
Dynamic Function eXchange
Controller v1.0

LogiCORE IP Product Guide
Vivado Design Suite

PG374 (v1.0) June 3, 2020

https://www.xilinx.com

Table of Contents
Chapter 1: Introduction.. 4

Features..4
IP Facts..5

Chapter 2: Overview..6
Feature Summary..8
Unsupported Features..12
Licensing and Ordering.. 12

Chapter 3: Product Specification... 13
Overview...13
Performance and Resource Use..19
Port Descriptions...19
Register Space... 23

Chapter 4: Designing with the Core... 33
Preparing for In-Field Upgrades... 33
Clocking.. 33
Resets..33
Virtual Socket Manager Control Interface..34
Protocol Description... 37

Chapter 5: Design Flow Steps...53
Customizing and Generating the Core...53
Constraining the Core...64
Simulation.. 65
Synthesis and Implementation..65
Customizing the Core Post Implementation... 65
Partial Bitstream Preparation.. 71

Appendix A: Upgrading... 75

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=2

Appendix B: Debugging...77
Finding Help on Xilinx.com.. 77
Hardware Debug... 78

Appendix C: Additional Resources and Legal Notices............................. 80
Xilinx Resources...80
Documentation Navigator and Design Hubs...80
References..81
Revision History... 81
Please Read: Important Legal Notices... 82

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=3

Chapter 1

Introduction
The Xilinx® Dynamic Function eXchange Controller (DFX Controller) IP core provides
management functions for self-controlling partially reconfigurable designs. It is intended for
enclosed systems where all of the Reconfigurable Modules are known to the controller. The
optional AXI4-Lite register interface allows the core to be reconfigured at run time, so it can also
be used in systems where the Reconfigurable Modules can change in the field. The core can be
customized for many Virtual Sockets, Reconfigurable Modules per Virtual Sockets, operations,
and interfaces.

Features
• Up to 32 Virtual Sockets

• Up to 128 Reconfigurable Modules per Virtual Socket

• Up to 512 remapable software and hardware triggers per Virtual Socket

• Optional hardware and software shutdown of Reconfigurable Modules (configurable per
Reconfigurable Module)

• Optional software start-up of Reconfigurable Modules (configurable per Reconfigurable
Module)

• Optional reset of Reconfigurable Modules after loading (configurable per Reconfigurable
Module)

• Virtual Socket Managers can be shutdown and restarted by the user to allow external
controllers to partially reconfigure the device

• User control of Virtual Socket Manager output signals is supported in the shutdown state

• All trigger and Reconfigurable Module information is configurable using the AXI4-Lite
interface to allow for in-field upgrades

• Optional AXI4-Lite interface for control and status

• Optional AXI4-Stream status interface (per Virtual Socket)

• Optional AXI4-Stream control interface (per Virtual Socket)

• Optional bitstream decompression

Chapter 1: Introduction

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=4

IP Facts
LogiCORE™ IP Facts Table

Core Specifics

Supported Device Family1 UltraScale+™, UltraScale™, Zynq®-7000 SoC, 7 series

Supported User Interfaces AXI4-Lite, AXI4-Stream

Resources Performance and Resource Use web page

Provided with Core

Design Files Encrypted RTL

Example Design Not Provided

Test Bench Not Provided

Constraints File XDC

Simulation Model Source HDL

Supported S/W Driver2 Standalone

Tested Design Flows3

Design Entry Vivado® Design Suite

Simulation For supported simulators, see the Xilinx Design Tools: Release Notes Guide.

Synthesis Vivado Synthesis

Support

Release Notes and Known Issues Master Answer Record: 73350

All Vivado IP Change Logs Master Vivado IP Change Logs: 72775

Xilinx Support web page

Notes:
1. For a complete list of supported devices, see the Vivado IP catalog.
2. Standalone driver details can be found in <Install Directory>/Vitis/<Release>/data/embeddedsw/doc/

Xilinx_drivers.htm.
3. For the supported versions of third-party tools, see the Xilinx Design Tools: Release Notes Guide.

Chapter 1: Introduction

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 5Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=dfx_controller.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+release+notes
https://www.xilinx.com/support/answers/73350.html
https://www.xilinx.com/support/answers/72775.html
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2020.1;t=vivado+release+notes
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=5

Chapter 2

Overview
The DFX Controller core consists of one or more Virtual Socket Managers which connect to a
single fetch path. A Virtual Socket is a term that refers to a Reconfigurable Partition (RP) plus any
logic that exists in the static logic to assist the RP with dynamic reconfiguration. For example, this
logic could be used to isolate the static design from the Reconfigurable Partition while
reconfiguration occurs, or to ensure Reconfigurable Modules are in a safe state before they are
removed from the device. Some designs might not require this, in which case a Virtual Socket is
equivalent to a Reconfigurable Partition.

Figure 1: Virtual Socket

Static Logic

Virtual Socket

Decoupler

Decoupler

Reconfigurable
Partition

Shutdown
Handler

Decoupler

Decoupler

Reconfigurable
Logic

Static
Logic

Optional Logic to assist in the dynamic
reconfiguration of the RP

X14318-020320

The fetch path fetches bitstreams from an external configuration library and sends them to the
Internal Configuration Access Port (ICAP). The partial bitstreams are stored in a configuration
library.

Chapter 2: Overview

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=6

Figure 2: Architectural Block Diagram

Fetch Path

Virtual Socket Manager 0

Virtual Socket Manager N
[Optional]

Interface to Virtual Socket 0 Interface to ICAP

Interface to Virtual Socket N AXI4 Memory Mapped
interface to Configuration

Library

.

.

.

AXI4-Stream Status Channel [optional]
AXI4-Stream Control Channel [optional]

HW Triggers [optional]

AXI4-Lite Register Interface [optional]

AXI4-Stream Status Channel [optional]
AXI4-Stream Control Channel [optional]

HW Triggers [optional]

X14315-020320

Virtual Socket Managers operate in parallel watching for trigger events to occur. Triggers can be
hardware based (signals) or software based (a register write). When a trigger is seen by a Virtual
Socket Manager, the Virtual Socket Manager maps the trigger to a Reconfigurable Module and
manages the reconfiguration of that Reconfigurable Module.

Each Virtual Socket Manager operates independently of the others, so while one Virtual Socket
Manager is partway through the load of a Reconfigurable Module, another can start processing a
trigger. Virtual Socket Managers have to queue for access to the fetch path. The actual
reconfiguration of each module, however, remains sequential.

Virtual Socket Managers can be in one of two states:

• Active state: The Virtual Socket Manager is in control of the associated Virtual Socket. It
reacts to triggers and loads Reconfigurable Modules.

• Shutdown state: Something else is in control of the associated Virtual Socket. The Virtual
Socket Manager does not react to triggers and does not load Reconfigurable Modules.

These states are described in more detail in Product Specification.

Chapter 2: Overview

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=7

Each Virtual Socket Manager can have its own AXI4-Stream Status and Control channels
(independently optional) and can share a single AXI4-Lite register interface (also optional). These
interfaces are not required for operation and can be omitted if the DFX Controller core can be
fully independent in a particular system.

Related Information
Product Specification

Feature Summary
Virtual Sockets and Reconfigurable Modules
The DFX Controller core supports up to 32 Virtual Sockets. Each Virtual Socket can contain up to
128 Reconfigurable Modules, where each Reconfigurable Module is defined by one partial
bitstream.

Note: If the device being managed is an UltraScale™ device, each Reconfigurable Module also requires a
Clearing bitstream.

Different Virtual Sockets can contain different numbers of Reconfigurable Modules. For example,
Virtual Socket 0 might have 32 Reconfigurable Modules, and Virtual Socket 1 might only have
two Reconfigurable Modules.

Remapable Software and Hardware Triggers
Reconfigurable Modules are loaded into a Virtual Socket in response to trigger activation. Each
Virtual Socket can have hardware-based triggers and software-based triggers. The number of
triggers per Virtual Socket is configurable, and the mapping from a particular trigger to a
particular Reconfigurable Module is configurable during core configuration and at run time, if the
AXI4-Lite interface is enabled. There can be more triggers than Reconfigurable Modules which
allows for the addition of Reconfigurable Modules in the field, and for distributed control of
partial reconfiguration. For more information, see Hardware Triggers and SW_TRIGGER Register.

Related Information
Hardware Triggers
SW_TRIGGER Register

Reconfigurable Module Management
Loading a Reconfigurable Module is not always as simple as sending a partial bitstream to the
ICAP. For example:

Chapter 2: Overview

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=8

• An existing Reconfigurable Module might need to be deactivated to prevent system issues.

• The static logic might need to be protected from the signal values from the Virtual Socket
during the reconfiguration interval.

• The new Reconfigurable Module might need to be integrated into the system and reset.

The DFX Controller core provides support for all of these tasks and is configurable on a per-
Reconfigurable Module basis.

Coexistence with Other Dynamic Function Exchange
Controllers
Dynamic Function eXchange occurs when a partial bitstream is loaded into one of several
configuration ports (such as SelectMap, Serial, JTAG, ICAP, and PCAP in Zynq-7000 SoCs).

IMPORTANT! It is vital that only one of these interfaces be used at a time, and that multiple controllers do not
try to control the same Virtual Socket at the same time.

The DFX Controller IP core offers two mechanisms to support this:

1. A simple arbitration protocol is used to arbitrate the access to the configuration ports. You
must supply an arbiter that is suitable for your system. If arbitration is not required, the
arbitration signals can be tied to constant values. For more information, see ICAP Sharing
Protocol.

2. Each Virtual Socket Manager can be placed into a shutdown state to prevent it from trying to
control the Virtual Socket. This allows other controllers (such as software or JTAG) to have
exclusive control of a Virtual Socket. For more information, see Shutdown State.

Related Information
ICAP Sharing Protocol
Shutdown State

User Control of Virtual Socket Manager Outputs
When a Virtual Socket Manager is placed into the shutdown state, the signals that are used for
Reconfigurable Module management are fully controllable from the AXI4-Lite interface and the
AXI4-Stream Control interface. This allows the software, or another hardware component, to
deactivate an existing Reconfigurable Module, protect the static logic during the reconfiguration
interval, and integrate and reset the new Reconfigurable Module.

Chapter 2: Overview

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=9

AXI4-Lite Interface for Control, Status, and
Reprogramming
The DFX Controller core can be configured to have a single fully compliant AXI4-Lite interface
for the Virtual Socket Managers. This interface can be used to:

• Access status information for each Virtual Socket Manager.

