
$ cd <Petalinux-project-path>/xilinx-zcu102-2019.2/images/linux/
$ mkdir sd_boot
$ cp image.ub sd_boot/
$ cp u-boot.elf sd_boot/
$ cp BOOT.BIN sd_boot/

2. Change the directory to the PetaLinux Project root directory:
$ cd <Petalinux-project-path>/xilinx-zcu102-2019.2

3. Launch the top level system configuration menu:
$ petalinux-config

The Configuration wizard opens.

4. Select Subsystem AUTO Hardware Settings.
5. Select Advanced bootable images storage Settings.

a. Select boot image settings.
b. Select image storage media.
c. Select primary flash as the boot device.

6. Under the Advanced bootable images storage Settings submenu, do the following:
a. Select kernel image settings.
b. Select image storage media.
c. Select primary flash as the storage device.

7. One level above, that is, under Subsystem AUTO Hardware Settings,
a. Select Flash Settings and notice the entries listed in the partition table.
b. Note that some memory (0x1E00000 + 0x40000) is set aside for initial Boot

partitions and U-Boot settings. These values can be modified on need basis.
c. Based on this, the offset for Linux Images is calculated as 0x1E40000 in QSPI Flash

device. This will be used in Chapter 5, while creating Boot image for QSPI
Boot-mode.

The following steps will set the Linux System Memory Size to about 1.79 GB.

8. Under Subsystem AUTO Hardware Settings, do the following:
a. Select Memory Settings
a. Set System Memory Size to 0x6FFFFFFF

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=51

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 52
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 3: Build Software for PS Subsystems

9. Save the configuration settings and exit the Configuration wizard.
10. Rebuild using the petalinux-build command.
11. Take a backup of u-boot.elf and the other images. These will be used in Chapter 5.
Note: For more information, refer to the PetaLinux Tools Documentation: Reference Guide (UG1144)
[Ref 7]

In this chapter, you learned how to configure and compile Software blocks for Zynq
UltraScale+ devices using Xilinx tools. You will use these images in Chapter 6 to create Boot
images for a specific design example.

Next, you will debug software for Zynq UltraScale+ devices using the Vitis IDE in Chapter 4,
Debugging with the Vitis Debugger.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=52

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 53
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4

Debugging with the Vitis Debugger
This chapter describes debug possibilities with the design flow you have already been
working with. The first option is debugging with software using the Vitis debugger.

The Vitis debugger provides the following debug capabilities:

• Supports debugging of programs on Arm® Cortex®-A53, Arm Cortex-R5, and
MicroBlaze™ processor architectures (heterogeneous multi-processor hardware system
debugging)

• Supports debugging of programs on hardware boards
• Supports debugging on remote hardware systems
• Provides a feature-rich IDE to debug programs
• Provides a Tool Command Language (Tcl) interface for running test scripts and

automation

The Vitis debugger enables you to see what is happening to a program while it executes.
You can set breakpoints or watchpoints to stop the processor, step through program
execution, view the program variables and stack, and view the contents of the memory in
the system.

The Vitis debugger supports debugging through Xilinx System Debugger.

Xilinx System Debugger
The Xilinx System Debugger uses the Xilinx hw_server as the underlying debug engine. The
Vitis IDE translates each user interface action into a sequence of Target Communication
Framework (TCF) commands. It then processes the output from System Debugger to display
the current state of the program being debugged. It communicates to the processor on the
hardware using Xilinx hw_server.

The debug workflow is described in the following figure.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=53

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 54
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

The workflow is made up of the following components:

• Executable ELF File: To debug your application, you must use an Executable and
Linkable Format (ELF) file compiled for debugging. The debug ELF file contains
additional debug information for the debugger to make direct associations between
the source code and the binaries generated from that original source. To manage the
build configurations, right-click the software application and select Build
Configurations > Manage.

• Debug Configuration: To launch the debug session, you must create a debug
configuration in the Vitis debugger. This configuration captures options required to
start a debug session, including the executable name, processor target to debug, and
other information. To create a debug configuration, right-click your software
application and select Debug As > Debug Configurations.

• Vitis Debug Perspective: Using the Debug perspective, you can manage the
debugging or running of a program in the Workbench. You can control the execution of
your program by setting breakpoints, suspending launched programs, stepping
through your code, and examining the contents of variables. To view the Debug
Perspective, select Window > Open Perspective > Debug.

You can repeat the cycle of modifying the code, building the executable, and debugging
the program in the Vitis debugger.

X-Ref Target - Figure 4-1

Figure 4-1: System Debugger Flow

Debug Executable

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=54

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 55
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

Note: If you edit the source after compiling, the line numbering will be out of step because the
debug information is tied directly to the source. Similarly, debugging optimized binaries can also
cause unexpected jumps in the execution trace.

Debugging Software Using the Vitis Debugger
In this example, you will walk through debugging a hello world application.

If you did not create a hello world application on APU or RPU, follow the steps in Create
Bare-Metal Application for Arm Cortex-A53 based APU to create a new hello world
application.

After you create the Hello World Application, work through below example to debug the
software using the Vitis debugger.

1. Follow the steps in Example Project: Running the “Hello World” Application from Arm
Cortex-A53 to set the target in JTAG mode and power ON.

2. In the C/C++ Perspective, right-click the test_a53 Project and select Debug As >
Launch on Hardware (Application Debugger).
Note: The above step launches the Application Debugger in the Debug perspective based on
the project settings. Alternatively, you can also create a Debug configuration which looks like
Figure 4-2.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=55

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 56
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

If the Confirm Perspective Switch popup window appears, click Yes. The Debug
Perspective opens.

Note: If the Debug Perspective window does not automatically open, select Window >
Perspective > Open Perspective > Other, then select Debug in the Open Perspective wizard.

X-Ref Target - Figure 4-2

Figure 4-2: Debug Configurations

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=56

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 57
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

Note: The addresses shown on this page might slightly differ from the addresses shown on your
system.

The processor is currently sitting at the beginning of main() with program execution
suspended at line 0x0000000000000980. You can confirm this information in the
Disassembly view, which shows the assembly-level program execution also suspended
at 0x0000000000000980.

Note: If the Disassembly view is not visible, select Window > Show View > Disassembly.
3. The helloworld.c window also shows execution suspended at the first executable

line of C code. Select the Registers view to confirm that the program counter, pc register,
contains 0x0000000000000980.
Note: If the Registers window is not visible, select Window > Show View > Registers.

4. Double-click in the margin of the helloworld.c window next to the line of code that
reads print(“Hello World\n\r”);. This sets a breakpoint at the printf
command. To confirm the breakpoint, review the Breakpoints window.
Note: If the Breakpoints window is not visible, select Window > Show View > Breakpoints.

5. Select Run > Step Into to step into the init_platform () routine.

Program execution suspends at location 0x00000000000009c8. The call stack is now
two levels deep.

X-Ref Target - Figure 4-3

Figure 4-3: Application Debug Perspective

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=57

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 58
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

6. Select Run > Resume to continue running the program to the breakpoint.

Program execution stops at the line of code that includes the printf command. The
Disassembly and Debug windows both show program execution stopped at
0x0000000000000984.

Note: The execution address in your debugging window might differ if you modified the hello
world source code in any way.

7. Select Run > Resume to run the program to conclusion.

When the program completes, the Debug window shows that the program is suspended
in a routine called exit. This happens when you are running under control of the
debugger.

8. Re-run your code several times. Experiment with single-stepping, examining memory,
breakpoints, modifying code, and adding print statements. Try adding and moving
views.

TIP: You can use the Vitis debugger debugging shortcuts for step-into (F5), step-return (F7), step-over
(F6), and resume (F8).

Debugging Using XSCT
You can use the previous steps to debug bare-metal applications running on RPU and PMU
using Vitis Application Debugger GUI.

Additionally, you can debug in the command line mode using XSDB, which is encapsulated
as a part of XSCT. In this example, you will debug the bare-metal application testapp_r5
using XSCT.

Following steps indicate how to load a bare-metal application on R5 using XSCT.

This example is just to demonstrate the command line debugging possibility using
XSDB/XSCT. Based on the requirement, you can choose to debug the code using either the
System Debugger graphical interface or the command line debugger in XSCT. All XSCT
commands are scriptable and this applies to the commands covered in this example.

Set Up Target
1. Connect a USB cable between USB-JTAG J2 connector on target and the USB port on the

host machine.
2. Set the board in JTAG Boot mode, where SW6 is set as shown in following figure.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=58

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 59
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

3. Power on the Board using switch SW1.
4. Open XSCT Console, click the XSCT Console button in the tool bar.

Alternatively, you can also open the XSCT console from Xilinx > XSCT Console.

5. In the XSCT Console, connect to the target over JTAG using the connect command:
xsct% connect

The connect command returns the channel ID of the connection.

6. Command targets lists the available targets and allows you to select a target through its
ID.

The targets are assigned IDs as they are discovered on the JTAG chain, so the target IDs
can change from session to session.

For non-interactive usage such as scripting, the -filter option can be used to select
a target instead of selecting the target through its ID:

xsct% targets

The targets are listed as shown in the following figure.

X-Ref Target - Figure 4-4

Figure 4-4: SW6 Switch Settings for JTAG Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=59

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 60
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

7. Now select PSU target. The Arm APU and RPU clusters are grouped under PSU.
xsct% targets -set -filter {name =~ "Cortex-A53 #0"}

The command targets now lists the targets and also shows the selected target
highlighted with as asterisk (*) mark. You can also use target number to select a Target,
as shown in the following figure.

8. Load the fsb on Cortex-A53 #0. Fsbl initialize the processing system of Zynq®
UltraScale+™.
xsct% dow {C:\edt\fsbl_a53\Debug\fsbl_a53.elf}
xsct% con
xsct% stop

X-Ref Target - Figure 4-5

Figure 4-5: Target List

X-Ref Target - Figure 4-6

Figure 4-6: PSU Target Selected

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=60

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 61
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

Note the {} used in above command. These are required on windows machine to enable
backward slash (\) in paths. These braces can be avoided by using forward "/" in paths.
Considering Linux paths, use forward "/" because the paths in XSCT in Linux can work as
is, without any braces.

Load the Application Using XSCT
1. Now download the testapp_r5 application on Arm R5 Core 0.
2. Check and select RPU Cortex-R5 Core 0 target ID

xsct% targets
xsct% targets -set -filter {name =~ "Cortex-R5 #0"}
xsct% rst -processor

The command rst -processor clears the reset on an individual processor core.

This step is important, because when Zynq MPSoC boots up JTAG boot mode, all the
A53 and R5 cores are held in reset. You must clear the resets on each core, before
debugging on these cores. The rst command in XSDB can be used to clear the resets.

Note: The command rst -cores clears resets on all the processor cores in the group (such as
APU or RPU), of which the current target is a child. For example, when A53 #0 is the current
target, rst -cores clears resets on all the A53 cores in APU.
xsct% dow {C:\edt\testapp_r5\Debug\testapp_r5.elf}

Or

xsct% dow {C:/edt/testapp_r5/Debug/testapp_r5.elf}

At this point, you can see the sections from the ELF file downloaded sequentially. The
XSCT prompt can be seen after successful download.

Now, configure a serial terminal (Tera Term, Mini com, or the Serial Terminal interface for
UART-1 USB-serial connection).

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=61

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 62
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

Serial Terminal Configuration
1. Start a terminal session, using Tera Term or Mini com depending on the host machine

being used, and the COM port and baud rate as shown in following figure.

2. For port settings, verify the COM port in the device manager. There are four USB UART
interfaces exposed by the ZCU102 board. Select the COM port associated with the
interface with the lowest number. So in this case, for UART-0, select the COM port with
interface-0.

3. Similarly, for UART-1, select COM port with interface-1. Remember that R5 BSP has been
configured to use UART-1, and so R5 application messages will appear on the COM port
with UART-1 terminal.

Run and Debug Application Using XSCT
1. Now before you run the application, set a breakpoint at main().

xsct% bpadd -addr &main

This command returns the breakpoint ID.

You can verify the breakpoints planted using command bplist.

For more details on breakpoints in XSCT, type help breakpoint in XSCT,

2. Now resume the processor core.
xsct% con

The following informative messages will be displayed when the core hits the breakpoint.

xsct% Info: Cortex-R5 #0 (target 7) Stopped at 0x10021C (Breakpoint)

X-Ref Target - Figure 4-7

Figure 4-7: COM Port Set Up

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=62

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 63
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

3. At this point, you can view registers when the core is stopped.
xsct% rrd

4. View local variables
xsct% locals

5. Step over a line of the source code and view the stack trace.
xsct% nxt
Info: Cortex-R5 #0 (target 6) Stopped at 0x100490 (Step)
xsct% bt

You can use the help command to find other options:
X-Ref Target - Figure 4-8

Figure 4-8: XSCT Help Categories

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=63

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 64
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

You can use the help running command to get a list of possible options for running
or debugging an application using XSCT.

6. You can now run the code:
xsct% con

At this point, you can see the R5 application print message on UART-1 terminal.

Debugging FSBL using the Vitis Debugger
The FSBL is built with Size Optimization and Link Time Optimization Flags, that is -Os and
LTO optimizations by default in the Vitis debugger. This reduces the memory footprint of
FSBL. This needs to be disabled for debugging FSBL.

Removing optimization can lead to increased code size, resulting in failure to build the
FSBL. To disable the optimization (for debugging), some FSBL features (that are not
required), need to be disabled in xfsbl_config.h file of FSBL.

Now, create a new FSBL for this section instead of modifying the FSBL created in Chapter 3,
Build Software for PS Subsystems. This is to avoid disturbing the FSBL_a53 project, which
will be used extensively in rest of the chapters in this tutorial.

X-Ref Target - Figure 4-9

Figure 4-9: XSCT Help for Debugging Program Execution

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=64

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 65
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

Create and Modify FSBL

Use the following steps to create an FSBL project.

1. Launch the Vitis debugger if it is not already open.
2. Set the Workspace path based on the project you created in Chapter 3, Build Software

for PS Subsystems. For example, C:\edt.
3. Select File > New > Application Project.

The New Project dialog box opens.

4. Use the information in the following table to make your selections in the New Project
dialog box.

5. Click Finish.

The Vitis debugger creates the System project and an FSBL application. Now disable
Optimizations as shown below.

1. In the Project Explorer folder, right-click the fsbl_debug application.
2. Click C/C++ Build Settings.
3. Select Settings > Tool Settings tab > Arm v8 gcc Compiler > Miscellaneous
4. Remove -flto -ffat-lto-objects from other flags, as shown below.

Table 4-1: Settings to Create FSBL_debug Project
Wizard Screen System Properties Setting or Command to Use

Application Project Project Name fsbl_debug
Use Default Location Select this option
System Project Create New
Platform edt_zcu102_wrapper
Domain standalone on psu_cortexa53_0
Language C
CPU psu_cortexa53_0
OS standalone

Click Next
Templates Available Templates Zynq MP FSBL

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=65

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 66
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

Similarly, the fsbl_debug_bsp needs to be modified to disable optimization.

5. Right-click fsbl_debug_bsp and select Board Support Package Settings.
6. Under Overview > Drivers > psu_cortexa53_0 > extra_compiler_flags, edit

extra_compiler_flags to ensure extra compiler has this value "-g -Wall -Wextra -Os" as
shown below.

X-Ref Target - Figure 4-10

Figure 4-10: Modify FSBL BSP Build Settings

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=66

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 67
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 4: Debugging with the Vitis Debugger

7. Click OK, to save these settings. BSP re-builds automatically after this.
8. Go to the fsbl_debug>src>fsbl_config.h file. In the FSBL code include the options and

disable the following:

° #define FSBL_NAND_EXCLUDE_VAL (1U)

° #define FSBL_SECURE_EXCLUDE_VAL(1U)
Note: '1' is disable and '0' is enable.

At this point FSBL is ready to be debugged.

You can either debug the FSBL like any other standalone application (as shown in
Debugging Software Using the Vitis Debugger and Debugging Using XSCT), or debug FSBL
as a part of a Boot image by using the ‘Attach to running target’ mode of System Debugger.

X-Ref Target - Figure 4-11

Figure 4-11: Modify FSBL BSP Build Settings

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=67

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 68
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5

Boot and Configuration
This chapter shows integration of components to create a Zynq UltraScale+ system. The
purpose of this chapter is to understand how to integrate and load Boot loaders, bare-metal
applications (For APU/RPU), and Linux Operating System for a Zynq UltraScale+ system.

The following important points are covered in this chapter:

• System Software: FSBL, U-Boot, Arm® trusted firmware (ATF)
• Application Processing Unit (APU): Configure SMP Linux for APU
• Real-time Processing Unit (RPU): Configure Bare-metal for RPU in Lock-step
• Create Boot Image for the following Boot sequence:

a. APU
b. RPU Lock-step

• Create and load Secure Boot Image
Note: For more information on RPU Lock-step, see Zynq UltraScale+ MPSoC Technical Reference
Manual (UG1085) [Ref 5].

This boot sequence also includes loading the PMU Firmware for the Platform Management
Unit (PMU). You can achieve the above configurations using the Vitis IDE and PetaLinux Tool
flow. While Chapter 3 focused only on creating software blocks for each processing unit in
the PS, this chapter explains how these blocks can be loaded as a part of a bigger system.

The Create Boot Image wizard (Bootgen - Command Line tool) from the Vitis IDE is used in
generating Boot Image. Create Boot Image Wizard’s or Bootgen’s principle function is to
integrate the partitions (hardware-bitstream and software), and allow you to specify the
security options in the design. It can also create the cryptographic keys.

Functionally, Bootgen uses a Bootgen Image Format (BIF) file as an input, and generates a
single file image in binary BIN or MCS format. Bootgen outputs a single file image which is
loaded into NVM (QSPI, SD Card). The Bootgen GUI facilitates the creation of the BIF input
file.

This chapter makes use of Processing System block. Design Example 1: Using GPIOs, Timers,
and Interrupts, covers Boot-image which will include the PS partitions used in this chapter
and a bitstream targeted for PL fabric.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=68

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 69
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

System Software
The following system software blocks cover most of the Boot and Configuration for this
chapter. For detailed boot flow and various Boot sequences, refer to the “System Boot and
Configuration” chapter in the Zynq UltraScale+ MPSoC: Software Developers Guide
(UG1137) [Ref 6].

First Stage Boot Loader
In non-secure Boot mode, the platform management unit (PMU) releases the reset of the
configuration security unit, and enters the PMU server mode to monitor power. At this
stage the configuration security unit loads the first stage boot loader (FSBL) into on-chip
memory (OCM). The FSBL can be run from either APU A53_0 or RPU R5_0 or RPU
R5_lockstep. In this example, the FSBL is targeted for APU A53 Core 0. The last 512 bytes of
this region is used by FSBL to share the hand-off parameters corresponding to applications
which ATF hands off.

The First Stage Boot Loader initializes important blocks in the processing subsystem. This
includes clearing the reset of the processors, initializing clocks, memory, UART, and so on
before handing over the control of the next partition in DDR, to either RPU or APU. In this
example, the FSBL loads bare-metal application in DDR and handsoff to RPU R5 in Lockstep
mode, and similarly loads U-Boot to be executed by APU A53 Core-0. For more information,
see the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 6].

For this chapter, you can use the FSBL executable that you created in Chapter 3. In FSBL
application, the xfsbl_translation_table.S differs from translation_table.S
(of A53) in only one aspect, to mark DDR region as reserved. This is to avoid speculative
access to DDR before it is initialized. Once the DDR initialization is done in FSBL, memory
attributes for DDR region is changed to “Memory” so that it is cacheable.

Platform Management Unit Firmware
The platform management unit (PMU) and the configuration security unit manage and
perform the multi-staged booting process. The PMU primarily controls the
pre-configuration stage that executes PMU ROM to set up the system. The PMU handles all
of the processes related to reset and wake-up. The Vitis IDE provides PMU Firmware that
can be built to run on the PMU. For more details on the Platform Management and PMU
Firmware, see the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 6].

The PMU Firmware can be loaded in the following ways:

1. Using BootROM to load PMU Firmware, as described in Boot Sequence for SD-Boot
2. Using FSBL to load PMU Firmware, as described in Boot Sequence for QSPI Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=69

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 70
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

3. Load PMU Firmware in JTAG boot mode, as described in Boot Sequence for QSPI-Boot
Mode Using JTAG.

For more information, see the PMU Firmware Xilinx Wiki.

U-Boot
The U-Boot acts as a secondary boot loader. After the FSBL handoff, the U-Boot loads Linux
on Arm A53 APU. After FSBL, the U-Boot configures the rest of the peripherals in the
processing system based on board configuration. U-Boot can fetch images from different
memory sources like eMMC, SATA, TFTP, SD, and QSPI. For this example, U-Boot and all
other images are loaded from the SD card. Therefore, for this example, the Board will be set
to SD-boot mode.

U-Boot can be configured and built using the PetaLinux tool flow. For this example, you can
use the U-Boot image that you created in Chapter 3 or from the design files shared with this
document. See Design Files for This Tutorial, page 167 for information about downloading
the design files for this tutorial.

Arm Trusted Firmware
The Arm Trusted Firmware (ATF) is a transparent bare-metal application layer executed in
Exception Level 3 (EL3) on APU. The ATF includes a Secure Monitor layer for switching
between secure and non-secure world. The Secure Monitor calls and implementation of
Trusted Board Boot Requirements (TBBR) makes the ATF layer a mandatory requirement to
load Linux on APU on Zynq UltraScale+.

The FSBL loads ATF to be executed by APU, which keeps running in EL3 awaiting a service
request. The ATF starts at 0xFFFEA000. The FSBL also loads U-Boot in DDR to be executed by
APU, which loads Linux OS in SMP mode on APU. It is important to note that the PL
Bitstream should be loaded before ATF is loaded. The reason is FSBL uses the OCM region
which is reserved for ATF for holding a temporary buffer in the case where bitstream is
present in .BIN file. Because of this, if bitstream is loaded after ATF, FSBL will overwrite the
ATF image with its temporary buffer, corrupting ATF image. Hence, bitstream should be
positioned in .BIF before ATF and preferably immediately after FSBL and PMUFW.

The ATF (bl31.elf) is built by default in PetaLinux and can be found in the PetaLinux
Project images directory.

For more details on ATF, refer to the “Arm Trusted Firmware” section in the “Security”
chapter of the Zynq UltraScale+ MPSoC: Software Developers Guide (UG1137) [Ref 6].

Send Feedback

https://www.xilinx.com
http://www.wiki.xilinx.com/PMU+Firmware
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=70

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 71
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Linux on APU and Bare-Metal on RPU
Now that the system software is configured, create Linux Images using PetaLinux Toolflow.
You already created the PetaLinux images in Chapter 3. For this example, the PetaLinux is
configured to build images for SD-boot. This is the default boot setting in PetaLinux.

The images can be found in the $<PetaLinux_Project>/images/linux/ directory.

For loading Linux on APU, the following images will be used from PetaLinux:

• ATF - bl31.elf
• U-Boot - u-boot.elf
• Linux images - image.ub, which contains:

° Kernel image

° Device Tree System.dtb

° Filesystem - rootfs.cpio.gz.u-boot

In addition to Linux on APU, this example also loads a bare-metal Application on RPU R5 in
Lockstep mode.

For this example, refer the testapp_r5 application that you created in Create Bare-Metal
Application for Arm Cortex-R5 based RPU, page 39.

Alternatively you can also find the testapp_r5.elf executable in the design files that
accompany this tutorial. See Design Files for This Tutorial, page 167 for information about
downloading the design files for this tutorial.

Boot Sequence for SD-Boot
Now that all the individual images are ready, let's create the boot image to load all of these
components on Zynq UltraScale+. This can be done using the Create Boot Image wizard in
the Vitis IDE, using the following steps:

1. In the Vitis IDE, select Xilinx > Create Boot Image.
2. Select all the partitions referred in earlier sections in this chapter, and set them as shown

in the following figure.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=71

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 72
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

First, add the FSBL partition.

1. In the Create Boot Image dialog box, click Add to open the Add partition dialog box.
2. In the Add Partition dialog box, click Browse to select the FSBL executable.
3. For FSBL, ensure that the partition type is selected as bootloader and the correct

destination CPU is selected by the tool. The tool is configured to make this selection
based on the FSBL executable.
Note: Ignore the Exception Level drop down, as FSBL is set to EL3 by default. Also, leave the
Trustzone setting unselected for this example.

X-Ref Target - Figure 5-1

Figure 5-1: Create Boot Image for SD Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=72

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 73
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

4. Click OK to select FSBL and go back to Create Boot Image wizard.

Next, add the PMU and ATF firmware partitions.

1. Click Add to open the Add Partition dialog box, shown in the following figure.

X-Ref Target - Figure 5-2

Figure 5-2: Add New Boot Image Partition Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=73

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 74
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

2. Add the PMU firmware partition.
a. Browse to and select the PMU Firmware executable.
b. For this partition, select pmu as the partition type.

Note: The pmu partition type also implies that the executable is targeted for PMU.
Therefore, the Destination Device and Destination CPU are grayed out for this setting.

3. Leave the Exception Level and Trustzone settings unselected.
4. Click OK.

5. Click Add to open Add Partition dialog box.
6. Add the ATF firmware bl31.elf partition.

Note: ATF Firmware (bl31.elf) can be found in <PetaLinux Project>/image/linux/.
Alternatively, you can also use bl31.elf from Design Files for This Tutorial.
a. For this partition, select datafile as the partition type.
b. Set the Destination Device as PS.
c. Set the Destination CPU as A53 0.
d. Set the Exception Level to EL3 and select Enable Trustzone.

X-Ref Target - Figure 5-3

Figure 5-3: Add PMUFW Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=74

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 75
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

7. Click OK.

Next, add the R5 executable and enable it in lockstep mode.

1. Click Add to add the R5 bare-metal executable.

2. Set the Destination Device as PS.

X-Ref Target - Figure 5-4

Figure 5-4: Add ATF partition

X-Ref Target - Figure 5-5

Figure 5-5: Add RPU Image Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=75

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 76
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

3. Set the Destination CPU as R5 Lockstep.

This sets the RPU R5 cores to run in Lockstep mode.

4. Leave Exception Level and Trustzone unselected.
5. Click OK.

Now, add the U-Boot partition. You can find u-boot.elf for sd_boot mode in
<PetaLinux_project>/images/linux/sd_boot

1. Click Add to add the u-boot.elf partition.
2. For U-Boot, select the Destination Device as PS.
3. Select the Destination CPU as A53 0.
4. Set the Exception Level to EL2.

5. Click OK to return to the Create Boot Image wizard.
6. Click Create Image to close the wizard and create the boot image.

You can also create BOOT.bin images using the BIF attributes and the Bootgen command.

For this configuration, the BIF file contains following attributes:

the_ROM_image:
{

X-Ref Target - Figure 5-6

Figure 5-6: Add U-Boot Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=76

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 77
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

[fsbl_config]a53_x64
[bootloader]C:\edt\fsbl_a53\Debug\fsbl_a53.elf
[pmufw_image]C:\edt\pmu_fw\Debug\pmu_fw.elf
[destination_cpu = a53-0, exception_level = el-3, trustzone]C:\edt\sd_boot\bl31.elf
[destination_cpu = r5-lockstep]C:\edt\testapp_r5\Debug\testapp_r5.elf
[destination_cpu = a53-0, exception_level = el-2]C:\edt\sd_boot\u-boot.elf
}

The Vitis IDE calls the following Bootgen command to generate the BOOT.bin image for this
configuration:

bootgen -image sd_boot.bif -arch zynqmp -o C:\edt\sd_boot\BOOT.bin

Running the Image on the ZCU102 Board
1. Copy the BOOT.bin and image.ub images to an SD card.
2. Load the SD card into the ZCU102 board, in the J100 connector.
3. Connect a micro USB cable from ZCU102 Board USB UART port (J83), to the USB port on

the host Machine.
4. Configure the Board to Boot in SD-Boot mode by setting switch SW6 to 1-ON, 2-OFF,

3-OFF and 4-OFF, as shown in following figure.

5. Connect 12V Power to the ZCU102 6-Pin Molex connector.

X-Ref Target - Figure 5-7

Figure 5-7: SW6 Switch Settings for SD Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=77

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 78
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

6. Start a terminal session, using Tera Term or Minicom depending on the host machine
being used, as well as the COM port and baud rate for your system, as shown in
following figure.

7. For port settings, verify COM port in device manager.

There are four USB-UART interfaces exposed by the ZCU102 Board.

8. Select the COM port associated with the interface with the lowest number. In this case,
for UART-0, select the COM port with interface-0.

9. Similarly, for UART-1, select COM port with interface-1.

Remember that the R5 BSP has been configured to use UART-1, and so R5 application
messages will appear on the COM port with the UART-1 terminal.

10. Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.

At this point, you can see the initial Boot sequence messages on your Terminal Screen
representing UART-0.

You can see that the terminal screen configured for UART-1 also prints a message. This
is the print message from the R5 bare-metal Application running on RPU, configured to
use UART-1 interface. This application is loaded by the FSBL onto RPU.

The bare-metal application has been modified to include the UART interrupt example.
This application now waits in the waiting for interrupt (WFI) state until a user input is
encountered from Keyboard in UART-1 terminal.

X-Ref Target - Figure 5-8

Figure 5-8: COM Port Set Up

X-Ref Target - Figure 5-9

Figure 5-9: Hello World Displayed on UART-1 from R5-0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=78

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 79
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Meanwhile, the boot sequence continues on APU and the images loaded can be
understood from the messages appearing on the UART-0 terminal. The messages are
highlighted in the following figure.

The U-Boot then loads Linux Kernel and other images on Arm Cortex®-A53 APU in SMP
mode. The terminal messages indicate when U-Boot loads Kernel image and the kernel
start up to getting a user interface prompt in Target Linux OS. The Kernel loading and
starting sequence can be seen in the following figure.

X-Ref Target - Figure 5-10

Figure 5-10: Messages from APU During Zynq UltraScale+ Boot Sequence

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=79

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 80
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

X-Ref Target - Figure 5-11

Figure 5-11: Kernel Loading and Start Sequence

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=80

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 81
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Boot Sequence for QSPI Boot Mode
The ZCU102 board also comes with dual parallel QSPI Flashes adding up to 128 MB size. In
this example, you will create a boot image and load the images on Zynq UltraScale+ in QSPI
boot mode. The images can be configured using the Create Boot Image wizard in the
Vitis IDE. This can be done by doing the following steps.

Note: This section assumes that you have created PetaLinux Images for QSPI Boot mode by
following steps from Create Linux Images using PetaLinux for QSPI Flash.
1. If the Vitis IDE is not already running, start it and set the workspace as indicated in

Chapter 3.
2. Select Xilinx > Create Boot Image.
3. Select Zynq MP as the Architecture.
4. Select the Create new BIF file option.
5. Ensure that the Output format is set to BIN.
6. In the Basic tab, browse to and select the Output BIF file path and Output path.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=81

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 82
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

X-Ref Target - Figure 5-12

Figure 5-12: Create Boot Image for QSPI Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=82

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 83
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Next, add boot partitions.

1. Click Add to open the Add Partition dialog box.
2. In the Add Partition dialog box, click the Browse button to select the FSBL executable.

a. For FSBL, ensure that the Partition type is selected as bootloader and the correct
destination CPU is selected by the tool. The tool is configured to make this selection
based on the FSBL executable.

b. Ignore the Exception Level, as FSBL is set to EL3 by default. Also, leave the Trustzone
setting unselected for this example.

c. Click OK to select the FSBL and go back to the Create Boot Image wizard.
3. Click Add to open the Add Partition window to add the next partition.
4. The next partition is the PMU firmware for the Platform Management Unit.

a. Select the Partition type as datafile and the Destination Device as PS.
b. Select PMU for Destination CPU.
c. Click OK.

X-Ref Target - Figure 5-13

Figure 5-13: Add New Boot Image Partition Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=83

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 84
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

5. The next partition to be added is the ATF firmware. For this, set the Partition type to
datafile.
a. The ATF executable bl31.elf can be found in the PetaLinux images folder

<PetaLinux_project>/images/linux/.
b. Select the Destination Device as PS and the Destination CPU as A53 0.
c. Set the Exception Level to EL3 and select Enable Trustzone.

X-Ref Target - Figure 5-14

Figure 5-14: Add PMU Partition Details

X-Ref Target - Figure 5-15

Figure 5-15: Add ATF Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=84

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 85
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

d. Click OK.
6. Click Add to add the R5 bare-metal executable.

a. Add the R5 executable and enable it in lockstep mode, as shown in the following
image.

b. Click OK.

7. Click Add to add the U-boot partition. u-boot.elf can be found in
<PetaLinux_Project>/images/linux/

a. For U-Boot, make the following selections:
- Set the Partition Type to datafile.
- Set the Destination Device to PS.
- Set the Destination CPU to A53 0.
- Set the Exception Level to EL2.

X-Ref Target - Figure 5-16

Figure 5-16: Add RPU Lockstep Image Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=85

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 86
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

b. Click OK.
8. Click Add to add the image.ub Linux image file.

a. The image.ub image file can be found in PetaLinux project in the images/Linux
directory.

b. For image.ub, make the following selections:
- Set Partition Type to datafile.
- Set the Destination Device to PS.
- Set the Destination CPU to A53 0.

c. Enter 0x1E40000 as the Offset.
d. Leave Exception Level and Trustzone unselected.

TIP: See Create Linux Images using PetaLinux for QSPI Flash, to understand the offset value.

9. Click OK to go back to Create Boot Image wizard.
10. Click Create Image to create the qspi_BOOT.bin image.

X-Ref Target - Figure 5-17

Figure 5-17: Add U-Boot Partition

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=86

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 87
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

You can also create qspi_BOOT.bin images using the BIF attributes and the Bootgen
command. You can view the BIF attributes for this configuration by clicking Preview BIF
Changes. For this configuration, the BIF file contains following attributes:

the_ROM_image:
{
[fsbl_config]a53_x64
[bootloader]C:\edt\fsbl_a53\Debug\fsbl_a53.elf
[destination_cpu = pmu]C:\edt\pmu_fw\Debug\pmu_fw.elf
[destination_cpu = a53-0, exception_level = el-3,
trustzone]C:\edt\qspi_boot\bl31.elf
[destination_cpu = r5-lockstep]C:\edt\testapp_r5\Debug\testapp_r5.elf
[destination_cpu = a53-0, exception_level = el-2]C:\edt\qspi_boot\u-boot.elf
[offset = 0x1E40000, destination_cpu = a53-0]C:\edt\qspi_boot\image.ub
}

The Vitis IDE calls the following Bootgen command to generate the qspi_BOOT.bin
image for this configuration.

bootgen -image qspi_boot.bif -arch zynqmp -o C:\edt\qspi_BOOT.bin

Note: In this boot sequence, the First Stage Boot Loader (FSBL) loads PMU firmware. This is because
the PMU firmware was added as a datafile partition type. Ideally, the Boot ROM code can load the
PMU Firmware for PMU as witnessed in the earlier section. For more details on PMU Firmware, refer
to the “Platform Management” chapter in the Zynq UltraScale+ MPSoC: Software Developers Guide
(UG1137) [Ref 6].