• Send commands to each Virtual Socket Manager.

• Reprogram the trigger and Reconfigurable Module information for each Virtual Socket
Manager.

For more information, see Register Space.

Related Information
Register Space

AXI4-Stream Channels for Status and Control
The DFX Controller core can be configured to have fully compliant AXI4-Stream interfaces for
each Virtual Socket Manager. These interfaces can be used to:

• Access status information for each Virtual Socket Manager.

• Send commands to each Virtual Socket Manager.

For more information, see STATUS Register and CONTROL Register.

These channels can be configured individually for each Virtual Socket Manager. For example, the
Virtual Socket Managers in an instance of the DFX Controller core could be configured as
follows:

Table 1: Example Configuration of DFX Controller

Virtual Socket Manager Status Channel Control Channel
0 No No

1 No Yes

2 Yes No

3 Yes Yes

Related Information
STATUS Register
CONTROL Register

Chapter 2: Overview

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=10

Compatible with Any Bitstream Storage Location
The DFX Controller core fetches bitstream data from an AXI4 bus, and as a result, is not directly
tied to any particular storage device. This allows the controller to access bitstreams no matter
where they are stored, as long as a compatible AXI4 interface is available. The Vivado® IP catalog
contains several blocks of IP, such as the AXI External Memory Controller (axi_emc), and the
Memory Interface Generator (MIG).

Note: The STARTUP primitive does not support loading of partial bitstreams in 7 series or UltraScale
devices. IP, such as AXI SPI or AXI EMC should not be configured to use the STARTUP primitive to clock or
deliver partial bitstreams from external flash for these architectures.

Bitstream Decompression
The DFX Controller API can be used to compress partial bitstreams, and the core configured to
decompress them before passing them to the ICAP. This is useful if bitstream storage space is
limited, or if the data path to the DFX Controller core is bandwidth limited.

If bitstream decompression is selected, then all bitstreams received by the core must be
compressed. It is not possible to mix compressed and uncompressed bitstreams in the same core
instance.

This compression scheme differs from the built-in Multi-Frame-Write (MFW) scheme supported
directly by write_bitstream and the configuration engine. Using
BITSTREAM.GENERAL.COMPRESS TRUE (only) will result in an incorrect format for a partial
bitstream for this decompression scheme (see Partial Bitstream Preparation). Both schemes can
be used together, although using the DFX Controller core compression on bitstreams generated
with BITSTREAM.GENERAL.COMPRESS FALSE generally results in smaller bitstreams.

Which scheme (or schemes) to use depends on your design goals. DFX Controller compression
reduces the amount of data that needs to be stored and transported to the DFX Controller core
but it does not reduce the amount of data that needs to be passed through the ICAP. MFW
compression reduces the amount of data that has to be passed through the ICAP but it does not
compress the bitstreams by as much as the DFX Controller core compression scheme does. If
your DFX bottleneck is bitstream storage or transport over AXI, DFX Controller core
compression should be used. If the bottleneck is the amount of time taken to pass data through
the ICAP then MFW compression should be used. Both schemes can be used together to achieve
both advantages.

Note: It is not possible to predict how much any particular partial bitstream will compress by because the
amount of compression depends on the specifics of each partial bitstream. As a guide, Xilinx has measured
between 30% and 70% compression on a suite of partial bitstreams that have 50% or more LUT and FF
utilization. However, there is no guarantee that all partial bitstreams will fall within this range.

Related Information
Partial Bitstream Preparation

Chapter 2: Overview

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=11

Unsupported Features
• The DFX Controller core cannot be configured using the Vivado set_property command.

Instead, a custom set_property command is provided with the core. For more information,
see Configuring Tcl User Parameters.

• Encrypted bitstreams are not supported when a 7 series device is being controlled.

• Encrypted bitstreams can be used when an UltraScale™ or UltraScale+™ device is being
controlled. However, the DFX Controller core might be unable to fully recover if a Fetch error
occurs during the load of an encrypted bitstream.

Related Information
Configuring Tcl User Parameters

Licensing and Ordering
This Xilinx® LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado®

Design Suite under the terms of the Xilinx End User License.

For more information about this core, visit the DFX Controller product web page.

Information about other Xilinx® LogiCORE™ IP modules is available at the Xilinx Intellectual
Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules
and tools, contact your local Xilinx sales representative.

Chapter 2: Overview

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 12Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=eula
https://www.xilinx.com/products/intellectual-property/dfx-controller.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/about/contact.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=12

Chapter 3

Product Specification
Each Virtual Socket Manager can exist in two states:

• Active State

• Shutdown State

Each Virtual Socket Manager can be configured to start in either state after a reset, and
commands can be used to move a Virtual Socket Manager between states. Additionally, a Virtual
Socket Manager enters the shutdown state in the event of an error, unless it has been configured
not to.

Overview
Active State
The active state is the main state of each Virtual Socket Manager, and is where partial
reconfiguration is managed. Each Virtual Socket Manager follows a basic set of steps, as shown in
the following figure. Note that dotted steps are optional.

Figure 3: Basic Steps for Virtual Socket Manager in Active State

Wait for
a Trigger

Shutdown the
existing

Reconfigurable
Module

Load the new
Reconfigurable

Module

Start up the new
Reconfigurable

Module

X14316-032320

The Virtual Socket Manager starts by waiting for a trigger to arrive. When a trigger is seen, the
Virtual Socket Manager starts to shutdown any Reconfigurable Module found in the Virtual
Socket. This shutdown sequence can be configured on a per-Reconfigurable Module basis. The
valid options are:

• No shutdown is required: No shutdown.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=13

• Hardware-only shutdown is required: The Virtual Socket Manager informs the Reconfigurable
Module that it will be removed, and waits until the Reconfigurable Module gives permission.
This is intended for cases where arbitrarily removing a Reconfigurable Module could cause
deadlock or other system corruption.

• Shutdown of hardware and then software is required: The Virtual Socket Manager performs
hardware shutdown as described above, and then issues an interrupt informing software that
the reconfigurable module will be removed. It then waits until the software gives permission.
This is intended for cases where the system software may have to unload drivers or make
other system changes.

• Shutdown of software and then hardware is required: As above, but with software shutdown
performed first.

The protocol for hardware shutdown is as follows:

• The Virtual Socket Manager asserts a signal (vsm_<name>_rm_shutdown_req) High until
the Reconfigurable Module gives permission to be removed.

• When the Reconfigurable Module is ready to be removed, it asserts
vsm_<name>_rm_shutdown_ack High until the Reconfigurable Module is removed.

For software shutdown:

• The Virtual Socket Manager asserts vsm_<name>_sw_shutdown_req High until the
Proceed command is received. For more information about this command, see the Proceed
Command.

See Reconfigurable Module Hardware and Software Shutdown for more information.

If only software shutdown is required for a particular Reconfigurable Module, the Reconfigurable
Module should hardwire the vsm_<name>_rm_shutdown_ack signal to 1. After the shutdown
of any existing Reconfigurable Module is complete, the Virtual Socket Manager asserts
vsm_<name>_rm_decouple High and starts to process the trigger.

Note: When the device being managed is an UltraScale™ device, the clearing bitstream for the current
Reconfigurable Module is loaded before the trigger is processed. vsm_<name>_rm_decouple is asserted
High after the Reconfigurable Module is shutdown and before the clearing bitstream is loaded.

The signal vsm_<name>_rm_decouple remains asserted until the reconfigurable module is
successfully loaded, and is intended for use with decoupling logic which can be required to
isolate the Virtual Socket from the static logic while reconfiguration occurs. This decoupling logic
is design specific and is not provided with the DFX Controller core. The Virtual Socket Manager
then requests access to the fetch path.

Note: When the device being managed is an UltraScale device, the Virtual Socket Manager has previously
requested access to the fetch path to load the clearing bitstream. A second request is needed to load the
partial bitstream that loads the new Reconfigurable Module. Other Virtual Socket Managers might have
used the fetch path in the interim to load their own bitstreams.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=14

When it gains access to the fetch path, it configures the fetch path to load the correct bitstream
for the new Reconfigurable Module. If this completes with no errors, the Virtual Socket Manager
will start up the new Reconfigurable Module. There are two phases to this, each of which are
optional and can be configured on a per-Reconfigurable Module basis:

• Software startup: If enabled, the Virtual Socket Manager issues an interrupt informing the
software that the Reconfigurable Module has been loaded (if decoupling is implemented, then
the Reconfigurable Module is still decoupled at this stage, and might not be operational), and
waits until the software responds. This is intended for cases where the system software might
have to load drivers or make other system changes. For more information, see Reconfigurable
Module Software Startup.

• Reconfigurable Module Reset: If enabled, the Virtual Socket Manager asserts a reset signal to
the Reconfigurable Module to a configurable level for a configurable number of clock cycles.

The Virtual Socket Manager deasserts vsm_<name>_rm_decouple on entry to the
Reconfigurable Module reset state. At this stage, the Virtual Socket Manager starts searching for
new triggers to process.

Related Information
Proceed Command
Reconfigurable Module Hardware and Software Shutdown

Shutdown State
The shutdown state is where the Virtual Socket Manager does not respond to triggers and does
not load Reconfigurable Modules. There are several reasons why a Virtual Socket Manager
should be shutdown:

• There has been an error loading a Reconfigurable Module. In this case, the Virtual Socket
Manager shuts itself down, unless it has been configured not to.

• The Vivado® Design Suite Hardware Debugger or PCIe® needs to load bitstreams into a
Virtual Socket.

• The Virtual Socket Manager needs to be reprogrammed to change the triggers and the
Reconfigurable Modules.

The shutdown state can be entered by sending the Shutdown command to the Virtual Socket
Manager's CONTROL register. This command cannot be canceled. For more information, see
Shutdown Command.

Related Information
Shutdown Command

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=15

Exiting the Shutdown State

There are two commands available to exit the shutdown state:

• Restart with no Status: This command is used when you exit the shutdown state without
having made any changes to the Virtual Socket. The Virtual Socket Manager will resume with
the information it had before shutdown. For more information, see Restart with no Status
Command.

• Restart with Status: This command is used when you exit the shutdown state after having
made changes to the Virtual Socket. Specifically, this command must be used if a
Reconfigurable Module is loaded into the Virtual Socket when the Virtual Socket Manager was
in shutdown. The Virtual Socket Manager will resume with the information supplied by you as
part of the command. For more information, see Restart with Status Command.