Running the Image in QSPI Boot Mode on ZCU102 Board
To test the image in this example, you will load the Boot image (qspi_BOOT.bin) onto
QSPI on the ZCU102 board using the Program Flash utility in the Vitis IDE. Alternately, you
can use the XSDB debugger.

1. In the Vitis IDE, select Xilinx > Program Flash.
2. In the Program Flash wizard, browse to and select the qspi_BOOT.bin image file that

was created as a part of this example.
3. Select qspi-x8-dual_parallel as the Flash type.
4. Set the Offset as 0 and select the FSBL ELF file (fsbl_a53.elf).
5. Ensure that a USB cable is connected between the USB-JTAG connector on ZCU102

target and the USB port on the Host machine using the following steps.
a. Set the SW6 Boot mode switch as shown in the following figure.
b. Turn on the board.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=87

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 88
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

6. Click Program to start the process of programming the QSPI Flash with the
qspi_BOOT.bin image.

Wait until you see the message “Flash Operation Successful” in the console, as shown in the
following image.

X-Ref Target - Figure 5-18

Figure 5-18: SW6 Switch Settings for JTAG Boot Mode

X-Ref Target - Figure 5-19s

Figure 5-19: Program Flash Memory Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=88

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 89
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Set Up the ZCU102 Board

1. Connect Board USB-UART on Board to Host machine. Connect the Micro USB cable into
the ZCU102 Board Micro USB port J83, and the other end into an open USB port on the
host Machine.

2. Configure the Board to Boot in QSPI-Boot mode by switching SW6 as shown in
following figure.

X-Ref Target - Figure 5-20

Figure 5-20: Vitis IDE Console Program Flash Messages

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=89

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 90
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

3. Connect 12V Power to the ZCU102 6-Pin Molex connector.
4. Start a terminal session, using Tera Term or Mini com, depending on the host machine

being used, and the COM port and baud rate as shown in Figure 5-22.
5. For port settings, verify the COM port in the device manager. There are four USB UART

interfaces exposed by the ZCU102.
6. Select the COM port associated with the interface with the lowest number. In this case,

for UART-0, select the COM port with interface-0.
7. Similarly, for UART-1, select COM port with interface-1.

Remember, R5 BSP has been configured to use UART-1, so R5 application messages will
appear on the COM port with UART-1 terminal.

8. Turn on the ZCU102 Board using SW1.

X-Ref Target - Figure 5-21

Figure 5-21: SW6 Switch Settings for QSPI Boot Mode

X-Ref Target - Figure 5-22

Figure 5-22: COM Port Settings for UART-1 Terminal

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=90

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 91
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

At this point, you can see initial Boot sequence messages on your Terminal Screen
representing UART-0.

You can see that the terminal screen configured for UART-1 also prints a message. This
is the print message from the R-5 bare-metal Application running on RPU, configured to
use UART-1 interface. This application is loaded by the FSBL onto RPU.

The bare-metal application has been modified to include the UART interrupt example.
This application now waits in the WFI state until a user input is encountered from
Keyboard in UART-1 terminal.

Meanwhile, the boot sequence continues on APU and the images loaded can be
understood from the messages appearing on the UART-0 terminal. The messages are
highlighted in the following figure.

X-Ref Target - Figure 5-23

Figure 5-23: Hello World Displayed on UART-1 From R5-0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=91

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 92
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

X-Ref Target - Figure 5-24

Figure 5-24: Messages Appearing on UART-0 Terminal

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=92

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 93
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

The U-Boot then loads Linux Kernel and other images on Arm Cortex-A53 APU in SMP
mode. The terminal messages indicate when U-Boot loads Kernel image and the kernel
start up to getting a user interface prompt in Linux Kernel. The Kernel loading and
starting sequence can be seen in following figure.

9. Wait until Linux loads on the Board.

X-Ref Target - Figure 5-25

Figure 5-25: Kernel Loading and Starting Sequence

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=93

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 94
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Boot Sequence for QSPI-Boot Mode Using JTAG
Zynq UltraScale+ MPSoC supports many ways to load the boot image. One way is using the
JTAG interface. This example XSCT session demonstrates how to download a BOOT image
file (qspi_BOOT.bin) in QSPI using the XSDB debugger. After the QSPI is loaded, the
qspi_BOOT.bin image executes in the same way as QSPI Boot mode in Zynq UltraScale+.
You can use the same XSCT session or the System Debugger for debugging similar Boot
flows.

The following sections demonstrate the basic steps involved in this Boot mode.

Setting Up the Target
1. Connect a USB cable between the USB-JTAG J2 connector on the target and the USB

port on the host machine.
2. Set the board to JTAG Boot mode by setting the SW6 switch, as shown in the following

figure.

3. Power on the Board using switch SW1.

Open the XSCT Console in the Vitis IDE by clicking the XSCT button .Alternatively,
you can also open the XSCT console by selecting Xilinx > XSCT Console.

4. In the XSCT console, connect to the target over JTAG using the connect command:
xsct% connect

The connect command returns the channel ID of the connection.

X-Ref Target - Figure 5-26

Figure 5-26: SW6 Switch Settings for JTAG Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=94

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 95
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

5. The targets command lists the available targets and allows you to select a target using
its ID.

The targets are assigned IDs as they are discovered on the JTAG chain, so the IDs can
change from session to session.

Note: For non-interactive usage such as scripting, you can use the -filter option to select a
target instead of selecting the target using its ID.
xsct% targets

The targets are listed as shown in the following figure.

Load U-Boot Using XSCT/XSDB
1. Download the u-boot application on Cortex-A53 #0 using the following commands:

By default JTAG Security gates are enabled. Disable the security gates for DAP, PL TAP
and PMU (this will make PMU MB target visible to Debugger).

xsct% targets -set -filter {name =~ "PSU"}
xsct% mwr 0xffca0038 0x1ff
xsct% targets

Verify if the PMU MB target is listed under the PMU device. Now, load and run PMUFW

xsct% targets -set -filter {name =~ "MicroBlaze PMU"}
xsct% dow {C:\edt\pmu_fw\Debug\pmu_fw.elf}
xsct% con

Now, reset APU Cortex-A53 Core 0 to load and run FSBL

X-Ref Target - Figure 5-27

Figure 5-27: XSCT Targets

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=95

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 96
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

xsct% targets -set -filter {name =~ "Cortex-A53 #0"}
xsct% rst -processor

TIP: rst -processor clears the reset on an individual processor core.

This step is important, because when Zynq UltraScale+ boots up in JTAG bootmode, all
the APU and RPU cores are held in reset. You must clear resets on each core before
performing debugging on these cores. You can use the rst command in XSCT to clear
the resets.

Note: rst -cores clears resets on all the processor cores in the group (such as APU or RPU) of
which the current target is a child. For example, when A53 #0 is the current target, rst -cores
clears resets on all the A53 cores in APU.

Load and run FSBL

xsct% dow {C:\edt\fsbl_a53\Debug\fsbl_a53.elf}
xsct% con

Verify FSBL messages on Serial Terminal and stop FSBL after couple of seconds

xsct% stop

Load and Run ATF

xsct% dow {C:\edt\design_files\bl31.elf}
xsct% con
xsct% stop

2. Configure a serial terminal (Tera Term, Mini com, or the Serial Terminal interface for
UART-0 USB-serial connection).

3. For serial terminal settings, see Figure 5-22.

4. Load and run U-Boot
xsct% dow {C:\edt\design_files\sd_boot\u-boot.elf}

5. Run U-Boot, using the con command in XSDB.
xsct% con

6. In the target serial terminal, press any key to stop the U-Boot auto boot.

X-Ref Target - Figure 5-28

Figure 5-28: Verify the Image on the ZCU102 Board

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=96

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 97
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

7. Stop the core using the stop command in XSDB.
xsct% stop

Load Boot.bin in DDR Using XSDB
1. Download the Boot.bin binary into DDR on ZCU102. Use the same Boot.bin created for

QSPI boot mode.
xsct% dow -data {C:\edt\qspi_boot\qspi_BOOT.bin} 0x2000000

2. Now continue the U-Boot again, using the con command in XSDB.
xsct% con

Load the Boot.bin Image in QSPI Using U-Boot
1. Execute the following commands in the U-Boot console on the target terminal. These

commands erase QSPI and then write the Boot.bin image from DDR to QSPI.
ZynqMP> sf probe 0 0 0
ZynqMP> sf erase 0 0x4000000
ZynqMP> sf write 0x2000000 0 0x4000000

2. After successfully writing the image to QSPI, turn off the board and set up the ZCU102
board as described in Set Up the ZCU102 Board, page 89.

You can see Linux loading on the UART-0 terminal and the R5 application executing in the
UART-1 terminal.

This chapter focused mostly on system boot and different components related to system
boot. In the next chapter, you will focus on applications, Linux and Standalone (bare-metal)
applications which will make use of PS peripherals, PL IPs, and processing power of APU
Cores and RPU cores.

Boot Sequence for USB Boot Mode
Zynq Ultrascale+ MPSoC also supports USB Slave Boot Mode. This is using the USB DFU
Device Firmware Upgrade (DFU) Device Class Specification of USB. Using a standard update
utility such as OpenMoko's DFU-Util, you will be able to load the newly created image on
Zynq UltraScale+ via the USB Port. The following steps list the required configuration to
load Boot images using this Boot mode. The DFU Utility is also shipped with the Vitis
unified software platform and PetaLinux.

Configure FSBL to Enable USB Boot Mode
There are few changes required in FSBL to enable USB Boot Mode. USB boot mode support
increases the footprint of FSBL (by approximately 10 KB). Since it is intended mostly during

Send Feedback

https://www.xilinx.com
http://dfu-util.sourceforge.net/releases/
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=97

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 98
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

initial development phase, its support is disabled by default to conserve OCM space. In this
section, you will modify the FSBL to enable the USB Boot Mode. Considering the FSBL
project is used extensively throughout this tutorial, we will not modify the existing FSBL
project. Instead, this section will make use of new FSBL project.

Create First Stage Boot Loader for Arm Cortex-A53-Based APU

1. In the Vitis IDE, select File > New > Application Project to open the New Project
wizard.

2. Use the information in the table below to make your selections in the wizard.

3. Click Finish.
4. In the Project Explorer tab, expand the fsbl_usb_boot project and open

xfsbl_config.h from:
fsbl_usb_boot > src > xfsbl_config.h

5. In xfsbl_config.h change or set following settings:
#define FSBL_QSPI_EXCLUDE_VAL (1U)
#define FSBL_SD_EXCLUDE_VAL (1U)
#define FSBL_USB_EXCLUDE_VAL (0U)

6. Use CTRL + S to save these changes.
7. Build FSBL (fsbl_usb_boot).

Creating Boot Images for USB Boot
In this section, you will create the Boot Images to be loaded, via USB using DFU utility.
Device Firmware Upgrade (DFU) is intended to download and upload firmware to/from
devices connected over USB. In this boot mode, the Boot loader (FSBL) and the PMUFW
which are loaded by Boot ROM are copied to Zynq Ultrascale+ On Chip Memory (OCM)
from Host Machine USB port using DFU Utility. The size of OCM (256 KB) limits the size of

Table 5-1: Wizard Properties and Commands
Wizard Screen System Properties Setting or Command to Use

Application Project Project Name fsbl_usb_boot
Use Default Location Select this option
System Project Create New
Platform edt_zcu102_wrapper
Domain standalone on psu_cortexa53_0
Language C
CPU psu_cortexa53_0
OS Standalone

Templates Available Templates Zynq MP FSBL

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=98

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 99
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

boot image downloaded by BootROM in USB boot mode. Considering this, and subject to
size requirement being met, only FSBL and PMUFW are stitched into the first Boot.bin,
which is copied to OCM. Rest of the Boot partitions will be stitched in another Boot image
and copied to DDR to be loaded by the FSBL which is already loaded and running at this
stage. Follow the below steps to create Boot images for this boot mode.

1. In the Vitis IDE, select Xilinx > Create Boot Image.
2. Select fsbl_usb_boot.elf and pmu_fw.elf partitions and set them as shown in the

following figure.

3. Ensure that PMU Partition is set to be loaded by BootROM.
4. Click on Create Image to generate BOOT.bin.

Modifying PetaLinux U-Boot

Modify PetaLinux U-Boot so that it can load the image.ub image. The Device tree needs to
be modified to set USB in the Peripheral mode. The default PetaLinux configuration is set
for the USB in Host mode.

X-Ref Target - Figure 5-29

Figure 5-29: Create Boot Image for USB Boot

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=99

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 100
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

For this, follow the below steps to modify system-user.dtsi in the PetaLinux Project
<PetaLinux-project>/project-spec/meta-user/recipes-bsp/device-tree/
files/system-user.dtsi.

1. Add the following to system-user.dtsi, so that it looks like:
/include/ "system-conf.dtsi"
/ {
gpio-keys {
sw19 {
status = "disabled";

};
};

leds {
heartbeat_led {
status = "disabled";
};

};
};

&uart1
{
status = "disabled";
};

&dwc3_0 {
dr_mode = "peripheral";
maximum-speed = "super-speed";

};

The modified system-user.dtsi file can be found in <Design Files>/usb_boot
released with tutorial.

2. Build PetaLinux with the following changes.
$ petalinux-build

The following steps describe how to create a usb_boot.bin comprising rest of the
partitions.

Note: Copy the newly generated U-Boot to C:\edt\usb_boot\. The u-boot.elf is also
available in Design Files for This Tutorial.
1. In the Vitis IDE, select Xilinx > Create Boot Image.
2. Select FSBL and rest of the partitions and set them as shown in the following figure. For

this you can also choose to import the BIF File from SD Boot Sequence.
Note: Ensure that you have set the correct exception levels for ATF (EL-3, Trustzone) and U-Boot
(EL-2) partitions. These settings can be ignored for other partitions.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=100

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 101
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

3. Notice that PMUFW partition is not required in this image, as it will be loaded by the
Boot ROM before this image (usb_boot.bin) is loaded.

4. Click on Create Image to generate usb_boot.bin.
Note: In addition to BOOT.bin and usb_boot.bin, the Linux image like image.ub is required to
boot till Linux. This image.ub will be loaded by DFU utility separately.

Boot using USB Boot
In this section you will load the boot images on ZCU102 target using DFU utility. Before you
start, set the board connections as shown below:

1. Set ZCU102 for USB Boot mode by setting SW6 (1-OFF, 2-OFF, 3-OFF, and 4-ON), as
shown below:

X-Ref Target - Figure 5-30

Figure 5-30: Create Boot Image with Rest of the Partitions

X-Ref Target - Figure 5-31

Figure 5-31: SW6 Settings for USB Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=101

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 102
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

2. Connect a USB 3.0 Cable to J96 USB 3 ULPI Connector, and the other end of the Cable to
USB port on Host Machine.

3. Connect a USB Micro cable between USB-UART port on Board (J83) and Host Machine.
4. Start a terminal session, using Tera Term or Minicom depending on the host machine

being used, as well as the COM port and baud rate for your system, as shown in
Figure 5-31.

5. Power ON the board.

The following steps will load the boot images via USB using DFU utility, which can be found
in VITIS\2019.1\tps\lnx64\dfu-util-0.9.

Alternatively you can also install DFU utility on Linux using Package Manager supported by
Linux Distribution being used.

Boot Commands for Linux Host Machine

1. Check if the DFU can detect the USB target.
$ sudo dfu-util -l

The USB device should be enumerated with VendorId : ProductId which is 03fd:0050.
You should see something like below:

Found DFU: [03fd:0050] ver=0100, devnum=30, cfg=1, intf=0, alt=0, name="Xilinx DFU
Downloader", serial="2A49876D9CC1AA4"

Note: If you do not see the ‘Found DFU’ message, verify the connection and retry.
2. Now download the BOOT.bin that was created in Creating Boot Images for USB Boot.

$ sudo dfu-util -d 03fd:0050 -D <USB_Boot_Image_Path>/Boot.bin

Verify from Serial Terminal if the FSBL is loaded successfully.

3. Now download the usb_boot.bin. Before this start another terminal session for
UART-1 serial console.
$ sudo dfu-util -d 03fd:0050 -D <USB_Boot_Image_Path>/usb_boot.bin

Check UART 0 terminal and wait until U-Boot loads.

4. On U-Boot prompt, type Enter to terminate autoboot. Verify from the UART1 console
that the R5 application is also loaded successfully.

5. In U-Boot console start DFU_RAM to enable downloading Linux Images
U-boot> run dfu_ram

6. Download Linux Image Image.ub using following Command from Host Machine
Terminal:
$ sudo dfu-util -d 03fd:0300 -D <PetaLinux_project>/images/linux/image.ub -a 0

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=102

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 103
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

7. Now execute CTRL+C on U-Boot console to stop dfu_ram.
8. Run bootm command from U-Boot Console.

U-boot> bootm

9. Verify that Linux loads successfully on the target
Note: In this example, image.ub is copied to DDR location based on #define DFU_ALT_INFO_RAM
settings in U-Boot configuration. The same can be modified to copy other image files to DDR
location. Then, if required, these images can be copied to QSPI using U-Boot commands listed in
Boot Sequence for QSPI-Boot Mode Using JTAG.

Boot Commands for Windows Host Machine

1. In the Vitis IDE, Select Xilinx > Launch Shell.
2. In Shell, use Check if the DFU can detect the USB target

> dfu-util.exe -l

Note: dfu-util.exe can be found in
<VITIS_Installation_path>\VITIS\2019.2\tps\Win64\dfu-util-0.9\dfu-util.
exe

3. The USB device should be enumerated with VendorId : ProductId which is 03fd:0050
Note: If you do not see the message starting with "Found DFU", download and install "zadig"
software. Open the software and click on options and select "List all devices". Select device
"Xilinx Dfu Downloader" and click on Install driver tab.

4. Now download the Boot.bin that was created in Creating Boot Images for USB Boot.
$ dfu-util.exe -d 03fd:0050 -D BOOT.bin

5. Verify from Serial Terminal (UART 0) that FSBL is loaded successfully.
6. Now download the usb_boot.bin. Before this start another terminal session for

UART-1 serial console.
$ dfu-util.exe -d 03fd:0050 -D usb_boot.bin

7. On U-Boot prompt type Enter to terminate auto-boot. Verify from UART1 console that
the R5 application is also loaded successfully.

Note: At this point, use Zadig utility to install drivers for "Usb download gadget" with device ID
03fd:0300. Without this, zadig software does not show "Xilinx DFU Downloader" after booting
U-Boot on target.
8. In U-Boot console start DFU_RAM to enable downloading Linux Images

U-boot> run dfu_ram

9. Download Linux Image image.ub using following Command from Host Machine
Terminal
$ dfu-util.exe -d 03fd:0300 -D image.ub -a 0

10. Run bootm command from U-Boot Console.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=103

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 104
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

U-boot> bootm

11. Verify that Linux loads successfully on the target.

Secure Boot Sequence
The secure boot functionality in Zynq UltraScale+ MPSoC allows you to support
confidentiality, integrity, and authentication of partitions. Secure boot is accomplished by
combining the Hardware Root of Trust (HROT) capabilities of the Zynq UltraScale+ device
with the option of encrypting all boot partitions. The HROT is based on the RSA-4096
asymmetric algorithm in conjunction with SHA-3/384, which is hardware accelerated, or
SHA-2/256, implemented as software. Confidentiality is provided using 256 bit Advanced
Encryption Standard - Galois Counter Mode (AES-GCM). This section focuses on how to use
and implement the following:

• Hardware Root of Trust with Key Revocation
• Partition Encryption with Differential Power Analysis (DPA) Countermeasures
• Black Key Storage using the Physically Unclonable Function (PUF)

The section Secure Boot System Design Decisions outlines high level secure boot decisions
which should be made early in design development. The Hardware Root of Trust section
discusses the use of a Root of Trust (RoT) in boot. The Boot Image Confidentiality and DPA
section discusses methods to use AES encryption.

The Boot Image Confidentiality and DPA section discusses the use of the operational key
and key rolling techniques as countermeasures to a DPA attack. Changing the AES key
reduces the exposure of both the key and the data protected by the key.

A red key is a key in unencrypted format. The Black Key Storage section provides a method
for storing the AES key in encrypted, or black format. Black key store uses the physically
unclonable function (PUF) as a Key Encryption Key (KEK).

The Practical Methods in Secure Boot section provides steps to develop and test systems
that use AES encryption and RSA authentication.

Secure Boot System Design Decisions
The following are device level decisions affecting Secure Boot:

• Boot Mode
• AES Key Storage Location
• AES Storage State (encrypted or unencrypted)
• Encryption and Authentication requirements

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=104

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 105
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

• Key Provisioning

The boot modes which support secure boot are Quad Serial Peripheral Interface (QSPI), SD,
eMMC, and NAND. The AES key is stored in either eFUSEs (encrypted or unencrypted),
Battery Backed Random Access Memory (BBRAM) (unencrypted only), or in external NVM
(encrypted only).

In Zynq UltraScale+ MPSoC, partitions can be encrypted and/or authenticated on a
partition basis. Xilinx generally recommends that all partitions be RSA authenticated.
Partitions that are open source (U-Boot, Linux), or do not contain any proprietary or
confidential information, typically do not need to be encrypted. In systems in which there
are multiple sources/suppliers of sensitive data and/or proprietary IP, encrypting the
partitions using unique keys may be important.

DPA resistance requirements are dictated by whether the adversary has physical access to
the device.

Table 5-2 can be a good reference while deciding on features required to meet a specific
secure system requirement. Next sections will discuss the features in more detail.

Table 5-2: System Level Security Requirements
System Consideration/ Requirement Zynq UltraScale+ Feature

Ensure that only the users SW and HW runs on the device HWROT
Guarantee that the users SW and HW are not modified HWROT
Ensure that an adversary cannot clone or reverse engineer
SW/HW

Boot Image Confidentiality

Protect sensitive data and proprietary Intellectual Property (IP) Boot Image Confidentiality
Ensure that Private Key (AES key) is protected against side
channel attacks

DPA Protections

Private/Secret keys (AES key) is stored encrypted at rest Black Key Storage

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=105

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 106
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Hardware Root of Trust

Root of trusts are security primitives for storage (RTS), integrity (RTI), verification (RTV),
measurement (RTM), and reporting (RTR). RoT consists of hardware, firmware, and software.
The HROT has advantages over software RoTs because the HROT is immutable, has a smaller
attack surface, and the behavior is more reliable.

The HROT is based on the CSU, eFUSEs, BBRAM, and isolation elements. The HROT is
responsible for validating that the operating environment and configuration have not been
modified. The RoT acts as an anchor for boot, so an adversary can not insert malicious code
before detection mechanisms start.

Firmware and software run on the HROT during boot. Zynq UltraScale provides immutable
BootROM code, a first stage boot loader, device drivers, and the XILSKEY and XILSECURE
libraries which run on the HROT. These provide a well-tested, proven in use API so that
developers do not create security components from scratch with limited testing.

Data Integrity

Data integrity is the absence of corruption of hardware, firmware and software. Data
integrity functions verify that an adversary has not tampered with the configuration and
operating environment.

Zynq UltraScale+ verifies the integrity of partition(s) using both symmetric key (AES-GCM)
and asymmetric key (RSA) authentication. RSA uses a private/public key pair. The fielded
embedded system only has the public key. Theft of the public key is of limited value since it
is not possible, with current technology, to derive the private key from the public key.
Encrypted partitions are also authenticated using the Galois Counter Mode (GCM) mode of
AES.

In the secure boot flow, partitions are first authenticated and then decrypted if necessary.

Authentication

Figure 5-32 shows RSA signing and verification of partitions. From a secure facility, thE
Bootgen tool signs partitions, using the private key. In the device, the ROM verifies the FSBL
and either the FSBL or U-Boot verifies the subsequent partitions, using the public key.
Primary and secondary private/public key pairs are used. The function of the primary
private/public key pair is to authenticate the secondary private/public key pair. The function
of the secondary key is to sign/verify partitions.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=106

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 107
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

To sign a partition, Bootgen first calculates the SHA3 of the partition data. The 384 bit hash
is then RSA signed using the private key. The resulting RSA signature is placed in the
authentication certificate. In the image, each signed partition has partition data followed by
an authentication certificate which includes the RSA signature.

Verification of the FSBL is handled by the CSU ROM code. To verify the subsequent
partitions, the FSBL or U-Boot uses the XILSECURE library.

There is a debug mode for authentication called bootheader authentication. In this mode of
authentication, the CSU ROM code does not check the primary public key digests, the
session key ID or the key revocation bits stored in the device eFUSEs. Therefore, this mode
is not secure. However, it is useful for testing and debugging as it does not require
programming of eFUSEs. This tutorial uses this mode. However, fielded systems should not
use boot header authentication. The example BIF file for a fully secured system is included
at the end of this section.

Boot Image Confidentiality and DPA

AES is used to ensure confidentiality of sensitive data and IP. Zynq UltraScale+ uses AES
Galois Counter Mode (GCM). Zynq UltraScale+ uses a 256 AES bit key. The principle AES
enhancements provided by Zynq UltraScale+ are increased resistance to Differential Power
Analysis (DPA) attacks and the availability of AES encryption/decryption post boot.

Bootgen and FSBL software support AES encryption. Private keys are used in AES
encryption, and AES encryption is done by Bootgen using the key files. The key files can be
generated by Bootgen or OpenSSL. The use of the operational key limits the exposure of the
device key. The use of the operational key in key rolling is discussed in the next section. To
maintain Boot image confidentiality, Encrypted Boot images can be created using Bootgen.
Software examples to program keys to BBRAM and eFUSE are also available in the Vitis IDE.
One such example is discussed in Practical Methods in Secure Boot.

X-Ref Target - Figure 5-32

Figure 5-32: Zynq UltraScale+ RSA Authentication

Verification – ROMCode, FSBL, U-Boot

Partition Data Partition Data RSA Signature

384 Bit Hash

384 Bit Hash 384 Bit Hash

Public Key

Private Key
==

Signing - Bootgen

RSA Signature

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=107

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 108
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

DPA Protections

Key rolling is used for DPA resistance. Key rolling and black key store can be used in the
same design. In key rolling, software and bitstream is broken up into multiple data blocks,
each encrypted with a unique AES key. The initial key is stored in BBRAM or eFUSE NVM.
Keys for successive data blocks are encrypted in the previous data block. After the initial
key, the key update register is used as the key source.

A 96 bit initialization vector is included in the NKY key file. The IV uses 96 bits to initialize
AES counters. When key rolling is used, a 128 bit IV is provided in the bootheader. The 32
least significant bits define the block size of data to decrypt using the current key. The block
sizes following the initial block defined in the IV are defined as attributes in the Bootgen
Image Format (BIF) file.

An efficient method of key rolling uses the operational key. With the operational key,
Bootgen creates an encrypted secure header with the user specified operational key and
the first block IV. The AES key in eFUSE or BBRAM is used only to decrypt the 384 bit secure
header with the 256 bit operational key. This limits the exposure of the device key to DPA
attacks.

Black Key Storage

The PUF enables storing the AES key in encrypted (black) format. The black key can be
stored either in eFUSEs or in the bootheader. When needed for decryption, the encrypted
key in eFUSEs or the bootheader is decrypted using the PUF generated key encrypting key
(KEK).

There are two steps in using the PUF for black key storage. In the first, PUF registration
software is used to generate PUF helper data and the PUF KEK. The PUF registration data
allows the PUF to re-generate the identical key each time the PUF generates the KEK. For
more details on the use of PUF registration software, see PUF Registration - Boot Header
Mode. For more information on PUF Registration - eFUSE mode, see Programming BBRAM
and eFUSEs (XAPP1319) [Ref 12].

The helper data and encrypted user key must both be stored in eFUSEs if the PUF eFUSE
mode is used, and in the bootheader if the PUF Bootheader mode is used. The procedure
for the PUF bootheader mode is discussed in Using PUF in Bootheader Mode. For the
procedure to use PUF in eFUSE mode, see Programming BBRAM and eFUSEs (XAPP1319)
[Ref 12].

This tutorial uses PUF Bootheader Mode as it does not require programming of eFUSEs, and
is therefore useful for test and debug. However, the most common mode is PUF eFUSE
mode, as the PUB Bootheader mode requires a unique run of bootgen for each and every
device. The example BIF file for a fully secured system is included at the end of the Secure
Boot Sequence section demonstrates the PUF eFUSE mode.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=108

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 109
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Practical Methods in Secure Boot
This section outlines the steps to develop secure boot in a Zynq UltraScale+ system.
Producing a secure embedded system is a two-step process. In the first phase, the
cryptographic keys are generated and programmed into NVM. In the second phase, the
secure system is developed and tested. Both steps use the Vitis IDE to create software
projects, generate the image, and program the image. For the second phase, a test system
can be as simple as fsbl.elf and hello.elf files. In this section, you will use the same
images used in Boot Sequence for SD-Boot, but this time the images will be assembled
together, and have the secure attributes enabled as part of the secure boot sequence.

This section starts by showing how to generate AES and RSA keys. Following key
generation, systems using the advanced AES and RSA methods are developed and tested.
Keys generated in this section are also included in the Design Files for This Tutorial, released
with this tutorial.

The methods used to develop AES functionality are provided in the following sections:

• Generating all of the AES keys
• Enabling Encryption Using Key Rolling
• Enable use of an Operational Key
• AES key in eFUSE
• Using the PUF

The Creating RSA Private/Public Key Pairs section provides the steps to authenticate all
partitions loaded at boot. This section also shows how to revoke keys.

A requirement in the development of a secure system is to add security attributes which are
used in image generation. Bootgen generates a Boot Image Format (BIF) file. The BIF file is
a text file. In its simplest form, the BIF is a list of partitions to be loaded at boot. Security
attributes are added to the BIF to specify cryptographic functionality. In most cases, the
Bootgen GUI (Create Boot Image wizard) is used to generate the BIF file. In some cases,
adding security attributes requires editing the Bootgen generated BIF file. In Create Boot
Image Wizard in the Vitis IDE, after the Security tab is selected, the Authentication and
Encryption tabs are used to specify security attributes.

After implementing AES and RSA cryptography in secure boot, a Boot test is done. The
system loads successfully and displays the FSBL messages on the terminal. These messages
indicate the cryptographic operations performed on each partition. Appendix A,
Debugging Problems with Secure Boot provides steps that are required to use, if the secure
boot test fails.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=109

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 110
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Sample Design Overview

The sample design demonstrates loading various types of images into the device. It
includes loading a FSBL, PMU Firmware, U-Boot, Linux, RPU software and a PL configuration
image. In this sample, all of these images are loaded by the FSBL which performs all
authentication and decryption. This is not the only means of booting a system. However, it
is the simple and secure method, as of 2019.1.

Different sections within the boot image have different levels of security and are loaded
into different locations. The following table explains the contents of the final boot image.

X-Ref Target - Figure 5-33

Figure 5-33: Sample Design Overview

Table 5-3: Final Boot Image with Secure Attributes

Binary RSA
Authenticated AES Encrypted Exception Level Loader

FSBL Yes Yes EL3 CSU ROM
PMU Firmware Yes Yes NA FSBL
PL Bitstream Yes Yes NA FSBL
Arm Trusted Firmware (ATF) Yes No EL3 FSBL
R5 Software Yes Yes NA FSBL
U-Boot Yes No EL2 FSBL

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=110

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 111
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

This tutorial demonstrates assembling the binaries that are created using Chapter 6, System
Design Examples in a boot image with all the security features enabled. This section also
shows how PL bitstream can be added as a part of secure boot flow. Follow Chapter 6,
System Design Examples till the section Modifying the Build Settings to create all the
necessary files and then switch back.

Enabling the security features in boot image is done in two different methods. During the
first method, the BIF file is manually created using a text editor and then using that BIF file
to have Bootgen create keys. This enables you to identify the sections of the BIF file that are
enabled which security features. The second method uses the Create Boot Image wizard in
the Vitis IDE. It demonstrates the same set of security features. The second method reuses
the keys from the first method for convenience.

Generating Keys for Authentication

There are multiple methods of generating keys. These include, but are not limited to, using
bootgen, customized key files, OpenSSL and Hardware Security Modules (HSMs). This
tutorial covers methods using bootgen. The bootgen created files can be used as templates
for creating files containing user-specified keys from the other key sources.

The creation of keys using bootgen commands requires the generation and modification of
the BIF files. The key generation section of this tutorial creates these bif files "by hand"
using a text editor. The next section, building your boot image demonstrates how to create
these BIF files using the Bootgen GUI (create Boot Image Wizard).

Creating RSA Private/Public Key Pairs

For this example, you will create the Primary and Secondary keys in the PEM format. The
keys are generated using Bootgen command-line options. Alternately, you can create the
keys using external tools like OpenSSL.

The following steps describe the process of creating the RSA Private/Public Key Pairs:

1. Launch the shell for the Vitis IDE.
2. Select Xilinx > Launch Shell.
3. Create a file named key_generation.bif.

Linux Yes No EL1 FSBL
Notes:
1. In a Secure boot sequence PMU image is loaded by FSBL. Using the BootROM/CSU to load the PMU firmware

introduces a security weakness as the key/IV combination is used twice. First to decrypt the FSBL and then again
to decrypt the PMU image. This is not allowed for the secure systems.

2. As of 2019.1, U-Boot does not perform a secure authenticated loading of Linux. So instead of U-Boot, FSBL loads
the Linux images to memory address and then uses U-Boot to jump to that memory address.

Table 5-3: Final Boot Image with Secure Attributes (Cont’d)

Binary RSA
Authenticated AES Encrypted Exception Level Loader

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=111

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 112
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Note: The key_generation.bif file will be used to create both the asymmetric keys in these
steps and the symmetric keys in later steps.
the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[fsbl_config]a53_x64
[bootloader]fsbl_a53.elf
[destination_cpu = pmu]pmu_fw.elf
[destination_device = pl]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone] bl31.elf
[destination_cpu = r5-0]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0]image.ub

}

4. Save the key_generation.bif file in the C:\edt\secure_boot_sd\keys
directory.

5. Copy all of the ELF, BIF and UB files built in Chapter 6, System Design Examples to
C:\edt\secure_boot_sd\keys directory.

6. Navigate to the folder containing the BIF file.
cd C:\edt\secure_boot_sd\keys

7. Run the following command to generate the keys:
bootgen -p zu9eg -arch zynqmp -generate_keys auth pem -image key_generation.bif

8. Verify that the files psk0.pem and ssk0.pem are generated at the location specified
in the BIF file (c:\edt\secure_boot_sd\keys).