Related Information
Restart with No Status Command
Restart with Status Command

User Control of Virtual Socket Manager Outputs

When a Virtual Socket is in the shutdown state, the following signals can be controlled using the
User Control command:

• vsm_<name>_rm_shutdown_req

• vsm_<name>_rm_decouple

• vsm_<name>_rm_reset

• vsm_<name>_sw_shutdown_req

• vsm_<name>_sw_startup_req

This feature allows the system to take control of the Virtual Socket reconfiguration while still
being able to manage hardware and software shutdown, decoupling, software start-up, and
Reconfigurable Module reset. The status of the vsm_<name>_rm_shutdown_ack signal can be
retrieved from the STATUS register using the AXI4-Lite or AXI4-Stream status channel
interfaces. See User Control Command and STATUS Register.

Related Information
User Control Command
STATUS Register

Error Handling
The DFX Controller core detects and handles the following types of errors:

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=16

• Fetch Errors: These errors occur in the fetch path when a bitstream is being read from the
configuration library interface. This type of error occurs if the AXI4 Memory Mapped bus
connected to the configuration library returned an AXI response error.

• Bitstream Errors: These errors occur inside the FPGAs configuration interface, and typically
indicate that the bitstream is corrupt.

• Bad Configuration Errors: These errors occur if a bitstream is configured as 0 bytes long. The
fetch path detects and rejects requests for 0 byte bitstreams.

• Lost Errors: Lost errors occur when partial bitstreams are sent to the FPGA through one of the
higher priority configuration ports (such as MCAP or JTAG) while the core is sending a partial
bitstream to the ICAP. These errors can only be detected when the device to be managed is an
UltraScale or UltraScale+™ device.

• Decompression Errors:

• Bad Format Errors: These errors occur when a compressed bitstream contains invalid
information.

• Bad Size Errors: These errors occur when a compressed bitstream ends in an invalid place
in the decompression algorithm.

If a fetch error, bitstream error, lost error, bad format error, or bad size error occurs, the DFX
Controller core responds as follows:

• The fetch path continues fetching the bitstream to maintain data path integrity.

• The ICAP interface continues to consume data to ensure the fetch path is drained, but it does
not pass any more data to the ICAP.

• If the error is a fetch error, and it occurred on the first word of the bitstream, the ICAP
interface does not pass anything to the ICAP.

• If the error is a fetch error, and it occurred on the second word of the bitstream, or beyond,
the ICAP interface does not pass anything else to the ICAP. It drains the fetch path as
described above, and then injects a DESYNC sequence into the ICAP.

• The Virtual Socket Manager that was attempting to load the failing bitstream will enter the
shutdown state, and does not process any more triggers until the Virtual Socket Manager is
restarted. This behavior is configurable when the core is generated, in which case the Virtual
Socket Manager will not enter the shutdown state.

• The error will be reported on the status interfaces.

If the error is a bad configuration error, the DFX Controller responds as follows:

• The fetch path rejects the request and issues an error.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=17

• The Virtual Socket Manager that was trying to load the failing bitstream enters the shutdown
state, and does not process any more triggers until the Virtual Socket Manager is restarted.
This behavior is configurable when the core is generated, so the Virtual Socket Manager can
be configured not to enter the shutdown state. In this case, it will start monitoring for new
triggers.

• The error will be reported on the status interfaces.

Post Reset Behavior
The behavior of a Virtual Socket Manager leaving reset (either a hard power-on reset or a soft
reset) depends on many factors:

• If the Virtual Socket Manager is full or empty. A full Virtual Socket is one that contains a
Reconfigurable Module. An empty Virtual Socket does not contain a Reconfigurable Module.

• If the Virtual Socket Manager is configured to start in the shutdown state.

• If the Reconfigurable Module in the Virtual Socket is configured to have a start-up phase
(software start-up and/or reset).

• If the Virtual Socket Manager is configured to skip Reconfigurable Module start-up after reset.

The following figure shows the behavior of the Virtual Socket Manager after leaving reset.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=18

Figure 4: Virtual Socket Manager Behavior After Leaving Reset

Is the
Virtual Socket

Full or
Empty?

Should
the Virtual Socket

Manager start in the
Shutdown

state?

Does the
Reconfigurable Module

require startup
steps?

Should the Virtual
Socket Manager skip

Reconfigurable Module
startup states?

Perform Reconfigurable
Module Startup Steps

Enter the Shutdown State

Enter the Active State

Full

No

Yes

No

X14317-020320

Empty

Yes

Yes

No

Performance and Resource Use
For full details about performance and resource use, visit the Performance and Resource Use web
page.

Port Descriptions
In the following table, <name> is a user-defined name. For example,
vsm_<name>_hw_triggers could be:

• vsm_shift_hw_triggers, where <name> = shift.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 19Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=dfx-controller.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=ip+ru;d=dfx-controller.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=19

• vsm_count_hw_triggers, where <name> = count.

Clock and Reset Ports
Table 2: Clock and Reset Ports

Port Name I/O Description
clk I Rising-edge clock.

reset I Synchronous reset. The active level is configurable. Reset has to be asserted
for at least three clock cycles.

Virtual Socket Interface Ports
Table 3: Virtual Socket Interface Ports

Port Name I/O Description
vsm_<name>_hw_triggers I Hardware trigger input for Virtual Socket Manager with name <name>.

The width is configurable.
Only present if the number of HW Triggers is greater than zero.
A 0 to 1 transition on bit N activates trigger N. Triggers cannot be
canceled.

vsm_<name>_rm_shutdown_req O Active-High signal from the core to the Reconfigurable Module in Virtual
Socket <name>. Set to 1 by the core when the Reconfigurable Module is
to be removed.
This functionality can be disabled on a per-Reconfigurable Module basis.

vsm_<name>_rm_shutdown_ack I Active-High signal from the Reconfigurable Module in Virtual Socket
<name> to the core. Set to 1 by the Reconfigurable Module when the
Reconfigurable Module can be removed.
This functionality can be disabled on a per-Reconfigurable Module basis.

vsm_<name>_rm_decouple O Active-High signal from the core to any decoupling logic separating
Virtual Socket <name> from the static logic. Set to 1 by the IP when a
Reconfigurable Module is being loaded. This signal should be used to
control any Virtual Socket decoupling logic.

vsm_<name>_rm_reset O Reset signal from the IP to the Reconfigurable Module in Virtual Socket
<name>. The use of this signal, its active level and duration are
configurable on a per-Reconfigurable Module basis.

vsm_<name>_sw_shutdown_req O Active-High signal intended as a CPU interrupt. Set to 1 by Virtual Socket
<name> when the active Reconfigurable Module is to be removed. Set to
0 when the Proceed command is written to the Virtual Socket Manager
CONTROL register.
This functionality can be configured on a per-Reconfigurable Module
basis.

vsm_<name>_sw_startup_req O Active-High signal intended as a CPU interrupt. Set to 1 by Virtual Socket
<name> when the new Reconfigurable Module has been loaded. Set to 0
when the Proceed command is written to the Virtual Socket Manager
CONTROL register.
This functionality can be enabled or disabled on a per-Reconfigurable
Module basis.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=20

Table 3: Virtual Socket Interface Ports (cont'd)

Port Name I/O Description
vsm_<name>_m_axis_status_tvalid O TVALID signal for the AXI4-Stream Status channel of the Virtual Socket

Manager <name>.
This signal is always set to 1 as status is always available.
This channel can be enabled or disabled on a per-Virtual Socket
Manager basis.

vsm_<name>_m_axis_status_tdata O 32-bit wide tdata signal for the AXI4-Stream Status channel of the Virtual
Socket Manager <name>. This has the same format as the STATUS
register.
This channel can be enabled or disabled on a per-Virtual Socket
Manager basis.

vsm_<name>_s_axis_ctrl_tvalid I tvalid signal for the AXI4-Stream Control channel of the Virtual Socket
Manager <name>.
This channel can be enabled or disabled on a per-Virtual Socket
Manager basis.

vsm_<name>_s_axis_ctrl_tready O tready signal for the AXI4-Stream Control channel of the Virtual Socket
Manager <name>.
This channel can be enabled or disabled on a per-Virtual Socket
Manager basis.

vsm_<name>_s_axis_ctrl_tdata I 32-bit wide tdata signal for the AXI4-Stream Control channel of the
Virtual Socket Manager <name>. This has the same format as the
CONTROL register.
This channel can be enabled or disabled on a per-Virtual Socket
Manager basis.

vsm_<name>_event_error O Asserted for a single clock cycle when an error occurs in the Virtual
Socket Manager.

Related Information
STATUS Register
CONTROL Register

Internal Configuration Access Ports (ICAP)
Table 4: Internal Configuration Access Ports

Port Name I/O Description
icap_clk I Rising-edge clock. This must be the same clock that is attached to the ICAP

primitive.

icap_reset I Synchronous reset. Active level is configurable.
This reset is used to reset the ICAP interface logic, and needs to be
synchronous to the icap_clk.

icap_i I Status data returning from the ICAP primitive. Connect to the ICAP’s O port.

icap_o O The data to the ICAP primitive. Connect to the ICAP’s I port.

icap_csib O The CSIB signal to the ICAP primitive. Connect to the ICAP’s csib port.

icap_rdwrb O The RDWRB signal to the ICAP primitive. Connect to the ICAP’s rdwrb port.

icap_avail I Connect to the ICAP AVAIL port. This port is only available when the device
to be managed is an UltraScale or UltraScale+ device.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=21

Table 4: Internal Configuration Access Ports (cont'd)

Port Name I/O Description
icap_prdone I Connect to the ICAP PRDONE port. This port is only available when the

device to be managed is an UltraScale or UltraScale+ device.

icap_prerror I Connect to the ICAP PRERROR port. This port is only available when the
device to be managed is an UltraScale or UltraScale+ device.

cap_req O This signal is not present if C_ARBITRATION_PROTOCOL is set to 0. For use
with an ICAP arbiter. This signal is asserted by the core on every clock cycle
where it has data to transfer to the ICAP.

cap_gnt I This signal is not present if C_ARBITRATION_PROTOCOL is set to 0. For use
with an ICAP arbiter. This signal should be asserted by the arbiter on every
clock cycle where the core has access to the ICAP. When set to 1, this signal
should remain at 1 until cap_req returns to 0.

cap_rel I This signal is not present if C_ARBITRATION_PROTOCOL is set to 0. For use
with an ICAP arbiter. This signal should be asserted by the arbiter on every
clock cycle where something else is requesting access to the ICAP. When set
to 1, this signal should remain at 1 until cap_req returns to 0.
This signal indicates to the core that it should relinquish control of the ICAP
at the earliest safe opportunity.