Generate SHA3 of Public Key in RSA Private/Public Key Pair

The following steps are required only for RSA Authentication with eFUSE mode, and can be
skipped for RSA authentication with bootheader mode. The 384 bits from sha3.txt can
be programmed to eFUSE for RSA Authentication with the eFUSE Mode. For more
information, see Programming BBRAM and eFUSEs (XAPP1319)[Ref 12].

1. Perform the steps from the prior section.
2. Now that the PEM files have been defined, add authentication = rsa attributes as

shown below to key_generation.bif
the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[fsbl_config]a53_x64
[bootloader, authentication = rsa]fsbl_a53.elf
[destination_cpu = pmu, authentication = rsa]pmu_fw.elf
[destination_device = pl, authentication = rsa]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =

rsa]bl31.elf

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=112

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 113
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

[destination_cpu = r5-0, authentication = rsa]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0, authentication = rsa]image.ub

}

3. Use the bootgen command to calculate the hash of the PPK:
bootgen -p zcu9eg -arch zynqmp -efuseppkbits ppk0_digest.txt -image
key_generation.bif

4. Verify that the file ppk0_digest.txt is generated at the location specified
(c:\edt\secure_boot_sd\keys).

Additional RSA Private/Public Key Pairs

The steps in this section to generate Secondary RSA Private/Public key pair required for Key
Revocation, which requires programming of eFUSE. For more information, see Programming
BBRAM and eFUSEs (XAPP1319) [Ref 12]. You can skip this section if you do not intend to
use Key Revocation.

Repeat steps from Creating RSA Private/Public Key Pairsand Generate SHA3 of Public Key in
RSA Private/Public Key Pair to generate the second RSA private/public key pair and
generate the SHA3 of the second PPK.

1. Perform the steps from the prior section but with replacing psk0.pem, ssk0.pem, and
ppk0_digest.txt with psk1.pem, ssk1.pem and ppk1_digest.pem respectively.
Save this file as key_generation_1.bif. That .bif file will look like:
the_ROM_image:
{
[pskfile]psk1.pem
[sskfile]ssk1.pem
[auth_params]spk_id = 1; ppk_select = 1
[fsbl_config]a53_x64
[bootloader]fsbl_a53.elf
[destination_cpu = pmu]pmu_fw.elf
[destination_device = pl]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone]bl31.elf
[destination_cpu = r5-0]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0]image.ub

}

2. Run the bootgen command to create the RSA private/public key pairs.
bootgen -p zu9eg -arch zynqmp -generate_keys auth pem -image key_generation_1.bif

3. Add authentication = rsa attributes to the key_generation_1.bif file. The
.bif file will look like:
the_ROM_image:
{
[pskfile]psk1.pem
[sskfile]ssk1.pem
[auth_params]spk_id = 1; ppk_select = 1
[fsbl_config]a53_x64
[bootloader, authentication = rsa]fsbl_a53.elf

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=113

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 114
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

[destination_cpu = pmu, authentication = rsa]pmu_fw.elf
[destination_device = pl, authentication = rsa]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =

rsa]bl31.elf
[destination_cpu = r5-0, authentication = rsa]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0, authentication = rsa]image.ub

}

4. Run the bootgen command to generate the hash of the primary RSA public key.
bootgen -p zcu9eg -arch zynqmp -efuseppkbits ppk1_digest.txt -image
key_generation_1.bif

5. Verify that the files ppk1.pem, spk1.pem, and ppk1_digest.txt are all generated at
the location specified (c:\edt\secure_boot\keys).

Enabling Boot Header Authentication

Boot header authentication is a mode of authentication that instructs the ROM to skip the
checks of the eFUSE hashes for the PPKs, the revocation status of the PPKs and the Session
IDs for the secondary keys. This mode is useful for testing and debugging as it does not
require programming of eFUSEs. This mode can be permanently disabled for a device by
programming the RSA_EN eFUSEs which forces RSA Authentication with the eFUSE checks.
Fielded systems should use the RSA_EN eFUSE to force the eFUSE checks and disable Boot
Header Authentication.

Add the bh_auth_enable attribute to the [fsbl_config] line so that the bif file appears as
following:

the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[fsbl_config]a53_x64, bh_auth_enable
[bootloader, authentication = rsa]fsbl_a53.elf
[destination_cpu = pmu, authentication = rsa]pmu_fw.elf
[destination_device = pl, authentication = rsa]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =

rsa]bl31.elf
[destination_cpu = r5-0, authentication = rsa]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0, authentication = rsa]image.ub

}

Generating Keys for Confidentiality

Image confidentiality is discussed in Boot Image Confidentiality and DPA section. In this
section you will modify the .bif file from the authentication section by adding the
attributes required to enable image confidentiality, using the AES-256-GCM encryption
algorithm. At the end, a bootgen command will be used to create all of the required
AES-256 keys.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=114

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 115
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Using AES Encryption

1. Enable image confidentiality by specifying the key source for the initial encryption key
(bbram_red_key for now) using the [keysrc_encryption] bbram_red_key
attribute

2. On several of the partitions enable confidentiality by adding the encryption = aes
attribute of the partitions. Also specify a unique key file for each partition. Having a
unique key file for each partition allows each partition to use a unique set of keys which
increases security strength by not reusing keys and reducing the amount of information
encrypted on any one key. The key_generation.bif file should now look as follows:
the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[keysrc_encryption]bbram_red_key
[fsbl_config]a53_x64, bh_auth_enable
[bootloader, authentication = rsa, encryption = aes, aeskeyfile
=fsbl_a53.nky]fsbl_a53.elf
[destination_cpu = pmu, authentication = rsa, encryption = aes, aeskeyfile =
pmu_fw.nky]pmu_fw.elf
[destination_device = pl, authentication = rsa, encryption = aes, aeskeyfile =
edt_zcu102_wrapper.nky]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =
rsa]bl31.elf
[destination_cpu = r5-0, authentication = rsa, encryption = aes,aeskeyfile =
tmr_psled_r5.nky]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0, authentication = rsa]image.ub
}

Enabling DPA Protections

This section provides the steps to use an operational key and key rolling effective
countermeasures against the differential power analysis (DPA).

Enable use of an Operational Key

Use of an operational key limits the amount of information encrypted using the device key.
Enable use of the operational key by adding the opt_key attribute to the [fsbl_config] line of
the bif file. The key_generation.bif file should now look like as shown below:

the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[keysrc_encryption]bbram_red_key
[fsbl_config]a53_x64, bh_auth_enable, opt_key
[bootloader, authentication = rsa, encryption = aes, aeskeyfile =

fsbl_a53.nky]fsbl_a53.elf
[destination_cpu = pmu, authentication = rsa, encryption = aes, aeskeyfile =

pmu_fw.nky]pmu_fw.elf

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=115

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 116
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

[destination_device = pl, authentication = rsa, encryption = aes, aeskeyfile =
edt_zcu102_wrapper.nky]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =

rsa]bl31.elf
[destination_cpu = r5-0, authentication = rsa, encryption = aes, aeskeyfile =

tmr_psled_r5.nky]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0, authentication = rsa]image.ub

}

Enabling Encryption Using Key Rolling

Use of key rolling limits the amount of information encrypted using any of the other keys.
Key-rolling is enabled on a partition-by-partition basis using the blocks attribute in the bif
file. The blocks attribute allows specifying the amount of information in bytes to encrypt
with each key. For example, blocks=4096,1024(3),512(*) would use the first key for 4096
bytes, the 2nd through 4th keys for 1024 bytes and all remaining keys for 512 bytes. In this
example, the block command will be used to limit the life of each key to 1728 bytes.

Enable use of the key rolling by adding the blocks attribute to each of the encrypted
partitions. The key_generation.bif file should now look like.

the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[keysrc_encryption]bbram_red_key
[fsbl_config]a53_x64, bh_auth_enable, opt_key
[bootloader, authentication = rsa, encryption = aes, aeskeyfile = fsbl_a53.nky,
blocks = 1728(*)]fsbl_a53.elf
[destination_cpu = pmu, authentication = rsa, encryption = aes,aeskeyfile =
pmu_fw.nky, blocks = 1728(*)]pmu_fw.elf
[destination_device = pl, authentication = rsa, encryption = aes,aeskeyfile =
edt_zcu102_wrapper.nky, blocks = 1728(*)]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =
rsa]bl31.elf
[destination_cpu = r5-0, authentication = rsa, encryption = aes, aeskeyfile =
tmr_psled_r5.nky, blocks = 1728(*)]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0, authentication = rsa]image.ub
}

Generating all of the AES keys

Once all desired encryption features have been enabled, you can generate all key files by
running Bootgen. Some of the source files (for example, ELF) contain multiple sections.
These individual sections will be mapped to separate partitions, and each partition will have
a unique key file. In this case, the key file will be appended with a ".1.". For example, if the
pmu_fw.elf file contains multiple sections, both a pmu_fw.nky and a pmu_fw.1.nky
file will be generated.

1. Create all of the necessary NKY files by running the bootgen command that creates the
final BOOT.bin image.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=116

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 117
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

bootgen -p zcu9eg -arch zynqmp -image key_generation.bif

2. Verify that the NKY files were generated. These file should include
edt_zcu102_wrapper.nky, fsbl_a53.nky, pmu_fw.nky, pmu_fw.1.nky,
pmu_fw.2.nky, tmr_psled_r5.nky, and tmr_psled_r5.1.nky.

Using Key Revocation

Key revocation allows you to revoke a RSA primary or secondary public key. Key revocation
may be used due to elapsed time of key use or if there is an indication that the key is
compromised. The primary and secondary key revocation is controlled by onetime
programmable eFUSEs. The Xilinx Secure Key Library is used for key revocation, allowing
key revocation in fielded devices. Key revocation is discussed further in Zynq UltraScale+
MPSoC Technical Reference Manual (UG1085) [Ref 5].

Using the PUF

In this section, the PUF is used for black key storage in the PUF Bootheader mode. RSA
authentication is required when the PUF is used. In PUF Bootheader mode, the PUF helper
data and the encrypted user's AES key are stored in the Bootheader. This section shows how
to create a BIF for using the PUF. Because the helper data and encrypted user key will be
unique for each and every board, the bootgen image created will only work on the board
from which the helper data originated.

At the end of the Secure Boot Sequence section, a different BIF file demonstrates using the
PUF in eFUSE mode. In PUF eFUSe mode, the PUF helper data and encrypted user's AES key
are stored in eFUSEs. In PUF eFUSE mode, a single boot image can be used across all
boards.

PUF Registration - Boot Header Mode

The PUF registration software is included in the XILSKEY library. The PUF registration
software operates in a Bootheader mode or eFUSE mode. The Bootheader mode allows
development without programming the OTP eFUSEs. The eFUSE mode is used in
production. This lab runs through PUF registration in Bootheader Mode only. For PUF
registration using eFUSE, see Programming BBRAM and eFUSEs (XAPP1319) [Ref 12].

The PUF registration software accepts a red (unencrypted) key as input, and produces
syndrome data (helper data), which also contains CHASH and AUX, and a black (encrypted)
key. When the PUF Bootheader mode is used, the output is put in the bootheader. When the
PUF eFUSE mode is used, the output is programmed into eFUSEs.

1. In the Vitis IDE, right click tmr_psled_r5_bsp and click Board Support Package
Settings.

2. Ensure that xilskey and the xilsecure libraries are enabled.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=117

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 118
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

3. Click OK. Re-build the hardware platform for changes to apply. Navigate to
tmr_psled_r5_bsp settings.

4. Scroll to the Libraries section. Click on xilskey 6.8 Import Examples.
5. In the dialog box, select the xilskey_puf_registration example. Click OK.

6. In the project explorer, verify that the xilskey_puf_example_1 application is created
under system_bsp_example_1.

7. In Project Explorer, xilskey_puf_example_1 ' Src ' double click
xilskey_puf_registration.h to open in the Vitis IDE.

X-Ref Target - Figure 5-34

Figure 5-34: Select Xilskey and Xilsecure Libraries

X-Ref Target - Figure 5-35

Figure 5-35: Import PUF Registration Example

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=118

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 119
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

8. Edit xilskey_puf_registration.h as follows:
a. Change #define XSK_PUF_INFO_ON_UART from FALSE to TRUE
b. Ensure that #define XSK_PUF_PROGRAM_EFUSE is set to FALSE
c. Set XSK_PUF_AES_KEY (the 256 bit key).

The key is to be entered in HEX format and should be Key 0 from the fsbl_a53.nky
file that you generated in Generating all of the AES keys. You can find a sample key
below:

#define XSK_PUF_AES_KEY
"68D58595279ED1481C674383583C1D98DA816202A57E7FE4F67859CB069CD510"

Note: Do not copy this key. Refer to the fsbl_a53.nky file for your key.
d. Set the XSK_PUF_BLACK_KEY_IV. The initialization vector IV is a 12 byte data of your

choice.
#define XSK_PUF_BLACK_KEY_IV "E1757A6E6DD1CC9F733BED31"

9. Save the file and exit.
10. In Project Explorer, right-click on the xilskey_puf_example_1 project and select Build

Project.
11. In the Vitis IDE, select Xilinx > Create Boot Image.
12. Select Zynq MP in the Architecture dialog box.
13. In the Output BIF file path: dialog box, specify

C:\edt\secureboot_sd\puf_registration\puf_registration.bif

14. In the Output Path dialog box, specify
C:\edt\secureboot_sd\puf_registration\BOOT.bin

X-Ref Target - Figure 5-36

Figure 5-36: PUF Registration in Bootheader Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=119

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 120
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

15. In the Boot Image Partitions pane, click Add. Add the partitions and set the destination
CPU of the xilskey_puf_example_1 application to R5-0:
C:\edt\fsbl_a53\Debug\fsbl_a53.elf
C:\edt\xilskey_puf_example_1\Debug\xilskey_puf_example_1.elf

16. Click on Create Image to create the Boot Image for PUF registration

17. Insert a SD card into the PC SD card slot.
18. Copy C:\edt\secureboot_sd\puf_registration\BOOT.bin to the SD Card
19. Move the SD card from the PC SD card slot to the ZCU102 card slot.
20. Start a terminal session, using Tera Term or Minicom depending on the host machine

being used, as well as the COM port and baud rate for your system, as shown in
Figure 3-18.

21. In the communication terminal menu bar, select File > Log. Enter
C:\edt\secureboot_sd\puf_registration\puf_registration.log in the
dialog box.

22. Power cycle the board.
23. After the puf_registration software has run, exit the communication terminal.
24. The puf_registration.log content is used in Using PUF in Bootheader Mode. Open

puf_registration.log in a text editor.
25. Save the PUF Syndrome data that starts after App PUF Syndrome data Start!!!; and ends

at PUF Syndrome data End!!!, non-inclusive, to a file named helperdata.txt.
26. Save the black key IV identified by App: Black Key IV - to a file named black_iv.txt.

X-Ref Target - Figure 5-37

Figure 5-37: PUF Registration Software

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=120

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 121
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

27. Save the black key to a file named black_key.txt.
28. The files helperdata.txt, black_key.txt, and black_iv.txt can be saved in

C:\edt\secure_boot_sd\keys

Using PUF in Bootheader Mode

The following steps describes the process to update the .bif file from the previous
sections to include using the PUF in Boot Header mode. This section will make use of the
Syndrome data and Black Key created during PUF registration process.

1. Enable use of the PUF by adding all of the fields and attributes indicated in bold to the
bif file (key_generation.bif) shown below.
the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[keysrc_encryption]bh_blk_key
[bh_key_iv]black_iv.txt
[bh_keyfile]black_key.txt
[puf_file]helperdata.txt
[fsbl_config]a53_x64, bh_auth_enable, opt_key, puf4kmode,
shutter=0x0100005E,pufhd_bh
[bootloader, authentication = rsa, encryption = aes, aeskeyfile = fsbl_a53.nky,
blocks = 1728(*)]fsbl_a53.elf
[destination_cpu = pmu, authentication = rsa, encryption = aes, aeskeyfile =
pmu_fw.nky, blocks = 1728(*)]pmu_fw.elf
[destination_device = pl, authentication = rsa, encryption = aes, aeskeyfile =
edt_zcu102_wrapper.nky, blocks = 1728(*)]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =
rsa]bl31.elf
[destination_cpu = r5-0, authentication = rsa, encryption = aes, aeskeyfile =
tmr_psled_r5.nky, blocks =1728(*)]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x1000000, destination_cpu = a53-0, authentication = rsa]image.ub
}

2. The above .bif file can be used for creating a final boot image using an AES key
encrypted in the boot image header with the PUF KEK. This would be done using the
following bootgen command.
bootgen -p zcu9eg -arch zynqmp -image key_generation.bif -w -o BOOT.bin

Note: The above steps can also be executed with PUF in eFUSE mode. In this case you can repeat the
previous steps, using the PUF in eFUSE mode. This requires enabling the programming of eFUSEs
during PUF registration by setting the XSK_PUF_PROGRAM_EFUSE macro in the
xilskey_puf_registration.h file used to build the PUF registration application. Also, the BIF
would need to be modified to use the encryption key from eFUSE and removing the helper data and
black key files. PUF in eFUSE mode is not covered in this tutorial in order to avoid programming the
eFUSEs on development or tutorial systems.

[keysrc_encryption]efuse_blk_key
[bh_key_iv]black_iv.txt

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=121

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 122
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

System Example Using the Vitis IDE Create Boot Image Wizard

The prior sections enabled the various security features (authentication, confidentiality,
DPA protections, and black key storage) by hand editing the BIF file. This section performs
the same operations, but uses the Bootgen Wizard as a starting point. The Bootgen Wizard
creates a base BIF file, and then adds the additional security features that are not supported
by the wizard using a text editor.

1. Change directory to the bootgen_files directory.
cd C:\edt\secure_boot_sd\bootgen_files

2. Copy the below data from the prior example to this example.
cp ../keys/*nky .
cp ../keys/*pem .
cp ../keys/black_iv.txt .
cp ../keys/helperdata.txt .
cp ../keys/*.elf .
cp ../keys/edt_zcu102_wrapper.bit .
cp ../keys/image.ub .
cp ../keys/black_key.txt.

3. Click Programs > Xilinx Design Tools > Vitis 2019.2 > Xilinx Vitis 2019.2 to launch
the Vitis IDE.

4. Click Xilinx Tools > Create Boot Image from the menu bar to launch the Create Boot
Image wizard.

5. Select Zynq MP as the Architecture.
6. Enter the Output BIF file path as

c:\edt\secure_boot_sd\bootgen_files\design_bh_bkey_keyrolling.bif.
7. Select BIN as the output format.
8. Enter the output path c:\edt\secure_boot_sd\bootgen_files\BOOT.bin.
9. Enable authentication.

a. Click the Security tab.
b. Check the Use Authentication check box.
c. Browse to select the psk0.pem file for the PSK and the ssk0.pem for the SSK.
d. Ensure PPK select is 0.
e. Enter SPK ID as 0.
f. Check the Use BH Auth checkbox.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=122

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 123
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

10. Enable encryption.
a. Click the Encryption tab.
b. Check the Use Encryption checkbox.
c. Use the browse button to select fsbl_a53.nky as the key file.
d. Check the Operational Key checkbox.

X-Ref Target - Figure 5-38

Figure 5-38: Enable Authentication

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=123

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 124
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

11. Click the Basic tab.
12. Add the FSBL binary to the boot image.

a. Click Add.
b. Use the browse button to select the fsbl_a53.elf file.
c. Make sure the partition-type is bootloader and the destination CPU is a53x64.
d. Change authentication to RSA.
e. Change encryption to AES.
f. Click OK.

X-Ref Target - Figure 5-39

Figure 5-39: Enable Encryption

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=124

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 125
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

13. Add the PMW firmware binary to the boot image.
a. Click Add.
b. Use the browse button to select the pmu_fw.elf file.
c. Make sure the partition-type is datafile.
d. Change the destination CPU to PMU.
e. Change authentication to RSA.
f. Change encryption to AES.
g. Click OK.

X-Ref Target - Figure 5-40

Figure 5-40: Adding FSBL Binary

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=125

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 126
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

14. Add the PL Bitstream to the boot image.
a. Click the Add.
b. Use the browse button to select the edt_zcu102_wrapper.bit file.
c. Make sure the partition-type is datafile.
d. Make sure the destination device is PL.
e. Change authentication to RSA.
f. Change encryption to AES.
g. Click OK.

X-Ref Target - Figure 5-41

Figure 5-41: Adding PMU Firmware Binary

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=126

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 127
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

15. Add the Arm Trusted Firmware (ATF) binary to the image.
a. Click Add.
b. Use the browse button to select the bl31.elf file.
c. Make sure the partition-type is datafile.
d. Make sure the destination CPU is A53 0.
e. Change authentication to RSA.
f. Make sure the encryption is none.
g. Make sure the Exception Level is EL3 and enable Trust Zone.
h. Click OK.

X-Ref Target - Figure 5-42

Figure 5-42: Adding PL Bitstream

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=127

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 128
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

16. Add the R5 software binary to the boot image.
a. Click Add.
b. Use the browse button to select the tmr_psled_r5.elf file.
c. Make sure the partition-type is datafile.
d. Make sure the destination CPU is R5 0.
e. Change authentication to RSA.
f. Change encryption to AES.
g. Click OK.

X-Ref Target - Figure 5-43

Figure 5-43: Adding Arm Trusted Firmware

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=128

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 129
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

17. Add the U-Boot software binary to the boot image.
a. Click Add.
b. Use the browse button to select the u-boot.elf file.
c. Make sure the partition-type is datafile.
d. Make sure the destination CPU is A53 0.
e. Change authentication to RSA.
f. Make sure that encryption is none.
g. Change the Exception Level to EL2.
h. Click OK.

X-Ref Target - Figure 5-44

Figure 5-44: Adding R5 Application Binary

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=129

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 130
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

18. Add the Linux image to the boot image.
a. Click Add.
b. Use the browse button to select the image.ub file.
c. Make sure the partition-type is datafile.
d. Make sure the destination CPU is A53 0.
e. Change authentication to RSA.
f. Make sure that encryption is none.
g. Update the load field to 0x2000000.
h. Click OK.

X-Ref Target - Figure 5-45

Figure 5-45: Adding U-Boot Software

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=130

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 131
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

19. Click Create image

20. The design_bh_bkey_keyrolling.bif file should look similar to the following:

X-Ref Target - Figure 5-46

Figure 5-46: Adding Linux Boot Image

X-Ref Target - Figure 5-47

Figure 5-47: Creating a Final Boot Image

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=131

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 132
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[aeskeyfile]fsbl_a53.nky
[keysrc_encryption]efuse_red_key
[fsbl_config]a53_x64, bh_auth_enable, opt_key
[bootloader, encryption = aes, authentication = rsa]fsbl_a53.elf
[encryption = aes, authentication = rsa, destination_cpu = pmu]pmu_fw.elf
[encryption = aes, authentication = rsa, destination_device =

pl]edt_zcu102_wrapper.bit
[authentication = rsa, destination_cpu = a53-0, exception_level = el-3]bl31.elf
[encryption = aes, authentication = rsa, destination_cpu = r5-0]tmr_psled_r5.elf
[authentication = rsa, destination_cpu = a53-0, exception_level = el-2]u-boot.elf
[authentication = rsa, load = 0x2000000, destination_cpu = a53-0]image.ub

}

21. This BIF file is still missing several security features that are not supported by the Create
Boot Image wizard. These are features are per-partition nky files, key rolling and black
key store.

22. Add black key store by changing the keysrc_encryption and adding the other
additional items so that the BIF file looks like the following:
the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[aeskeyfile]fsbl_a53.nky
[keysrc_encryption]bh_blk_key

[bh_key_iv]black_iv.txt
[bh_keyfile]black_key.txt
[puf_file]helperdata.txt
[fsbl_config]a53_x64, bh_auth_enable, opt_key, puf4kmode, shutter=0x0100005E,

pufhd_bh
[bootloader, encryption = aes, authentication = rsa]fsbl_a53.elf
[encryption = aes, authentication = rsa, destination_cpu = pmu]pmu_fw.elf
[encryption = aes, authentication = rsa, destination_device =

pl]edt_zcu102_wrapper.bit
[authentication = rsa, destination_cpu = a53-0, exception_level = el-3]bl31.elf
[encryption = aes, authentication = rsa, destination_cpu = r5-0]tmr_psled_r5.elf
[authentication = rsa, destination_cpu = a53-0, exception_level = el-2]u-boot.elf
[authentication = rsa, load = 0x2000000, destination_cpu = a53-0]image.ub

}

23. Specify unique AES key files for each encrypted partition by updating the BIF file to look
like the following:
the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[keysrc_encryption]bh_blk_key
[bh_key_iv]black_iv.txt
[bh_keyfile]black_key.txt
[puf_file]helperdata.txt

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=132

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 133
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

[fsbl_config]a53_x64, bh_auth_enable, opt_key, puf4kmode, shutter=0x0100005E,
pufhd_bh
[bootloader, encryption = aes, aeskeyfile = fsbl_a53.nky, authentication =
rsa]fsbl_a53.elf
[encryption = aes, aeskeyfile = pmu_fw.nky, authentication = rsa, destination_cpu =
pmu]pmu_fw.elf
[encryption = aes, aeskeyfile = edt_zcu102_wrapper.nky, authentication = rsa,
destination_device = pl]edt_zcu102_wrapper.bit
[authentication = rsa, destination_cpu = a53-0, exception_level = el-3]bl31.elf
[encryption = aes, aeskeyfile = tmr_psled_r5.nky, authentication = rsa,
destination_cpu = r5-0]tmr_psled_r5.elf
[authentication = rsa, destination_cpu = a53-0, exception_level = el-2]u-boot.elf
[authentication = rsa, load = 0x2000000, destination_cpu = a53-0]image.ub
}

24. Enable key rolling by adding the block attributes to the encrypted partitions. The
updated BIF file should now look like the following:
the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[keysrc_encryption]bh_blk_key
[bh_key_iv]black_iv.txt
[bh_keyfile]black_key.txt
[puf_file]helperdata.txt
[fsbl_config]a53_x64, bh_auth_enable, opt_key, puf4kmode, shutter=0x0100005e,
pufhd_bh
[bootloader, encryption = aes, aeskeyfile = fsbl_a53.nky, authentication = rsa,
blocks = 1728(*)]fsbl_a53.elf
[encryption = aes, aeskeyfile = pmu_fw.nky, authentication = rsa, destination_cpu =
pmu, blocks = 1728(*)]pmu_fw.elf
[encryption = aes, aeskeyfile = edt_zcu102_wrapper.nky, authentication = rsa,
destination_device = pl, blocks = 1728(*)]edt_zcu102_wrapper.bit
[authentication = rsa, destination_cpu = a53-0, exception_level = el-3]bl31.elf
[encryption = aes, aeskeyfile = tmr_psled_r5.nky, authentication = rsa,
destination_cpu = r5-0, blocks = 1728(*)]tmr_psled_r5.elf
[authentication = rsa, destination_cpu = a53-0, exception_level = el-2]u-boot.elf
[authentication = rsa, load = 0x2000000, destination_cpu = a53-0]image.ub
}

25. Generate the boot image by running the following command. Note that the
-encryption_dump flag has been added. This flag causes the log file aes_log.txt
to be created. The log file details all encryption operations that were used. This allows
you to see which keys and IVs were used on which sections of the boot image.
bootgen -p zcu9eg -arch zynqmp -image design_bh_bkey_keyrolling.bif -w -o BOOT.bin
-encryption_dump

Booting the system using a Secure Boot Image

This section demonstrates how to use the BOOT.bin boot image created in prior sections
to perform a secure boot using the ZCU102.

1. Copy the BOOT.bin image and the ps_pl_linux_app.elf over to the SD card from
c:\edt\secure_boot_sd\bootgen_files.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=133

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 134
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

2. Insert the SD card into the ZCU102.
3. Set SW6 of the ZCU102 for SD boot mode (1=ON; 2,3,4=OFF).

4. Connect Serial terminals to ZCU102 (115200, 8 data bits, 1 stop bit, no parity)
5. Power on the ZCU102
6. When the terminal reaches the U-boot ZynqMP> prompt, type bootm 0x2000000.

7. Login into Linux using the following credentials:

Login: root;

password: root

X-Ref Target - Figure 5-48

Figure 5-48: SW6 Switch Settings for SD boot Mode

X-Ref Target - Figure 5-49

Figure 5-49: U-Boot Prompt

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=134

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 135
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

Run the Linux Application as described in Design Example 1: Using GPIOs, Timers, and
Interrupts.

Running the Linux Application

Use the following steps to run a Linux application:

1. Copy the application from SD card mount point to /tmp.
cp /run/media/mmcblk0p1/ps_pl_linux_app.elf /tmp

Note: Mount the SD card manually if you fail to find SD card contents in this location.
mount /dev/mmcblk0p1 /media/

2. Copy the application to /tmp.
cp /media/ps_pl_linux_app.elf /tmp

3. Run the application.
/tmp/ps_pl_linux_app.elf

Sample BIF for a fielded system

The following BIF file is an example for a fielded system. In order for this bif file to work on
a board it requires the RSA_EN, PPK0 Digest, black AES key and PUF helper data to all be
programmed in the eFUSEs. Since programming these eFUSEs severely limits the use of the
device or board for testing and debugging, it is only included here as a reference. It is not
part of the tutorial.

The following changes are made to the final generation.bif file reach the following
result:

1. Change from PUF Bootheader mode to PUF eFUSE mode.
a. Change the keysrc_encryption attribute to efuse_blk_key.
b. Remove the bh_keyfile and puf_file lines.
c. Remove the puf4kmode and pufhd_bh attributes from the fsbl_config line.

2. Change from boot header authentication to eFUSE authentication.
a. Remove the bh_auth_enable attribute from the fsbl_config line.

X-Ref Target - Figure 5-50

Figure 5-50: Linux Login

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=135

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 136
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 5: Boot and Configuration

the_ROM_image:
{
[pskfile]psk0.pem
[sskfile]ssk0.pem
[auth_params]spk_id = 0; ppk_select = 0
[keysrc_encryption]efuse_blk_key
[bh_key_iv]black_iv.txt
[fsbl_config]a53_x64, opt_key, shutter=0x0100005E
[aeskeyfile]fsbl_a53.nky
[bootloader, authentication = rsa, encryption = aes, blocks = 1728(*)]fsbl_a53.elf
[aeskeyfile]pmu_fw.nky
[destination_cpu = pmu, authentication = rsa, encryption = aes, blocks =

1728(*)]pmu_fw.elf
[aeskeyfile]edt_zcu102_wrapper.nky
[destination_device = pl, authentication = rsa, encryption = aes, blocks =

1728(*)]edt_zcu102_wrapper.bit
[destination_cpu = a53-0, exception_level = el-3, trustzone, authentication =

rsa]bl31.elf
[aeskeyfile]tmr_psled_r5.nky
[destination_cpu = r5-0, authentication = rsa, encryption = aes, blocks =

1728(*)]tmr_psled_r5.elf
[destination_cpu = a53-0, exception_level = el-2, authentication = rsa]u-boot.elf
[load = 0x2000000, destination_cpu = a53-0, authentication = rsa]image.ub

}

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=136

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 137
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6

System Design Examples
This chapter guides you through building a system based on Zynq® UltraScale+™ devices
using available tools and supported software blocks. This chapter highlights how you can
use the software blocks you configured in Chapter 3 to create a Zynq UltraScale+ system. It
does not discuss domain-specific designs, but rather highlights different ways to use
low-level software available for Zynq UltraScale+ devices.

Design Example 1: Using GPIOs, Timers, and
Interrupts
The Zynq ZCU102 UltraScale+ Evaluation Board comes with a few user configurable
Switches and LEDs. This design example makes use of bare-metal and Linux applications to
toggle these LEDs, with the following details:

• The Linux applications configure a set of PL LEDs to toggle using a PS Dip Switch, and
another set of PL LEDs to toggle using a PL Dip Switch (SW17).

• The Linux APU A-53 Core 0 hosts this Linux application, while the RPU R5-0 hosts
another bare-metal application.

• The R5-Core 0 application uses an AXI Timer IP in Programmable logic to toggle PS LED
(DS50). The application is configured to toggle the LED state every time the timer
counter expires, and the Timer in the PL is set to reset periodically after a
user-configurable time interval. The system is configured such that the APU Linux
Application and RPU Bare-metal Application run simultaneously.

Configuring Hardware
The first step in this design is to configure the PS and PL sections. This can be done in
Vivado IP integrator. You start with adding the required IPs from the Vivado IP catalog and
then connect the components to blocks in the PS subsystem.

1. If the Vivado Design Suite is already open, start from the block diagram (shown in
Figure 2-2) and jump to step 4.

2. Open the Vivado Project that you created:

C:/edt/edt_zcu102/edt_zcu102.xpr

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=137

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 138
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

3. In the Flow Navigator, under IP Integrator, click Open Block Design and select
edt_zcu102.bd.

4. Right click in the block diagram and select Add IP from the IP catalog.

Adding and Configuring IPs

1. In the catalog, select AXI Timer.

The IP Details information displays, as shown in the following figure.

2. Double-click the AXI Timer IP to add it to the design.

X-Ref Target - Figure 6-1

Figure 6-1: Open Block Design

X-Ref Target - Figure 6-2

Figure 6-2: IP Details Information

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=138

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 139
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

3. Double-click the AXI Timer IP again to configure the IP, as shown in following figure.

4. Click OK.
5. Again, right-click in the block diagram and select Add IP.
6. Search for “AXI GPIO” and double-click the AXI GPIO IP to add it to the design.
7. Repeat step 5 and step 6 to add another instance of AXI GPIO IP.
8. Double-click axi_gpio_0 and select Push button 5bits from the GPIO Board Interface

drop-down list.

X-Ref Target - Figure 6-3

Figure 6-3: Re-customize IP Dialog Box for AXI Timer

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=139

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 140
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

9. Click OK to configure the AXI_GPIO for Push buttons.
10. Double-click on axi_gpio_1.
11. Configure axi_gpio_1 for PL LEDs by selecting led_8bits from the GPIO Board

Interface drop-down list, as shown in the following figure.

12. Click OK to configure the AXI_GPIO for LED.

X-Ref Target - Figure 6-4

Figure 6-4: Re-customize IP Dialog Box for AXI GPIO

X-Ref Target - Figure 6-5

Figure 6-5: Configuring GPIO for led_8bits

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=140

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 141
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Connecting IP Blocks to Create a Complete System

Make the initial connections using Board presets. To do this, follow the below steps:

1. Double-click the Zynq UltraScale+ IP Block, and select a PL-PS interrupt as shown in
Figure 6-6 (Ignore and move to the next step, if this is selected by default).