Optional Register Interface AXI4-Lite Ports
Table 5: Optional Register Interface AXI4-Lite Ports

Port Name I/O Description
s_axi_reg_awaddr I 32-bit wide signal

s_axi_reg_awvalid I

s_axi_reg_awready O

s_axi_reg_wdata I 32-bit wide signal

s_axi_reg_wvalid I

s_axi_reg_wready O

s_axi_reg_bresp O 2-bit wide signal

s_axi_reg_bvalid O

s_axi_reg_bready I

s_axi_reg_araddr I 32-bit wide signal

s_axi_reg_arvalid I

s_axi_reg_arready O

s_axi_reg_rdata O 32-bit wide signal

s_axi_reg_rresp O 2-bit wide signal

s_axi_reg_rvalid O

s_axi_reg_rready I

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=22

Configuration Library AXI4 Ports
Table 6: Configuration Library AXI4 Ports

Port Name I/O Description
m_axi_mem_araddr O 32-bit wide signal

m_axi_mem_arlen O 8-bit wide signal

m_axi_mem_arsize O 3-bit wide signal

m_axi_mem_arburst O 2-bit wide signal

m_axi_mem_arprot O 3-bit wide signal

m_axi_mem_arcache O 4-bit wide signal

m_axi_mem_aruser O 4-bit wide signal

m_axi_mem_arvalid O

m_axi_mem_arready I

m_axi_mem_rdata I 32-bit wide signal

m_axi_mem_rresp I 2-bit wide signal

m_axi_mem_rlast I

m_axi_mem_rvalid I

m_axi_mem_rready O

Register Space
Each Virtual Socket Manager has a set of registers that can be accessed through the optional
AXI4-Lite interface. Each register is 32-bits wide, although some bits might not be used in some
cases. The registers in each Virtual Socket Manager are split into four banks, where each bank
has its own unique structure:

• Bank 0: General Registers

• Bank 1: Trigger to Reconfigurable Module Registers

• Bank 2: Reconfigurable Module Information Registers

• Bank 3: Bitstream Information Registers

The following figure provides an overview of the registers.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=23

Figure 5: Register Banks within a Virtual Socket Manager

BS Index

RM_ID

xxx

xxx

xxx

xxx

BS Index Control

xxx xxx

xxx xxx

xxx xxx

xxx xxx

Address Size

xxx xxx

xxx xxx

xxx xxx

xxx xxx

Shutdown
Required

Startup
Required

Reset
Type

Reset
Duration

Status

Control

SW Trigger

Bank 0

Address of bitstream
in Configuration

Library

Size of bitstream
(in bytes)

Bank 1 Bank 2 Bank 3
General Registers Trigger to RM Mapping RM Information Bitstream Information

X14313-020320

ID

xxx

xxx

xxx

xxx

Bitstream
identifierClear BS

Index

This field is only implemented when an UltraScale device is
being managed. It is not present when a 7 Series or
UltraScale+ device is being managed

The General registers are used to control the Virtual Socket Manager, and retrieve its status
information. The remaining banks are used to store information required to load a Reconfigurable
Module.

The Trigger to Reconfigurable Module registers, the Reconfigurable Module registers and the
Bitstream Information registers operate as follows:

• A trigger identifier is decoded and used to select a row in the Trigger to Reconfigurable
Module register bank (Bank 1). The selected register holds the identifier of the Reconfigurable
Module to be loaded by that trigger (RM_ID).

Note: Only hardware triggers need to be decoded. Software triggers directly specify the row in the
Trigger to Reconfigurable Module register bank.

• The RM_ID is used to select a row of registers in the Reconfigurable Module Information
register bank (Bank 2).

• The lower register in the selected row (CONTROL) provides information about how the
Reconfigurable Module is to be shut down and started.

• The upper register in the selected row (BS Index) provides the row number in the Bitstream
Information register bank to access to get information about the bitstream required to load
the Reconfigurable Module. This information is the address in external memory at which the
bitstream is stored, its size in bytes, and its identifier.

The address of each register is encoded for as follows:

[Virtual Socket Manager Select] [Bank Select] [Register Select][00]

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=24

where the most significant bit is on the left.

Each address segment is defined in the following table.

Table 7: Address of Each Register

Segment of
Address Description

Virtual Socket
Manager Select

These bits contain the identifier of the Virtual Socket Manager. These identifiers are reported in the
Configuration Information text file produced when the core is generated.

Bank Select An identifier representing the bank of registers to access.
0 = The General Register bank.
1 = The Trigger to Reconfigurable Module register bank.
2 = The Reconfigurable Module Information register bank.
3 = The Bitstream Information register bank.

Register Select This segment of the address has different interpretations depending on the bank being accessed. The
upper bits give the row of the bank to select, and the lower bits give the column within the bank to
select. If a bank has one column, zero bits are required to select the column. If a bank has two
columns, one bit is required to select the column, etc. See the following figure.

All slice ranges are identical across all Virtual Socket Managers. These, and each register address,
are available in the configuration information text file that is produced when the core is
generated. See Output Generation for more details.

Figure 6: Mapping Address Fields to Registers

RM_ID

xxx

xxx

xxx

xxx

BS Index Control

xxx xxx

xxx xxx

xxx xxx

xxx xxx

Address Size

xxx xxx

xxx xxx

xxx xxx

xxx xxx

Status

Control

SW Trigger

Bank 0 Bank 1 Bank 2 Bank 3

“Bank Select” selects the bank of registers to access

The upper bits of
“Register Select”
select the row

The lower bits of “Register Select” select the column within each bank
X14314-020320

ID

xxx

xxx

xxx

xxx

Related Information
Output Generation

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=25

Bank 0: General Registers
The general registers are defined in the following table.

Table 8: Bank 0 - General Registers

Register
Select
Value

Register
Name

Access
Type Description

0 STATUS Read Only Read from this register to get the Virtual Socket Manager status.

0 CONTROL Write Only Write to this register to shutdown the Virtual Socket Manager or perform
other Virtual Socket Manager commands.

1 SW_TRIGGER Read/Write Write to this register to send a trigger to the Virtual Socket Manager. Read
the register to determine if there is a software trigger pending.

STATUS Register

Table 9: STATUS Register

Bits Name Description
31:24 BS_ID/RESERVED These bits are reserved when the device to be managed is a 7 series or UltraScale+

device.
When the device to be managed is an UltraScale device, these bits contain the
identifier of the bitstream to which the status applies.

23:8 RM_ID The identifier of the Reconfigurable Module to which the status applies.

7 SHUTDOWN 1 = The Virtual Socket Manager is in the shutdown state.
0 = The Virtual Socket Manager is not in the shutdown state.

6:3 ERROR The following error codes are defined:
1111 = An unknown error occurred.
1000 = (BAD FORMAT ERROR) A compressed bitstream was received in the
incorrect format
0111 = (BAD SIZE ERROR) A compressed bitstream ended at an invalid place in the
decompression algorithm
0110 = (LOST + FETCH errors) Access to the ICAPE3 was removed during a
bitstream transfer, and there was an error fetching the bitstream from the
configuration library. This error is only possible when the device to be managed is
an UltraScale or UltraScale+ device.
0101 = (BS + FETCH errors) The ICAP returned an error code while loading the
bitstream and there was an error fetching the bitstream from the configuration
library.
0100 = (FETCH ERROR) There was an error fetching the bitstream from the
configuration library.
0011 = (LOST ERROR) Access to the ICAPE3 was removed during a bitstream
transfer. This error is only possible when the device to be managed is an
UltraScale or UltraScale+ device.
0010 = (BS ERROR) The ICAP returned an error code while loading the bitstream.
0001 = (BAD CONFIG ERROR) The fetch path was asked to load a 0 byte bitstream.
0000 = No Error.

All other values are RESERVED.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=26

Table 9: STATUS Register (cont'd)

Bits Name Description
2:0 STATE The following states are defined when the Virtual Socket Manager is in the active

state:
111 = The Virtual Socket is full. That is, a Reconfigurable Module has been
successfully loaded
110 = The Virtual Socket Manager is executing the Reconfigurable Module reset
step
101 = The Virtual Socket Manager is executing the software start-up step.
100 = The Virtual Socket Manager is loading the new Reconfigurable Module.
011 = The Virtual Socket Manager is loading the Clearing Bitstream for the
currently loaded Reconfigurable Module. (Not used if the device to be managed is
a 7 series or UltraScale+ device.)
010 = The Virtual Socket Manager is executing the software shutdown step.
001 = The Virtual Socket Manager is executing the hardware shutdown step.
000 = The Virtual Socket is empty. That is, there is no Reconfigurable Module
loaded.

The following states are defined when the Virtual Socket Manager is in the shutdown
state:

001 = RM_SHUTDOWN_ACK is 1.
000 = RM_SHUTDOWN_ACK is 0.

CONTROL Register

The CONTROL register is write only, and is mapped to the same address as the STATUS register.

Table 10: CONTROL Register

Bits Name Description
31:16 HALFWORD FIELD A 16-bit field containing extra information for the selected command. See

the command descriptions for more information.

15:8 BYTE FIELD An 8-bit field containing extra information for the selected command. See
the command descriptions for more information.

7:0 CMD The following commands are defined:
000 = Shutdown
001 = Restart with no Status
010 = Restart with Status
011 = Proceed
100 = User Control

All other values are reserved.
These commands are described in Virtual Socket Manager Control
Interface.

Related Information
Virtual Socket Manager Control Interface

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=27

SW_TRIGGER Register

The SW_TRIGGER register can be written and read.

Table 11: Software Trigger Register

Bits Name Description
31 Trigger Pending Ignored on write.

On read, returns:
1 if there is a software trigger pending
0 if there is no software trigger pending

30:W Reserved Ignored on write.
Returns 0 on read.

W-1:0 Trigger The Trigger Identifier. The value written to this register is a positive integer
that directly specifies the row in the Trigger to Reconfigurable Module
register bank that holds the identifier of the Reconfigurable Module to be
loaded by this trigger. Writing this while a trigger is pending overwrites the
pending trigger.
The width of this field (W) is:

[log2(Number of Triggers Allocated for this Virtual Socket
Manager)]

Bank 1: Trigger to Reconfigurable Module Registers
The Trigger to Reconfigurable Module registers are defined in the following table.

Table 12: Bank 1 - Trigger to Reconfigurable Module Registers

Register
Select Value

Register
Name Access Type Description

0 TRIGGER0 Write/Read This register contains the identifier of the Reconfigurable Module
(RM_ID) that will be loaded if trigger 0 is asserted.

1 TRIGGER1 Write/Read This register contains the identifier of the Reconfigurable Module
(RM_ID) that will be loaded if trigger 1 is asserted.

2 TRIGGER1 Write/Read This register contains the identifier of the Reconfigurable Module
(RM_ID) that will be loaded if trigger 2 is asserted.

⁞ ⁞ ⁞ ⁞

N TRIGGERN Write/Read This register contains the identifier of the Reconfigurable Module
(RM_ID) that will be loaded if trigger N is asserted.

The Trigger to Reconfigurable Module registers contain the mapping between the Triggers and
the Reconfigurable Modules to load. There can be more triggers than Reconfigurable Modules,
allowing for the in-field addition of Reconfigurable Modules and/or easier triggering of the same
Reconfigurable Module from multiple sources.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=28

Each register is 32-bits wide, but only the lower X bits are used, where

X = [log2(Number of Triggers Allocated for this Virtual Socket Manager)]

Unused bits are ignored on writes, and return 0 on reads. The Trigger to Reconfigurable Module
registers can only be accessed when the Virtual Socket Manager is in the shutdown state. If the
Virtual Socket Manager is not in the shutdown state, reads return 0 and writes are ignored.

Bank 2: Reconfigurable Module Information
Registers
The Reconfigurable Module Information registers are defined in the following table.

There are two registers per row in this bank, and the LSB of Register Select is used to select
between them.

• BS Index Register: LSB = 0

• Control Register: LSB = 1

All registers in this bank are readable and writable when the Virtual Socket Manager is in the
shutdown state. If the Virtual Socket Manager is not in the shutdown state, reads return 0, and
writes are ignored.

Table 13: Bank 2 - Reconfigurable Module Information Registers

Register
Select
MSBs

Register
Select LSB Register Name Description

0 0 RM_BS_INDEX0 This register contains the row number in the Bitstream
Information register bank that holds information about the
bitstream for Reconfigurable Module 0.

0 1 RM_CONTROL0 This register contains the control information for Reconfigurable
Module 0.

1 0 RM_BS_INDEX1 This register contains the row number in the Bitstream
Information register bank that holds information about the
bitstream for Reconfigurable Module 1.

1 1 RM_CONTROL1 This register contains the control information for Reconfigurable
Module 1.

2 0 RM_BS_INDEX2 This register contains the row number in the Bitstream
Information register bank that holds information about the
bitstream for Reconfigurable Module 2.

2 1 RM_CONTROL2 This register contains the control information for Reconfigurable
Module 2.

⁞ ⁞ ⁞

N 0 RM_BS_INDEXN This register contains the row number in the Bitstream
Information register bank that holds information about the
bitstream for Reconfigurable Module N.

N 1 RM_CONTROLN This register contains the control information for Reconfigurable
Module N.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=29

RM_BS_INDEX Register

Table 14: RM_BS_INDEX Register

Bits Name Description
31:16 CLEAR_BS_INDEX/

Reserved
Reserved when the device to be managed is 7 series or UltraScale+.
When the device to be managed is an UltraScale device, these bits contain
an address into the Bitstream Information register bank, and they link a
Reconfigurable Module to its clearing bitstream.

15:0 BS_INDEX These bits contain an address into the Bitstream Information register
bank, and they link a Reconfigurable Module to the bitstream required to
load it.

RM_CONTROL Register

Table 15: RM_CONTROL Register

Bits Name Description
31:13 Reserved Reads return 0, writes are ignored

12:5 Reset Duration The number of clock cycles -1 to assert the Reconfigurable Module reset
for

0: 1 clock cycle
1: 2 clock cycles
etc.

The maximum reset duration is 256 clock cycles.

4:3 Reset Required 00: No Reconfigurable Module Reset is required
01: RESERVED
10: Active-Low Reconfigurable Module reset is required
11: Active-High Reconfigurable Module reset is required

2 Start-up Required 0: No start-up is required
1: Software start-up is required

1:0 Shutdown Required 00: No Reconfigurable Module shutdown is required
01: Hardware Reconfigurable Module shutdown is required
10: Hardware then software shutdown is required
11: Software then hardware shutdown is required

Bank 3: Bitstream Information Registers
The Bitstream Information registers are defined in the following table.

There are three registers per row in this bank, and the two LSBs of Register Select are used to
select between them.

• ID Register: LSBs = 0

• Address Register: LSBs = 1

• Size Register: LSBs = 2

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=30

When the device to be managed is an UltraScale device, all registers in this bank are readable and
writable when the Virtual Socket Manager is in the shutdown state. Reconfigurable Modules for
this type of device require two bitstreams, so all bitstream identifiers are 0 or 1.

When the device to be managed is a 7 series or UltraScale+ device, the BS_ADDRESS and
BS_SIZE registers in this bank are readable and writable when the Virtual Socket Manager is in
the shutdown state. Reconfigurable Modules for this type of device only require one bitstream,
so all bitstream identifiers are 0. Writes to the BS_ID registers are ignored and reads always
return 0.

For all managed device types, reads from all registers in this bank return 0 and writes to all
registers in this bank are ignored if the Virtual Socket Manager is not in the shutdown state.

Table 16: Bank 3 - Bitstream Information Registers

Register
Select MSBs

Register
Select LSB Register Name Description

0 0 BS_ID0 This register contains the identifier of this bitstream.

0 1 BS_ADDRESS0 This register contains the byte address of Bitstream 0 in the
configuration library interface.

0 2 BS_SIZE0 This register contains the size in bytes of Bitstream 0.

1 0 BS_ID1 This register contains the identifier of this bitstream.

1 1 BS_ADDRESS1 This register contains the byte address of Bitstream 1 in the
configuration library interface.

1 2 BS_SIZE1 This register contains the size in bytes of Bitstream 1.

2 0 BS_ID2 This register contains the identifier of this bitstream.

2 1 BS_ADDRESS2 This register contains the byte address of Bitstream 2 in the
configuration library interface.

2 2 BS_SIZE2 This register contains the size in bytes of Bitstream 2.

⁞ ⁞ ⁞

N 0 BS_IDN This register contains the identifier of this bitstream.

N 1 BS_ADDRESSN This register contains the byte address of Bitstream N in the
configuration library interface.

N 2 BS_SIZEN This register contains the size in bytes of Bitstream N.

BS_ID Register

Table 17: BS_ID Register

Bits Name Description
31:1 Reserved Reserved

0 ID The identifier of the bitstream with regards to the Reconfigurable Module.
The first bitstream for a Reconfigurable Module has the ID 0, and the
second has the ID 1.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=31

BS_ADDRESS Register

Table 18: BS_ADDRESS Register

Bits Name Description
31:0 ADDRESS The address of the bitstream in the configuration library interface.

BS_SIZE Register

Table 19: BS_SIZE Register Format

Bits Name Description
31:0 Size The bitstream size in bytes.

Chapter 3: Product Specification

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=32

Chapter 4

Designing with the Core
This section includes guidelines and additional information to facilitate designing with the core.

Preparing for In-Field Upgrades
Some designs use Dynamic Function eXchange to allow in-field updates of parts of the design.
Specifically, Reconfigurable Modules can be added, removed, or changed after the design is in the
field. The DFX Controller core supports this by allowing the trigger, Reconfigurable Module, and
bitstream information to be reprogrammed using the AXI4-Lite interface. However, new
Reconfigurable Modules can only be added if there is space for them and a trigger is available to
trigger their activation. If in-field upgrades are planned for a design, the extra space for these
items should be allocated at core generation time.

Clocking
There are two clock ports: icap_clk for the logic driving the ICAP interface, and clk for
everything else. The number of synchronization stages used when passing signals between
domains is configurable.

Resets
There are two reset ports: icap_reset for the logic driving the ICAP interface, and reset for
everything else. The exact timing of these resets relative to each other is not important.
However, if one is asserted, both must be asserted. For example, resetting the ICAP interface
without resetting the rest of the DFX Controller core can result in lockup, and vice versa.
Additionally, no triggers should be generated before both resets have been asserted and
released.

RECOMMENDED: It is highly recommended that all Virtual Socket Managers are placed into the shutdown
state (and checked to see that they are in shutdown) before applying a reset.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=33

If this is not possible, then the following conditions must be met before the core is reset:

1. The ICAP interface must not be transferring a bitstream to the ICAP. Interrupting a bitstream
transfer could put the device into an unstable state and could require a full chip
reconfiguration.

2. Virtual Socket Managers that are in the active state must have no pending triggers. Resetting
a Virtual Socket Manager that has started to process a trigger can corrupt the state of the
Virtual Socket Manager. For Virtual Socket Managers that control UltraScale™ devices, this
could make it impossible to load a new Reconfigurable Module in that Virtual Socket.

Note: The active reset level is configurable.

Virtual Socket Manager Control Interface
Each Virtual Socket Manager can be controlled independently using the optional AXI4-Stream
control channel, or the AXI4-Lite register interface using the CONTROL register. The command
word format is identical no matter which interface is used.

Shutdown Command
The Shutdown command instructs the Virtual Socket Manager to enter the shutdown state at
the earliest safe opportunity. There can be a long delay (indeterminate) between the request and
when the Virtual Socket Manager enters the shutdown state. You cannot cancel the Shutdown
command after it has been sent. This command can only be used if the Virtual Socket Manager is
not in the shutdown state. The BYTE and HALFWORD fields of the control word are not used
with this command.

Restart with No Status Command
The Restart with no Status command instructs the Virtual Socket Manager to exit the
shutdown state. The Virtual Socket Manager's Empty/Full status, Reconfigurable Module
identifier, and error status remain as they were before the Virtual Socket Manager entered the
shutdown state.

This command should be used to restart a Virtual Socket Manager in shutdown if the Virtual
Socket has not been modified during shutdown.

This command can only be used if the Virtual Socket Manager is in the shutdown state.