2. In PS-PL Configuration, expand PS-PL Interfaces and expand the Master Interface.

X-Ref Target - Figure 6-6

Figure 6-6: Selecting PL to PS Interrupt

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=141

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 142
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

3. Expand AXI HPM0 LPD and set the AXI HPM0 LPD Data Width drop-down to 128 bit, as
shown in Figure 6-7.

4. Click OK to complete the configuration and return to the block diagram.
5. In the diagram view, connect the interrupt port from axi_timer_0 to

pl_ps_irq[0:0].
6. Click Run Connection Automation. Do not click on Run Block Automation.

7. In the Run Connection Automation dialog box, click All Automation.
8. Click OK.
9. In the Address Editor view, verify that the corresponding IPs are allocated the same

Address Map, as shown in the following figure. If not, set the offset address such that
they match the following figure.

X-Ref Target - Figure 6-7

Figure 6-7: Set Data Width for AXI HPM0 LPD

X-Ref Target - Figure 6-8

Figure 6-8: Run Connection Automation Link

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=142

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 143
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

.

10. Validate the design and generate the output files for this design, as described in the
following sections.

Validating the Design and Generating Output

1. Return to the block diagram view and save the Block Design (press Ctrl + S).
2. Right-click in the white space of the Block Diagram view and select Validate Design.

Alternatively, you can press the F6 key.

A message dialog box opens and states "Validation successful. There are no errors or
critical warnings in this design."

3. Click OK to close the message.
4. In the Block Design view, click the Sources tab.
5. Click Hierarchy.
6. In the Block Diagram, Sources window, under Design Sources, expand

edt_zcu102_wrapper.
7. Right-click the top-level block diagram, titled edt_zcu102_i : edt_zcu102

(edt_zcu102.bd) and select Generate Output Products.

X-Ref Target - Figure 6-9

Figure 6-9: Address Map for PL IPs

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=143

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 144
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

The Generate Output Products dialog box opens, as shown Figure 6-10.

Note: If you are running the Vivado Design Suite on a Linux host machine, you might see
additional options under Run Settings. In this case, continue with the default settings.

8. Click Generate.
9. When the Generate Output Products process completes, click OK.
10. In the Block Diagram Sources window, click the IP Sources tab. Here you can see the

output products that you just generated, as shown in the following figure.

X-Ref Target - Figure 6-10

Figure 6-10: Generate Output Products Dialog Box

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=144

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 145
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Synthesizing the Design, Running Implementation, and Generating the
Bitstream

1. You can now synthesize the design. In the Flow Navigator pane, under Synthesis, click
Run Synthesis.

X-Ref Target - Figure 6-11

Figure 6-11: Outputs Generated Under IP Sources

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=145

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 146
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

2. If Vivado prompts you to save your project before launching synthesis, click Save.

While synthesis is running, a status bar displays in the upper right-hand window. This
status bar spools for various reasons throughout the design process. The status bar
signifies that a process is working in the background.

When synthesis completes, the Synthesis Completed dialog box opens.

3. Select Run Implementation and click OK.

Again, notice that the status bar describes the process running in the background. When
implementation completes, the Implementation Completed dialog box opens.

4. Select Generate Bitstream and click OK.

When Bitstream Generation completes, the Bitstream Generation Completed dialog box
opens.

5. Click Cancel to close the window.
6. After the Bitstream generation completes, export the hardware to the Vitis IDE.

Exporting Hardware

1. From the Vivado toolbar, select File > Export > Export Hardware.

The Export Hardware dialog box opens. Make sure that the Include bitstream check
box is checked (only when design has PL design and bitstream generated), and that the
Export to field is set to the local path.

2. Click OK.

X-Ref Target - Figure 6-12

Figure 6-12: Run Synthesis Button

X-Ref Target - Figure 6-13

Figure 6-13: Status Bar

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=146

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 147
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

3. To update the hardware in the Vitis IDE, go to edt_zcu102_wrapper platform project.
Right-click and select Update the Hardware, then provide the path to the hardware
exported from Vivado.

Configuring Software
This use case has a bare-metal application running on an R5 core and a Linux Application
running on APU Linux Target. Most of the software blocks will remain the same as
mentioned in Chapter 3. The software for this design example requires additional drivers for
components added in the PL Logic. For this reason, you will need to generate a new
Bare-metal BSP in the Vitis IDE using the Hardware files generated for this design. Linux
also requires the Linux BSP to be reconfigured in sync with the new hardware design file
(HDF). Before you configure the software, first look at the application design scheme. The
system has a bare-metal application on RPU, which starts with toggling the PS LEDs for a
user configurable period. The LEDs are set to toggle in synchronization with PL AXI Timer
running in the PL block. The application sets the AXI Timer in the generate mode and
generates an interrupt every time the Timer count expires. The application is designed to
toggle the PS LED state after handling the Timer interrupt. The application runs in an
infinite while loop and sets the RPU in WFI mode after toggling the LEDs for the
user-configured time period. This LED toggling sequence can be repeated again by getting
the RPU out of WFI mode using an external interrupt. For this reason, the UART interrupt is
also configured and enabled in the same application. While this application runs on the
RPU, the Linux target also hosts another Linux application. The Linux application uses user
Input from PS or PL switches to toggle PL LEDs. This Linux application also runs in an infinite
while loop, waiting for user input to toggle PL LEDs. The next set of steps show how to
configure System software and build user applications for this design.

Configure and Build Linux using PetaLinux

First, create the Linux images using PetaLinux. The Linux images must be created in sync
with the hardware configuration for this design. You will also need to configure PetaLinux to
create images for SD boot.

See the Example Project: Create Linux Images using PetaLinux in Chapter 3, and repeat
steps from step 2 to step 13 to update the device tree and build Linux images using
PetaLinux. Alternatively, you can also use the Linux image files shared with this tutorial. The
images for this section can be found in <design_files>/design.

Follow step 15 to verify the images. The next step is to create a Bare-metal Application
targeted for Arm Cortex-R5 based RPU.

For this design example, you must import the application source files available in the
Design Files ZIP file released with this tutorial. For information about locating these design
files, see the Design Files for This Tutorial in Appendix B.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=147

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 148
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Creating the Bare-Metal Application Project

1. In the Vitis IDE, select File > New > Application Project.

The New Project wizard opens.

2. Use the information in the table below to make your selections in the wizard.

3. Click Finish.

The New Project wizard closes and the Vitis IDE creates the tmr_psled_r5 application
project, which you can view in the Project Explorer.

4. In the Project Explorer tab, expand the tmr_psled_r5 project.
5. Right-click the src directory, and select Import to open the Import dialog box.
6. Expand General in the Import dialog box and select File System.
7. Click Next.
8. Select Browse and navigate to the design-files/design1 folder, which you saved

earlier (see Additional Resources and Legal Notices in Appendix B.
9. Click OK.
10. Select and add the timer_psled_r5.c file.
11. Click Finish.

The Vitis IDE automatically builds the application and displays the status in the console
window.

Modifying the Linker Script

1. In the Project Explorer, expand the tmr_psled_r5 project.
2. In the src directory, double-click lscript.ld to open the linker script for this project.

Table 6-1: Settings to Create Timer-Based RPU Application Project
Wizard Screen System Properties Setting or Command to Use

Application Project Project Name tmr_psled_r5

Use Default Location Select this option.
System Project Create New
Platform edt_zcu102_wrapper
Domain psu_cortexr5_0

Language C
CPU psu_cortexr5_0
OS Standalone

Templates Available Templates Empty Application

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=148

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 149
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

3. In the linker script in Available Memory Regions, modify following attributes for
psu_r5_ddr_0_MEM_0 :

Base Address: 0x70000000

Size: 0x10000000

The following figure shows the linker script modification. The following figure is for
representation only. Actual memory regions may vary in case of isolation settings.

This modification in the linker script ensures that the RPU bare-metal application
resides above 0x70000000 base address in the DDR, and occupies no more than 256 MB
of size.

4. Type Ctrl + S to save the changes.
5. Right-click the tmr_psled_r5 project and select Build Project.
6. Verify that the application is compiled and linked successfully and that the

tmr_psled_r5.elf file was generated in the tmr_psled_r5\Debug folder.
7. Verify that the BSP is configured for UART_1. For more information, see the Modifying

the Board Support Package in Chapter 3.

Creating the Linux Domain for Linux Applications

To create a Linux domain for Linux applications, follow these steps:

X-Ref Target - Figure 6-14

Figure 6-14: Linker Script Modification

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=149

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 150
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

1. Go to the explorer in the Vitis IDE and expand the edt_zcu102_wrapper platform
project.

2. Open the hardware by double-clicking platform.spr. The Platform explorer opens.
3. Click + button on the top-right corner to add the domain.

4. Enter the following details in the new domain window.

5. Select Use pre-built software components. Then do the following:
a. Create a boot directory and copy the boot components (FSBL, PMU firmware from

the Vitis IDE, ATF, u-boot.elf, and image.ub from PetaLinux) generated from the Vitis
tool and the PetaLinux tool.

b. Copy the bif file which is supplied with the design files located in design1 and
provide the bif file path.

X-Ref Target - Figure 6-15

Figure 6-15: Adding a Linux Domain

Table 6-2: Settings to Create New Linux Domain
System Properties Setting or Command to Use

Name Linux Domain
Display Name Linux_application_domain
OS Linux
Processor psu_cortexa53_0
Supported Run times C/C++

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=150

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 151
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

6. Click OK to finish.

You can see the Linux domain properties in the window as shown below.

7. Add image.ub file path in the image file path.

The Linux domain is ready and you can create Linux applications.

X-Ref Target - Figure 6-16

Figure 6-16: Creating a Linux Application Domain

X-Ref Target - Figure 6-17

Figure 6-17: Linux Domain Properties

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=151

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 152
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Creating the Linux Application Project

1. In the Vitis IDE, select File > New > Application Project.

The New Project wizard opens.

2. Use the information in the table below to make your selections in the wizard.
s

3. Click Finish.

The New Project wizard closes and the Vitis IDE creates the ps_pl_linux_app
application project, which can be found in the Project Explorer.

4. In the Project Explorer tab, expand the ps_pl_linux_app project.
5. Right-click the src directory, and select Import to open the Import dialog box.
6. Expand General in the Import dialog box and select File System.
7. Click Next.
8. Select Browse and navigate to the design-files/design1 folder, which you saved

earlier (see Design Files for This Tutorial in Appendix B.
9. Click OK.
10. Select and add the ps_pl_linux_app.c file.

Note: The application might fail to build because of a missing reference to the pthread Library.
The next section shows how to add the pthread library.

Table 6-3: Settings to Create New Linux Application Project
Wizard Screen System Properties Setting or Command to Use

Application Project Project Name ps_pl_linux_app

Use Default Location Select this option
System Project Create New
Platform edt_zcu102_wrapper

Domain Linux_application_domain
Language C
CPU cortex-a53
OS Linux

Templates Available Templates Linux Empty Application

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=152

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 153
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Modifying the Build Settings

This application makes use of Pthreads from the pthread library. Add the pthread library as
follows:

1. Right-click ps_pl_linux_app, and click on C/C++ Build Settings.
2. Refer to the following figures to add the pthread library.

3. Click OK in both the windows.

Then build the application by right-clicking on the application selecting Build option.

X-Ref Target - Figure 6-18

Figure 6-18: C/C++ Build Settings

X-Ref Target - Figure 6-19

Figure 6-19: Add pthread Library

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=153

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 154
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Creating a Boot Image

Now that all the individual images are ready, you will create the boot image to load all of
these components on a Zynq UltraScale+ device. This can be done using the Create Boot
Image wizard in the Vitis IDE, using the following steps. This example creates a Boot Image
BOOT.bin in C:\edt\design1.

1. Launch the Vitis IDE, if it is not already running.
2. Set the workspace based on the project you created in Chapter 2. For example:

C:\edt

3. Select Xilinx > Create Boot Image.
4. See Figure 6-20 for settings in the Create Boot Image wizard.
5. Add the partitions as shown in the following figure.

Note: For detailed steps on how to add partitions, see Boot Sequence for SD-Boot.
X-Ref Target - Figure 6-20

Figure 6-20: Create Boot Image for SD Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=154

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 155
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Note: This Boot image requires PL bitstream edt_zcu102_wrapper.bit (Partition Type -
Datafile, Destination Device - PL). The Bitstream Partition needs to be added right after the
Bootloader while you create the boot image. Also note that the R5 application
tmr_psled_r5.elf is added as partition in this boot image.

6. After adding all the partitions, click Create Image.

IMPORTANT: Ensure that you have set the correct exception levels for ATF (EL-3, Trustzone) and U-Boot
(EL-2) partitions. These settings can be ignored for other partitions.

Running the Image on a ZCU102 Board

Prepare the SD Card

Copy the images and executables on an SD card and load it in the SD card slot in the Board.

1. Copy files BOOT.BIN and image.ub to an SD card.
Note: BOOT.BIN is located in C:\edt\design1.

2. Copy the Linux application, ps_pl_linux_app.elf, to the same SD Card. The
application can be found in:
c:\edt\ps_pl_linux_app\Debug

Target Setup

1. Load the SD card into the ZCU102 board, in the J100 connector.
2. Connect the USB-UART on the Board to the Host machine.
3. Connect the Micro USB cable into the ZCU102 Board Micro USB port J83, and the other

end into an open USB port on the host Machine.
4. Configure the Board to Boot in SD-Boot mode by setting switch SW6 as shown in the

following figure.
X-Ref Target - Figure 6-21

Figure 6-21: SW6 Switch Settings for SD Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=155

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 156
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

5. Connect 12V Power to the ZCU102 6-Pin Molex connector.
6. Start a terminal session, using TeraTerm or Minicom depending on the host machine

being used, as well as the COM port and baud rate for your system, as shown in
Figure 5-8.

7. For port settings, verify the COM port in the device manager.

There are four USB-UART interfaces exposed by the ZCU102 Board.

8. Select the COM Port associated with the interface with the lowest number. In this case,
for UART-0, select the COM port with interface-0.

9. Similarly, for UART-1, select COM port with interface-1.

Remember that the R5 BSP has been configured to use UART-1, and so R5 application
messages will appear on the COM port with the UART-1 terminal.

Power ON Target and Run Applications

1. Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.

You can see the initial Boot sequence messages on your Terminal Screen representing
UART-0.

You can see that the terminal screen configured for UART-1 also prints a message. This
is the print message from the R-5 bare-metal Application running on RPU, configured to
use UART-1 interface. This application is loaded by the FSBL onto RPU.

2. Now that this application is running, notice the PS LED being toggled by the application,
and follow the instructions in the application terminal.

X-Ref Target - Figure 6-22

Figure 6-22: R5-0 Bare Metal Application

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=156

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 157
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Running Linux Applications

After Linux is up on the ZCU102 system, log in to the Linux target with login: root and
password: root. The Linux target is now ready for running applications.

Run the Linux application using following steps.

1. Copy the application from SD card mount point to /tmp
cp /run/media/mmcblk0p1/ps_pl_linux_app.elf /tmp

Note: Mount the SD card manually if you fail to find SD card contents in this location.
mount /dev/mmcblk0p1 /media/
Copy the application to /tmp.
cp /media/ps_pl_linux_app.elf /tmp

2. Run the application.
/tmp/ps_pl_linux_app.elf

X-Ref Target - Figure 6-23

Figure 6-23: Linux Terminal

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=157

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 158
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Design Example 2: Example Setup for Graphics and
Display Port Based Sub-System
This design example is primarily based on the Graphics Processing Unit and the Display Port
on a Zynq UltraScale+ MPSoC device. The main idea behind this example is to demonstrate
the configurations, packages, and tool flow required for running designs based on GPU and
DP on a Zynq UltraScale+ MPSoC device. This design example can be broken down into the
following sections:

1. Configuring the hardware.
2. Configuring PetaLinux RootFS to include the required packages:

a. GPU related packages
b. X Window System and dependencies

3. Building Boot images and Linux images using PetaLinux.
4. Building a Graphics OpenGL ES application targeted for Mali GPU. This application is

based on the X Window System.
5. Loading Linux on the ZCU102 board and running the Graphics Application on the target

to see the result on the display port.

Configuring the Hardware
In this section, you will configure the processing system to set Dual lower GT lanes for the
display port. The hardware configuration in this section is based on the same Vivado
project that you created in Design Example 1: Using GPIOs, Timers, and Interrupts.

Configuring Hardware in Vivado IP Integrator

1. Ensure that the edt_zcu102 project and the block design are open in Vivado.
2. Double-click the Zynq UltraScale+ Processing System block in the Block Diagram

window and wait till the Re-customize IP dialog box opens.
3. In Re-customize IP window, click on I/O Configuration > High Speed
4. De-select PCIe peripheral connection
5. Expand Display Port, and set Lane Selection to Dual Lower, as shown in following figure:

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=158

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 159
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Note: The Display port lane selection is set to Dual lane to support UHD@30 resolution in the
design example of this tutorial. This configuration will lock display for UHD@30 as well as lower
resolution like 1080p 60 and others, for corresponding monitors.

6. Click OK to close the Re-customize IP wizard.

CAUTION! Do not click the Run Block Automation link. Clicking the link will reset the design as per
board preset and disable the design updates you made using in this section.

7. Click File > Save Block Design to save the block design. Alternatively, you can press
CTRL + S to save the block design.

8. Click Generate Bitstream, to re-synthesize the design and generate the Bitstream.
9. After the Bitstream is generated successfully, click File > Export > Export Hardware to

export the hardware design.
10. Select Include Bitstream.
11. Click OK.

Vivado generates the .xsa hardware file in the specified location.

12. Copy the XSA file to a Linux Host machine.

The next section describes steps to build Linux for your Hardware configuration and also
add additional software packages for GPU and the X Window System.

X-Ref Target - Figure 6-24

Figure 6-24: Display Port Lane Selection

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=159

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 160
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

Modifying the Configuration and Building Linux Images using
PetaLinux
Re-configure the PetaLinux BSP in sync with the new hardware changes. This section uses
the PetaLinux project you created in Example Project: Create Linux Images using PetaLinux.

1. Change to the PetaLinux directory using the following command:
$ cd xilinx-zcu102-2019.2

2. Copy the hardware platform edt_zcu102_wrapper.xsa in the Linux Host machine.
3. Reconfigure the BSP using the following command:

$ petalinux-config --get-hw-description=<path containing edt_zcu102_wrapper.xsa>/

The PetaLinux configuration wizard opens.

4. Save and exit the wizard without any additional configuration settings.

Wait until PetaLinux reconfigures the project.

5. Clean the existing Bootloader image. This is to ensure that the bootloader is recreated
in sync with new hardware design.
$ petalinux-build -c bootloader -x distclean

Building the Mali OpenGLES Application
This section leads you through building a Triangle-based Cube application. This application
is written in OpenGLES and is based on the X Window System. For more details and for the
application source code, refer to tricube in the design_files folder of the zip file that
accompanies this tutorial. See Design Files for This Tutorial.

Use the following steps to build the OpenGLES application:

1. Copy the entire application source directory of tricube to the Linux host machine in
the recipe-apps directory of the PetaLinux project.
<PetaLinux-Project>/project-spec/meta-user/recipes-apps/tricube

2. Add the newly created tricube in user-rootfsconfig, which is located in

<plnx_project>/project-spec/meta-user/conf/user-rootfsconfig

With this addition, the file will look like below. Notice the new application in bold.

CONFIG_gpio-demo
CONFIG_peekpoke
CONFIG_tricube

3. Refer to recipe tricube/tricube.bb for detailed instructions and libraries used for
building this application. The X Window System (X11) packages included while building

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=160

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 161
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

the above application is application dependent. Libraries included in tricube.bb
recipe are based on the packages that were used in the application.

Enable GPU Libraries and Other Packages in RootFS
In this section, you will use the PetaLinux rootfs Configuration wizard to add the Mali GPU
libraries. PetaLinux is shipped with Mali GPU libraries and device drivers for Mali GPU. By
default, the Mali driver is enabled in the kernel tree, but Mali user libraries need to be
configured (on an as-needed basis) in the rootfs. In addition to this, you will use the same
wizard to include the X Window System libraries.

1. Open the PetaLinux rootfs Configuration wizard -
$ petalinux-config -c rootfs

2. Navigate to and enable the following packages:
Filesystem Packages ---> libs ---> libmali-xlnx ---> libmali-xlnx
Filesystem Packages ---> libs ---> libmali-xlnx ---> libmali-xlnx-dev

These packages enable you to build and Run OpenGLES applications targeted for Mali
GPU in the Zynq UltraScale+ MPSoC device.

3. Add X11 package groups to add X window related packages:
Petalinux Package Groups > packagegroup-petalinux-x11 >packagegroup-petalinux-x11
Petalinux Package Groups > packagegroup-petalinux-x11 >
packagegroup-petalinux-x11-dev

4. Add the OpenGLES application created in the earlier section:
User Packages ---> [*]tricube

5. After enabling all the packages, save the config file and exit the rootfs configuration
settings.

6. Build the Linux images using the following command:
$ petalinux-build

Note: If the PetaLinux build fails, use the following commands to build again:
$ petalinux-build -x mrproper
$ petalinux-build

7. Verify that the image.ub Linux image file is generated in the images/linux directory.
8. Generate the Boot image for this design example as follows:

$ petalinux-package --boot --fsbl images/linux/zynqmp_fsbl.elf --pmufw
images/linux/pmufw.elf --atf images/linux/bl31.elf --fpga images/linux/system.bit
--u-boot images/linux/u-boot.elf

A BOOT.BIN Boot image is created. It is composed of the FSBL boot loader, the PL
bitstream, PMU firmware and ATF, and U-Boot. Alternatively, see the steps in Creating a
Boot Image to create this boot image.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=161

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 162
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

IMPORTANT: This example uses the GPU packages based on X window system, which is the default
setting in PetaLinux 2019.2. To enable Frame Buffer fbdev based GPU Packages in PetaLinux 2019.2,
add the following line in <PetaLinux_project>/project-spec/meta-user/conf/petalinuxbsp.conf.
DISTRO_FEATURES_remove_zynqmp = " x11"

See example eglfbdev application (based on fdev) available in Design Files for This Tutorial. For more
information, see the Xilinx Answer 68821.

Loading Linux and Running the OpenGLES Application on the
Target and Viewing the Result on the Display Port

Preparing the SD Card

Now that the Linux images are built and the application is also built, copy the following
images in an SD card and load the SD card in ZCU102 board.

• BOOT.BIN

• image.ub

Running the Application on a Linux Target

Setting Up the Target

Do the following to set up the Target:

1. Load the SD card into the J100 connector of the ZCU102 board.
2. Connect the Micro USB cable into the ZCU102 Board Micro USB port J83, and the other

end into an open USB port on the host Machine.

Also, make sure that the JTAG cable is disconnected. If the cable is not disconnected, the
system might hang.

3. Connect a Display Port monitor to the ZCU102 Board. The display port cable from the
DP monitor can be connected to the display port connector on the ZCU102 board.
Note: These images were tested on a UHD@30 Hz and a FullHD@60 Hz Display Port capable
monitor.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=68821.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=162

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 163
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

4. Configure the Board to Boot in SD-Boot mode by setting switch SW6 as shown in the
following figure.

5. Connect 12V Power to the ZCU102 6-Pin Molex connector.
6. Start a terminal session, using TeraTerm or Minicom depending on the host machine

being used, as well as the COM port and baud rate for your system, as shown in
Figure 5-8.

7. For port settings, verify the COM port in the device manager.

There are four USB-UART interfaces exposed by the ZCU102 Board. Select the COM port
associated with the interface with the lowest number. In this case, for UART-0, select the
COM port with interface-0.

Powering On the Target and Running the Applications

1. Turn on the ZCU102 Board using SW1, and wait until Linux loads on the board.
2. After Linux loads, log in to the target Linux console using root for the login and

password.
3. Set the display parameters and start Xorg with the correct depth.

export DISPLAY=:0.0
/usr/bin/Xorg -depth 16&

4. Run the tricube application.
tricube

X-Ref Target - Figure 6-25

Figure 6-25: SW6 Switch Settings for SD Boot Mode

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=163

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 164
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Chapter 6: System Design Examples

At this point, you can see a rotating multi-colored cube and a rotating triangle on the
display port. Notice that the cube is also made of multi-colored triangles.
X-Ref Target - Figure 6-26

Figure 6-26: Rotating Cube and Triangle

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=164

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 165
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Appendix A

Debugging Problems with Secure Boot
This appendix describes how to debug security failures. One procedure determines if PUF
registration has been run on the device. A second procedure checks the value of the Boot
Header in the boot image.

Determine if PUF Registration is Running
The following steps can be used to verify if the PUF registration software has been run on
the device:

1. In the Vitis IDE, select Xilinx > XSCT Console.
2. Enter the following commands at the prompt:

xsct% connect
xsct% targets
xsct% targets -set -filter {name =~ "Cortex-A53 #0"}
xsct% rst -processor
xsct% mrd -force 0xFFCC1050 (0xFFCC1054)

3. This location contains the CHASH and AUX values. If non-zero, PUF registration software
has been run on the device.

Read the Boot Image
You can use the Bootgen Utility to verify the header values and the partition data used in
the Boot Image.

1. Change to the directory containing BOOT.bin.
2. From an XSCT prompt, run the following command.

bootgen_utility –bin BOOT.bin –out myfile –arch zynqmp

3. Look for “BH” in myfile.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=165

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 166
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Appendix B

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav >

DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=166

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 167
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Appendix B: Additional Resources and Legal Notices

Available in Documentation Navigator, design hubs provide quick access to documentation,
training, and information for specific design tasks. The following design hubs are applicable
to embedded development and the methods described in this guide:

• PetaLinux Tools Design Hub
• Vitis Embedded Software Development Flow Documentation

Design Files for This Tutorial
The ZIP file associated with this document contains the design files for the tutorial. You can
download the reference design files from the Xilinx website.

To view the contents of the ZIP file, download and extract the contents from the ZIP file to
C:\edt. The design files contain the HDF files, source code and prebuilt images for all the
sections.

Xilinx Resources
The following Xilinx Vivado Design Suite and Zynq® UltraScale+™ guides are referenced in
this document.

1. Vivado Design Suite User Guide: Getting Started (UG910)
2. Vivado Design Suite Tutorial: Embedded Processor Hardware Design (UG940)
3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
4. UltraFast Embedded Design Methodology Guide (UG1046)
5. Zynq UltraScale+ MPSoC Technical Reference Manual (UG1085)
6. Zynq UltraScale+ MPSoC Software Developer Guide (UG1137)
7. PetaLinux Tools Documentation: Reference Guide (UG1144)
8. Zynq UltraScale+ Processing System Product Guide (PG201)
9. Measured Boot of Zynq-7000 SoCs (XAPP1309)
10. Secure Boot of Zynq-7000 SoC (XAPP1175)
11. Changing the Cryptographic Key in Zynq-7000 SoC (XAPP1223)
12. Programming BBRAM and eFUSEs (XAPP1319)
13. Vitis Embedded Software Development Flow Documentation

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs;d=dh0016-petalinux-tools-hub.html
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/e/hly1569525384514.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs;d=dh0015-sdk-hub.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug973-vivado-release-notes-install-license.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1309-measured-boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1175_zynq_secure_boot.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1223-crypto-key-change.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=c80c16b3-e709-4ff0-9cb2-782a5e9ebcc5;d=ug1209-embedded-design-tutorial.zip
https://www.xilinx.com/html_docs/xilinx2019_2/vitis_doc/e/hly1569525384514.html
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=167

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 168
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Appendix B: Additional Resources and Legal Notices

Support Resources
14. Xilinx Zynq UltraScale+ MPSoC Solution Center
15. The Software Zone:

https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#docsdownloa
d

Additional Resources
16. The Effect and Technique of System Coherence in Arm Multicore Technology by John

Goodacre, Senior Program Manager, Arm Processor Division
(http://www.mpsoc-forum.org/previous/2008/slides/8-6%20Goodacre.pdf)

17. Xilinx GitHub website: https://github.com/xilinx
18. The Linux Kernel Module Programming Guide:

http://tldp.org/LDP/lkmpg/2.6/html/index.html

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related videos:

1. Vivado Design Suite QuickTake Video Tutorials

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support/answers/64375.html
https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html#docsdownload
http://www.mpsoc-forum.org/previous/2008/slides/8-6 Goodacre.pdf
https://github.com/xilinx
http://tldp.org/LDP/lkmpg/2.6/html/index.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=168

Zynq UltraScale+ MPSoC: Embedded Design Tutorial 169
UG1209 (v2019.2) October 30, 2019 www.xilinx.com

Appendix B: Additional Resources and Legal Notices

Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2017-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. AMBA, AMBA Designer, ARM,
ARM1176JZ-S, CoreSight, Cortex, PrimeCell, and MPCore are trademarks of ARM in the EU and other countries. All other
trademarks are the property of their respective owners.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG1209&Title=Zynq%20UltraScale+%20MPSoC%3A%20Embedded%20Design%20Tutorial&releaseVersion=2019.2&docPage=169

	Zynq UltraScale+ MPSoC: Embedded Design Tutorial
	Revision History
	Table of Contents
	Ch. 1: Introduction
	About This Guide
	Document Audience and Scope
	Example Project
	Additional Documentation

	How Zynq UltraScale+ Devices Offer a Single Chip Solution
	Vitis Integrated Design Environment (IDE)
	The Vivado Design Suite
	Other Vivado Components
	PetaLinux Tools

	How the Xilinx Design Tools Expedite the Design Process
	What You Need to Set Up Before Starting
	Hardware Requirements for this Guide
	Installation Requirements
	Vitis Integrated Design Environment and Vivado Design Suite
	PetaLinux Tools
	Prerequisites
	Extract the PetaLinux Package

	Software Licensing
	Tutorial Design Files

	Ch. 2: Zynq UltraScale+ MPSoC Processing System Configuration
	Zynq UltraScale+ System Configuration
	Example Project: Creating a New Embedded Project with Zynq UltraScale+ MPSoC
	Starting Your Design
	Creating a Block Design Project
	Managing the Zynq UltraScale+ Processing System in Vivado
	Isolation Configuration
	Validating the Design and Connecting Ports
	Exporting Hardware
	Creating a Hardware Platform using Vitis IDE
	Creating a Vitis Domain for cortexr5_0

	Ch. 3: Build Software for PS Subsystems
	Processing Units in Zynq UltraScale+
	Example Project: Running the “Hello World” Application from Arm Cortex-A53
	What Just Happened?

	Example Project: Running the “Hello World” Application from Arm Cortex-R5
	What Just Happened?

	Additional Information
	Domain
	Board Support Package
	Standalone BSP

	Example Project: Create a Bare-Metal Application Project in the Vitis IDE
	Create Bare-Metal Application for Arm Cortex-A53 based APU
	Modify the Application Source Code

	Create Bare-Metal Application for Arm Cortex-R5 based RPU
	Creating the Application Project
	Modifying the Linker Script
	Modifying the Board Support Package

	Reviewing Software Projects in the Platform
	Review of FSBL in Platform
	Create First Stage Boot Loader for Arm Cortex-A53-Based APU

	Example Project: Create Linux Images using PetaLinux
	Verify the Image on the ZCU102 Board
	Create Linux Images using PetaLinux for QSPI Flash

	Ch. 4: Debugging with the Vitis Debugger
	Xilinx System Debugger
	Debugging Software Using the Vitis Debugger
	Debugging Using XSCT
	Set Up Target
	Load the Application Using XSCT
	Serial Terminal Configuration
	Run and Debug Application Using XSCT
	Debugging FSBL using the Vitis Debugger
	Create and Modify FSBL

	Ch. 5: Boot and Configuration
	System Software
	First Stage Boot Loader
	Platform Management Unit Firmware
	U-Boot
	Arm Trusted Firmware

	Linux on APU and Bare-Metal on RPU
	Boot Sequence for SD-Boot
	Running the Image on the ZCU102 Board

	Boot Sequence for QSPI Boot Mode
	Running the Image in QSPI Boot Mode on ZCU102 Board
	Set Up the ZCU102 Board

	Boot Sequence for QSPI-Boot Mode Using JTAG
	Setting Up the Target
	Load U-Boot Using XSCT/XSDB
	Load Boot.bin in DDR Using XSDB
	Load the Boot.bin Image in QSPI Using U-Boot

	Boot Sequence for USB Boot Mode
	Configure FSBL to Enable USB Boot Mode
	Create First Stage Boot Loader for Arm Cortex-A53-Based APU

	Creating Boot Images for USB Boot
	Modifying PetaLinux U-Boot

	Boot using USB Boot
	Boot Commands for Linux Host Machine
	Boot Commands for Windows Host Machine

	Secure Boot Sequence
	Secure Boot System Design Decisions
	Hardware Root of Trust
	Data Integrity
	Authentication

	Boot Image Confidentiality and DPA
	DPA Protections

	Black Key Storage

	Practical Methods in Secure Boot
	Sample Design Overview
	Generating Keys for Authentication
	Creating RSA Private/Public Key Pairs
	Generate SHA3 of Public Key in RSA Private/Public Key Pair
	Additional RSA Private/Public Key Pairs
	Enabling Boot Header Authentication

	Generating Keys for Confidentiality
	Using AES Encryption
	Enabling DPA Protections
	Enable use of an Operational Key
	Enabling Encryption Using Key Rolling
	Generating all of the AES keys

	Using Key Revocation
	Using the PUF
	PUF Registration - Boot Header Mode
	Using PUF in Bootheader Mode

	System Example Using the Vitis IDE Create Boot Image Wizard
	Booting the system using a Secure Boot Image
	Running the Linux Application
	Sample BIF for a fielded system

	Ch. 6: System Design Examples
	Design Example 1: Using GPIOs, Timers, and Interrupts
	Configuring Hardware
	Adding and Configuring IPs
	Connecting IP Blocks to Create a Complete System
	Validating the Design and Generating Output
	Synthesizing the Design, Running Implementation, and Generating the Bitstream
	Exporting Hardware

	Configuring Software
	Configure and Build Linux using PetaLinux
	Creating the Bare-Metal Application Project
	Modifying the Linker Script

	Creating the Linux Domain for Linux Applications
	Creating the Linux Application Project
	Modifying the Build Settings
	Creating a Boot Image

	Running the Image on a ZCU102 Board
	Prepare the SD Card
	Target Setup
	Power ON Target and Run Applications
	Running Linux Applications

	Design Example 2: Example Setup for Graphics and Display Port Based Sub-System
	Configuring the Hardware
	Configuring Hardware in Vivado IP Integrator

	Modifying the Configuration and Building Linux Images using PetaLinux
	Building the Mali OpenGLES Application
	Enable GPU Libraries and Other Packages in RootFS
	Loading Linux and Running the OpenGLES Application on the Target and Viewing the Result on the Display Port
	Preparing the SD Card
	Running the Application on a Linux Target
	Setting Up the Target
	Powering On the Target and Running the Applications

	Appx. A: Debugging Problems with Secure Boot
	Determine if PUF Registration is Running
	Read the Boot Image

	Appx. B: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	Design Files for This Tutorial
	Xilinx Resources
	Support Resources
	Additional Resources

	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