The BYTE and HALFWORD fields of the control word are not used with this command.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=34

Restart with Status Command
The Restart with Status command instructs the Virtual Socket Manager to exit the
shutdown state. The Virtual Socket Manager's Empty/Full status, and Reconfigurable Module
identifier are specified as part of the command.

This command should be used to restart a shutdown Virtual Socket Manager if the Virtual Socket
has been modified during shutdown (that is, a Reconfigurable Module is loaded into the Virtual
Socket by something other than the Virtual Socket Manager).

This command must only be used with a full status if the loaded Reconfigurable Module is known
to the Virtual Socket Manager. If a Reconfigurable Module is loaded that is unknown to the
Virtual Socket Manager, the Virtual Socket must be left in an empty state before the Virtual
Socket Manager is restarted. An empty state means that either there is no Reconfigurable
Module in the Virtual Socket, or that the loaded Reconfigurable Module does not need any
shutdown steps. When the Virtual Socket is on an UltraScale device, there is an additional
requirement that the loaded Reconfigurable Module is unmasked and does not need its clearing
bitstream loaded.

This command can only be used if the Virtual Socket Manager is in the shutdown state.

The BYTE and HALFWORD fields of the control word are used as follows:

• BYTE[0]: The Empty/Full status value to set on restart.

• 0: The Virtual Socket is empty.

• 1: The Virtual Socket is full.

• HALFWORD: The identifier of the Reconfigurable Module that is loaded while the Virtual
Socket Manager is in a shutdown state. This must be a Reconfigurable Module that is known
to the Virtual Socket Manager.

Proceed Command
The Proceed command instructs the Virtual Socket Manager to proceed with processing the
Reconfigurable Module. If the Virtual Socket Manager has asserted the
vsm_<name>_sw_shutdown_req or vsm_<name>_sw_startup_req interrupt signals, it will
stall until this command occurs. This command is ignored if neither of these signals is asserted.
This command can only be used if the Virtual Socket Manager is not in the shutdown state. The
BYTE and HALFWORD fields of the control word are not used with this command.

User Control Command
The User Control command is used to set the values of the following signals:

• vsm_<name>_rm_shutdown_req

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=35

• vsm_<name>_rm_decouple

• vsm_<name>_rm_reset

• vsm_<name>_sw_shutdown_req

• vsm_<name>_sw_startup_req

When set, the values remain set until another User Control command is sent, or one of the
Restart commands are sent.

This command can only be used if the Virtual Socket Manager is in the shutdown state.

The BYTE and HALFWORD fields of the control word are used as follows:

• BYTE[0]: Controls rm_shutdown_req

• 0: Sets vsm_<name>_rm_shutdown_req to 0.

• 1: Sets vsm_<name>_rm_shutdown_req to 1.

• BYTE[1]: Controls rm_decouple.

• 0: Sets vsm_<name>_rm_decouple to 0.

• 1: Sets vsm_<name>_rm_decouple to 1.

• BYTE[2]: Controls sw_shutdown_req.

• 0: Sets vsm_<name>_sw_shutdown_req to 0.

• 1: Sets vsm_<name>_sw_shutdown_req to 1.

• BYTE[3]: Controls sw_startup_req.

• 0: Sets vsm_<name>_sw_startup_req to 0.

• 1: Sets vsm_<name>_sw_startup_req to 1.

• BYTE[4]: Controls rm_reset.

• 0: Sets vsm_<name>_rm_reset to 0.

• 1: Sets vsm_<name>_rm_reset to 1.

• HALFWORD: Not used.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=36

Protocol Description
Hardware Triggers
If a Virtual Socket Manager is configured to have hardware triggers, it has a vector input signal,
vsm_<name>_hw_triggers. Each bit in this signal is processed independently, and maps
directly to a trigger identifier of the same number. For example:

• vsm_<name>_hw_triggers[0] maps to trigger 0

• vsm_<name>_hw_triggers[1] maps to trigger 1

• etc.

Trigger N occurs when vsm_<name>_hw_triggers[N] synchronously transitions from 0 to 1.
Triggers cannot be canceled after they occur. After one clock cycle,
vsm_<name>_hw_triggers[N] can return to 0 and trigger N will still be pending in the Virtual
Socket Manager.

When trigger N occurs, the Virtual Socket Manager records that fact and the trigger becomes
available for processing. The trigger is ignored if it occurs again before the previous activation is
selected for processing. Only one instance of a trigger activation is stored.

Figure 7: Hardware Trigger Example

The previous figure shows an example of the hardware triggers in operation. Note that the clock
cycle numbers are just for illustration and do not relate to any fixed latency.

• At clock 3, a transition from 0 to 1 on vsm_<name>_hw_triggers[0] is seen and this is
recorded internally on Triggers Pending[0].

• At clock 4, a transition from 0 to 1 on vsm_<name>_hw_triggers[1] is seen and this is
recorded internally on Triggers Pending[1].

• At clock 6, the Virtual Socket Manager starts processing trigger 0. Triggers Pending[0] changes
to 0 which means a new trigger 0 could be captured.

• At clock 9, a transition from 0 to 1 on vsm_<name>_hw_triggers[1] is seen. However,
Triggers Pending[1] is already 1, so the new trigger 1 is ignored.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=37

• At clock 51, the Virtual Socket Manager stops processing trigger 0 and starts on trigger 1
which has been pending since clock cycle 5. Triggers Pending[1] changes to 0 which means a
new trigger 1 could be captured.

• This trigger arrives at clock cycle 53, where vsm_<name>_hw_triggers[1] transitions
from 0 to 1. Because trigger 1 is not pending, it is captured again.

At this stage, trigger 1 is both pending and being processed. When the Reconfigurable Module
mapped to trigger 1 loads, the Virtual Socket Manager immediately starts to remove it and
process the pending trigger, which will load the same Reconfigurable Module. Loading an already
loaded Reconfigurable Module might be useful in certain circumstances so the DFX Controller
core allows it. Proper trigger management can avoid this situation if it is not desired.

Reconfigurable Module Hardware and Software
Shutdown
Some Reconfigurable Modules might need to be shut down before they are removed from the
device. This would be required if arbitrarily removing a Reconfigurable Module could cause
deadlock or other system issues. The exact nature of the shutdown required is specific to each
Reconfigurable Module. The DFX Controller core provides a handshaking protocol to manage the
process, but the actual shutdown mechanism must be provided by the system designer.

Each Virtual Socket Manager has an active-High output signal called
vsm_<name>_rm_shutdown. This signal is provided to control user supplied shutdown logic,
such as the Dynamic Function eXchange AXI Shutdown Manager IP core, and is asserted under
the following conditions:

1. When the Virtual Socket is empty.

2. When a full Virtual Socket Manager is reset, and shutdown_required is set to HW, HW/SW,
or SW/HW.

3. When the Virtual Socket Manager starts to load a new Reconfigurable Module and the
existing Reconfigurable Module needs to be shut down before it can be removed. Once
asserted, vsm_<name>_rm_shutdown_ack remains asserted until the new Software
Startup and RM Reset steps are complete. These steps are optional. If they are disabled,
vsm_<name>_rm_shutdown_req is deasserted at the points where they would have
completed had they been enabled.

It is deasserted at all other times. The vsm_<name>_rm_shutdown_req signal might change
value when the DFX Controller core is reset. The following rules apply:

1. If the Virtual Socket was empty before reset, vsm_<name>_rm_shutdown_req asserts
during reset.

Note: It would normally be asserted before the reset, resulting in no visible change. However, its value
may have been changed by the user using the register interface.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=38

2. If the Virtual Socket was full before reset, and the Reconfigurable Module was configured to
have shutdown_required = No, then vsm_<name>_rm_shutdown_req is deasserted.

3. If the Virtual Socket was full before reset, and the Reconfigurable Module was configured to
have shutdown_required = HW, HW/SW, or SW/HW, then
vsm_<name>_rm_shutdown_req is asserted.

When vsm_<name>_rm_shutdown_ack becomes asserted in case 3, the Virtual Socket
Manager will stall until the user logic responds.

The following figure shows the protocol. The vsm_<name>_rm_shutdown_req signal is set to
1 by the DFX Controller core when the Reconfigurable Module is scheduled for removal. The
Reconfigurable Module should put itself into a safe state as soon as possible. There is no time
limit for this to occur. When the Reconfigurable Module is ready to be removed, it must set
vsm_<name>_rm_shutdown_ack to 1.

Figure 8: Hardware Shutdown of a Reconfiguration Module

Related Information
Shutdown Signal Response to Reset

Shutdown Signal Behavior

The following waveforms show the behavior of vsm_<name>_rm_shutdown_req.

To reduce the size of the waveforms:

• vsm_<name>_ has been omitted from signal names.

• The number of clock cycles spent in each state has been kept small and made constant. In
reality, each state can last an indeterminate amount of time.

• Command represents a command sent to the VSM using the AXI4-Lite interface or the VSM’s
AXI4-Stream Control channel.

• The Load RM state includes loading the Clearing Bitstream if the device being controlled is an
UltraScale device.

The following figure shows the behavior of vsm_<name>_rm_shutdown_req during a
Reconfigurable Module load operation when the existing Reconfigurable Module is configured as
SHUTDOWN_REQUIRED = no.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=39

Figure 9: SHUTDOWN_REQUIRED = no

The following figure shows the behavior of vsm_<name>_rm_shutdown_req during a
Reconfigurable Module load operation when the existing Reconfigurable Module is configured to
have SHUTDOWN_REQUIRED = hw.

Figure 10: SHUTDOWN_REQUIRED = hw

The following figure shows the behavior of vsm_<name>_rm_shutdown_req during a
Reconfigurable Module load operation when the existing Reconfigurable Module is configured to
have SHUTDOWN_REQUIRED = hw/sw.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=40

Figure 11: SHUTDOWN_REQUIRED = hw/sw

The following figure shows the behavior of vsm_<name>_rm_shutdown_req during a
Reconfigurable Module load operation when the existing Reconfigurable Module is configured to
have SHUTDOWN_REQUIRED = sw/hw.

Figure 12: SHUTDOWN_REQUIRED = sw/hw

vsm_<name>_rm_shutdown_req stays asserted when software for the new Reconfigurable
Module is being set up, and while the new Reconfigurable Module is being reset. This is to
prevent the system trying to interact with the new Reconfigurable Module until it is ready to
operate.

The following figure shows the behavior of vsm_<name>_rm_shutdown_req during a
Reconfigurable Module load operation when all optional start-up steps are disabled.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=41

Figure 13: All Optional Startup Steps are Disabled

Shutdown Signal Response to Reset

The following three figures show how vsm_<name>_rm_shutdown_req responds to a reset.

The following figure shows an empty Virtual Socket Manager during a core reset.

Figure 14: Core Reset When Virtual Socket Manager is Empty

The following figure shows a full Virtual Socket Manager during a core reset when the existing
Reconfigurable Module is configured to have SHUTDOWN_REQUIRED = HW, SW/HW, or
HW/SW. (Optional Reconfigurable Module startup steps are enabled.)

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=42

Figure 15: Core Reset When Virtual Socket Manager is Full and Shutdown Required

The following figure shows a full Virtual Socket Manager during a core reset when the existing
Reconfigurable Module is configured to have SHUTDOWN_REQUIRED = No. (Optional
Reconfigurable Module startup steps are disabled.)

Figure 16: Core Reset When Virtual Socket Manager is Full and No Required Shutdown

Software Shutdown

If a Virtual Socket Manager is put into the shutdown state, vsm_<name>_rm_shutdown_req
maintains its value. However, it becomes controllable through the control register at this point
and can be changed using the control interface. This means it could be deasserted even if the
Virtual Socket Manager is empty, or asserted even if the Virtual Socket Manager is full. When the
Virtual Socket Manager re-enters the active state, vsm_<name>_rm_shutdown_req asserts if
the Virtual Socket Manager is empty, and deasserts if the Virtual Socket Manager is full,
regardless of what it was set to by the control interface during shutdown.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=43

Additionally, software might also need to shut down before a Reconfigurable Module is removed.
For example, a device driver might need to be unloaded. The DFX Controller core provides the
vsm_<name>_sw_shutdown_req signal to aid this process. This can be attached to an
interrupt controller, or any other scheme the design has for communicating with software. The
following figure shows the protocol. When the Reconfigurable Module is being removed,
vsm_<name>_sw_shutdown_req is set to 1. The software should put itself into a safe state as
soon as possible. There is no time limit for this to occur. When the software is ready for the
Reconfigurable Module to be removed, it must send the Proceed command to the Virtual
Socket Manager.

Figure 17: Software Shutdown of a Reconfiguration Module

The shutdown behavior is configurable on a per Reconfigurable Module basis.

Reconfigurable Module Software Startup
After a Reconfigurable Module is loaded, but before it is reset (optional) and before decoupling is
released, software might need to load device drivers. The core provides the
vsm_<name>_sw_startup_req signal to aid this process. This signal can be attached to an
interrupt controller, or any other scheme the design has for communicating with software. The
following figure shows the protocol. When the Reconfigurable Module is loaded,
vsm_<name>_sw_startup_req is set to 1. The software should do what is needed to be
ready for the Reconfigurable Module becoming operational. There is no time limit on this. When
the software is ready for the Reconfigurable Module to be started, it must send the Proceed
command to the Virtual Socket Manager CONTROL register using the AXI4-Lite interface. For
more information, see Proceed Command.

Figure 18: Software Startup of a Reconfigurable Module

The start-up behavior is configurable on a per Reconfigurable Module basis.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=44

Related Information
Proceed Command

ICAP Sharing Protocol
The DFX Controller core uses a simple protocol to arbitrate for access to the ICAP port. This can
be controlled using the C_ARBITRATION_PROTOCOL user parameter. The following values can
be set:

• 0: This turns off arbitration and removes the arbitration protocol ports from the core’s
boundary.

• 1: This turns arbitration on for the case where there is no external latency added to the
arbitration signals.

• 2: This turns arbitration on for the case where there is external latency added to the
arbitration signals.

Protocol versions 1 and 2 are similar so are described together with the minor differences
explained at the end of this section.

The IP core sets cap_req to 1 on every clock cycle where it has data to transfer to the ICAP.
Data transfer occurs only when the arbiter sets cap_gnt to 1 as well. The arbiter must keep
cap_gnt as 1 until cap_req becomes 0.

The arbiter can set cap_rel to 1 to signal that something else requires access to the ICAP. If the
DFX Controller core sees cap_rel equal to 1, it completes any bitstream load that is in progress
and then sets cap_req to 0. cap_rel should be asserted by the arbiter on every clock cycle
where something else is requesting access to the ICAP. When set to 1, this signal should remain
at 1 until cap_req returns to 0.

Protocols 1 and 2 differ at the end of a transfer. In the case where there is no latency added to
the arbitration signals (protocol 1), the arbiter can keep cap_gnt asserted and the DFX
Controller core can immediately request a new transfer.

In the case where there is latency added to the arbitration signals (protocol 2), the arbiter must
set cap_gnt to 0. When this occurs, the DFX Controller core sets cap_req to 0.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=45

Figure 19: ICAP Arbitration Protocol

Decoupling
Each Virtual Socket Manager has an active-High output signal called
vsm_<name>_rm_decouple. This signal is provided to control user supplied decoupling logic. It
is asserted high under the following conditions:

1. When the Virtual Socket is empty.

2. When the Virtual Socket Manager is loading a new Reconfigurable Module. This starts once
the Hardware and Software shutdown steps are complete and continues until the Software
Startup step is complete. These steps are optional. If they are disabled,
vsm_<name>_rm_decouple is asserted and deasserted at the points where they would
have completed had they been enabled.

It is deasserted at all other times. vsm_<name>_rm_decouple might change value when the
DFX Controller core is reset. The following rules apply:

1. If the Virtual Socket was empty before reset, vsm_<name>_rm_decouple asserts during
reset. See Figure 23: Decouple Signal During Core Reset When Virtual Socket Manager
Empty.

2. If the Virtual Socket was full before reset, then vsm_<name>_rm_shutdown_req is
deasserted. See Figure 21: Decouple Signal During Core Reset - Startup Enabled and Figure
24: Decouple Signal During Core Reset When Virtual Socket Manager Full.

Note: vsm_<name>_rm_decouple would normally be asserted if the VSM is empty, and deasserted
when full, so a reset would normally result in no visible change. However, the value of
vsm_<name>_rm_decouple may have been changed by the user using the register interface.

The following waveforms show the behavior of vsm_<name>_rm_decouple.

To reduce the size of the waveforms:

• vsm_<name>_ has been omitted from signal names.

• The number of clock cycles spent in each state has been kept small and made constant. In
reality, each state can last an indeterminate amount of time.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=46

• Command represents a command sent to the VSM using the AXI4-Lite interface or the VSM's
AXI4-Stream Control channel.

• The Load RM state includes loading the Clearing Bitstream if the device being controlled is an
UltraScale device.

The following figure shows the behavior of vsm_<name>_rm_decouple during a
Reconfigurable Module load when all optional shutdown and startup steps are enabled.

Note: vsm_<name>_rm_decouple stays asserted while software for the new Reconfigurable Module is
being set up. This is to stop the Reconfigurable Module operating before the system is ready.

Figure 20: Decouple Signal - Shutdown and Startup Enabled

As shown in the following figure, if the startup software step (Startup SW) occurs after a core
reset, vsm_<name>_rm_decouple will remain deasserted during this step. In this case the
Virtual Socket Manager is full and the optional Reconfigurable Module startup steps are enabled.

Figure 21: Decouple Signal During Core Reset - Startup Enabled

The following figure shows the behavior of vsm_<name>_rm_decouple during a
Reconfigurable Module load when all optional shutdown and startup steps are disabled.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=47

Figure 22: Decouple Signal - Shutdown and Startup Disabled

Figure 21: Decouple Signal During Core Reset - Startup Enabled and the following two figures
show how vsm_<name>_rm_decouple responds to a reset.

The following figure shows an empty Virtual Socket Manager (vsm_<name>_rm_decouple = 1)
during a core reset.

Figure 23: Decouple Signal During Core Reset When Virtual Socket Manager Empty

The following figure shows a full Virtual Socket Manager (vsm_<name>_rm_decouple = 0)
during a core reset. The Optional Reconfigurable Module startup steps are disabled.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=48

Figure 24: Decouple Signal During Core Reset When Virtual Socket Manager Full

If a Virtual Socket Manager is put into the shutdown state, vsm_<name>_rm_decouple
maintains its value. However, it becomes controllable through the control register at this point
and can be changed using the control interface. This means it could be deasserted even if the
Virtual Socket Manager is empty, or asserted even if the Virtual Socket Manager is full. When the
Virtual Socket Manager re-enters the active state, vsm_<name>_rm_decouple will assert if the
Virtual Socket Manager is empty, and deassert if the Virtual Socket Manager is full, regardless of
what it was set to by the control interface during shutdown.

RM_RESET
Each Virtual Socket Manager has an output signal called vsm_<name>_rm_reset. This signal is
provided to reset Reconfigurable Modules just after they are loaded. Its enablement, active value,
and duration are configurable for each Reconfigurable Module. It is only asserted under three
conditions:

1. Just after a Reconfigurable Module is loaded, if reset is enabled for that Reconfigurable
Module.

2. When the core has been reset, the Virtual Socket Manager is full, reset is enabled for that
Reconfigurable Module, and Skip Startup After Reset is disabled.

3. When the Virtual Socket Manager is in the shutdown state and vsm_<name>_rm_reset is
directly manipulated through one of the control interfaces.

If software startup is enabled, then this occurs before the Reconfigurable Module is reset.
vsm_<name>_rm_reset is deasserted at all other times. It does not change when the DFX
Controller core is reset.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=49

The following waveforms show the behavior of vsm_<name>_rm_reset.

To reduce the size of the waveforms:

• vsm_<name>_ has been omitted from signal names.

• The number of clock cycles spent in each state has been kept small and made constant. In
reality, each state can last an indeterminate amount of time.

• Command represents a command sent to the VSM using the AXI4-Lite interface or the VSM's
AXI4-Stream Control channel.

• The Load RM state includes loading the Clearing Bitstream if the device being controlled is an
UltraScale device.

The following figure shows the behavior of vsm_<name>_rm_reset (configured as active-High)
during a Reconfigurable Module load operation when all optional shutdown and startup steps are
enabled.

Figure 25: RM Reset Signal During Reconfigurable Module Load Operation

Note: The vsm_<name>_rm_reset signal asserts immediately after rm_decouple deasserts. If the
Reconfigurable Module requires an edge sensitive reset rather than a level sensitive reset, then additional
work might be required to ensure the Reconfigurable Module sees the edge. One option is to ensure that
the Reconfigurable Module's clock and reset lines are not decoupled. Another option is to delay the
vsm_<name>_rm_reset by a clock cycle in the system to ensure that the Reconfigurable Module sees
vsm_<name>_rm_reset deasserted for at least one clock cycle before it asserts.

The following figure shows vsm_<name>_rm_reset (configured as active-High) being asserted
during the startup steps after a core reset when the Virtual Socket Manager is full. These steps
are optional. If the Virtual Socket Manager is configured to skip these steps after reset,
vsm_<name>_rm_reset is not asserted.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=50

Figure 26: RM Reset Signal During Core Reset

vsm_<name>_rm_reset is unaffected by a DFX Controller core reset, and will take on a
deasserted level at power-on if the Virtual Socket is full. There is one exception to this rule which
can cause vsm_<name>_rm_reset to be asserted erroneously after the initial power-on reset.

The vsm_<name>_rm_reset signal is deasserted in the power-on configuration based on the
Reset Type value programmed using the core's Customize IP dialog box, or the core's
set_property command. The Reset Type value for each Reconfigurable Module can also be
programmed directly in the routed netlist using the steps described in Customizing the Core Post
Implementation.

Programming the netlist directly changes the values stored in the Virtual Socket Manager
registers for this Reconfigurable Module, but it does not change the initialization values used by
the Virtual Socket Manager. These do not change until the Virtual Socket Manager retrieves the
information for the loaded Reconfigurable Module from memory, which occurs approximately six
clock cycles after reset is released. If the Reset Type of the power-on Reconfigurable Module is
programmed directly into the netlist with a different value from that used to originally configure
the core, the Virtual Socket Manager continues to use the original value until the updated values
are retrieved after reset.

For example:

1. The core's Customize IP dialog box is used to inform the Virtual Socket Manager that the
power-on Reconfigurable Module has an active-High reset. The Virtual Socket Manager will
be generated to set vsm_<name>_rm_reset to 0 (deasserted).

2. The core's API is used to change the Virtual Socket Manager directly in the netlist to notify
that the power-on Reconfigurable Module has an active-Low reset.

3. When the Virtual Socket Manager exits power-on reset, vsm_<name>_rm_reset remains
at 0 for approximately six clock cycles because it was originally configured to have a
Reconfigurable Module with an active-High reset. The Reconfigurable Module will be
inadvertently reset during this time.

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=51

Related Information
Customizing the Core Post Implementation

Chapter 4: Designing with the Core

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=52

Chapter 5

Design Flow Steps
This section describes customizing and generating the core, constraining the core, and the
simulation, synthesis, and implementation steps that are specific to this IP core. More detailed
information about the standard Vivado® design flows and the IP integrator can be found in the
following Vivado Design Suite user guides:

• Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

• Vivado Design Suite User Guide: Designing with IP (UG896)

• Vivado Design Suite User Guide: Getting Started (UG910)

• Vivado Design Suite User Guide: Logic Simulation (UG900)

Customizing and Generating the Core
This section includes information about using Xilinx® tools to customize and generate the core in
the Vivado® Design Suite.

If you are customizing and generating the core in the Vivado IP integrator, see the Vivado Design
Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) for detailed information. IP
integrator might auto-compute certain configuration values when validating or generating the
design. To check whether the values do change, see the description of the parameter in this
chapter. To view the parameter value, run the validate_bd_design command in the Tcl
console.

You can customize the IP for use in your design by specifying values for the various parameters
associated with the IP core using the following steps:

1. Select the IP from the IP catalog.

2. Double-click the selected IP or select the Customize IP command from the toolbar or right-
click menu.

For details, see the Vivado Design Suite User Guide: Designing with IP (UG896) and the Vivado
Design Suite User Guide: Getting Started (UG910).

Figures in this chapter are illustrations of the Vivado IDE. The layout depicted here might vary
from the current version.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 53Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=53

Validation Tab
This tab is available on the left of the Customize IP dialog box and shares space with the IP
Symbol tab, the Address Map tab, and the Trigger Mapping tab. This tab is displayed by default.
The Validation tab lists any errors that remain with the current configuration. The core cannot be
generated until all listed errors are fixed. When the configuration contains no errors, the text
“There are no errors” displays in the tab.

Address Map Tab
This tab is available on the left of the Customize IP dialog box and shares space with the IP
Symbol tab, the Trigger Mapping tab, and the Validation tab. The Address Map tab provides
information about the structure of the AXI4-Lite address, and provides the name and address of
each register in the DFX Controller core.

Trigger Mapping Tab
This tab is available on the left of the Customize IP dialog box and shares space with the IP
Symbol tab, the Address Map tab, and the Validation tab. The Trigger Mapping tab provides an
overview of the trigger mapping that is configured for the selected Virtual Socket.

Global Options
This tab is available on the right of the Customize IP dialog box and shares space with the Virtual
Socket Options tab. The Global Options tab is used to configure the parts of the core that do not
depend on the number of Virtual Socket Managers, or their configuration. The following options
are available:

• Enable the AXI Lite Interface: Enables or disables the AXI4-Lite register interface.

• Reset Active Level: Configures the core to respond to an active-High or an active-Low reset.

• Managed Device Type: Select the type of device to be managed by the core. This is the device
where the Virtual Sockets and connected ICAP primitive reside.

• CAP arbitration protocol: Select the type of CAP arbitration required.

• Bitstream Compression: Select whether the decompression block is required. If enabled, all
partial bitstreams must be compressed (see Partial Bitstream Preparation).

• FIFO Depth: The depth of the FIFO in the fetch path. Valid values are 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, and 131072. The value 16 is only
available when the number of CDC Stages is set to 2 or 3.

• FIFO Implementation: Configures the FIFO in the fetch path to use Block RAMs or
Distributed RAMs.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=54

• CDC Stages: The number of synchronization stages to use when crossing between clock
domains. Valid values are 2, 3, 4, 5, and 6. Using 4, 5, or 6 requires a minimum FIFO depth of
32 entries.

Related Information
Partial Bitstream Preparation

Virtual Manager Socket Options
This tab is available on the right of the Customize IP dialog box and shares space with the Global
Options tab. The Virtual Socket Manager Options tab is used to configure a single Virtual Socket
Manager, along with a single Reconfigurable Module within the Virtual Socket Manager. The
Virtual Socket Manager and Reconfigurable Module to be configured can be selected using drop-
down controls.

The following two figures shows the Virtual Socket Manager Options. The tab is split into four
areas:

1. Control Buttons

2. Virtual Socket Manager Options

3. Reconfigurable Module Options

4. Trigger Options

Figure 27: Virtual Socket Manager Options When Managing a 7 series or UltraScale+
Device

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=55

Figure 28: Additional Virtual Socket Manager Options When Managing an UltraScale
Device

Control Buttons

There are four control buttons available, three of which are automatically hidden when not
required:

• New Virtual Socket Manager: Click this button to add a new Virtual Socket Manager to the
core.

• New Reconfigurable Module: Click this button to add a new Reconfigurable Module to the
currently selected Virtual Socket Manager. This button is only available when a Virtual Socket
Manager is selected.

• Delete Virtual Socket Manager: Click this button to delete the currently selected Virtual
Socket Manager. This button is only available when a Virtual Socket Manager is selected.

• Delete Reconfigurable Module: Click this button to delete the currently selected
Reconfigurable Module from the currently selected Virtual Socket Manager. This button is
only available when a Reconfigurable Module is selected.

Virtual Socket Manager Options

• Virtual Socket Manager to Configure: Use this drop-down list to select the Virtual Socket
Manager to configure.

• Virtual Socket Name: [Optional] Enter a new name for the Virtual Socket Manager here. The
name must satisfy the following rules:

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=56

• Contains only letters, numbers, or "_" (underscore).

• Does not start or end with "_" (underscore).

• Does not contain "__" (double underscore).

Note: The name change only takes effect when you click another control in the GUI, or press the Tab
key.

• Has Status Channel: Enables or disables the AXI4-Stream status channel for the selected
Virtual Socket Manager.

• Has Control Channel: Enables or disables the AXI4-Stream control channel for the selected
Virtual Socket Manager.

• Start in Shutdown: Select this option if the selected Virtual Socket Manager should start in
the shutdown state.

• Shutdown on Error: Select this option if the selected Virtual Socket Manager should enter the
shutdown state if an error is detected.

• Skip RM Startup After Reset: When the Virtual Socket Manager exits reset, it executes the
Reconfigurable Module start-up steps (reset and/or software start-up) if a Reconfigurable
Module is loaded. Select this option to skip those steps after a reset.

• Has PoR RM: Select this option and select the appropriate Reconfigurable Module if the initial
configuration bitstream for the device contains a Reconfigurable Module in this Virtual Socket.

Note: This option is mandatory when the device being managed in an UltraScale™ device. The value is
automatically set to true, and Customize IP parameter is disabled in this case.

A Reconfigurable Partition in a static bitstream can be implemented as a black box or a
pseudo black box (see the Vivado Design Suite User Guide: Dynamic Function eXchange
(UG909)). When the device being managed is a 7 series or UltraScale+™ device, this option
can be ignored by the DFX Controller core if the system has no need to ever revert the
Reconfigurable Partition back to being a black box. However, when the device being managed
is an UltraScale device, the black box's clearing bitstream must be loaded before another
Reconfigurable Module can be loaded, so the black box must be defined as a Reconfigurable
Module in the core. If there is no need to ever revert the Reconfigurable Partition back to
being a black box, the address and size information for this Reconfigurable Module's partial
bitstream can be left at 0. In this case, it should not be mapped to a trigger.

• Number of RMs allocated: Specify how much space should be allocated to store information
about Reconfigurable Modules in the Virtual Socket Manager. This is required if you intend to
add more Reconfigurable Modules in the field using the AXI4-Lite interface. This value is
automatically rounded up to a power of two.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 57Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=57

Reconfigurable Module Options

• Reconfigurable Module to Configure: Use this drop-down list to select the Reconfigurable
Modules in the selected Virtual Socket Manager to configure.

• Reconfigurable Module Name: [Optional] Enter a new name for the Reconfigurable Module
here. The name must satisfy the following rules:

• Contains only letters, numbers or "_" (underscore).

• Does not start or end with "_" (underscore).

• Does not contain "__" (double underscore).

Note: The name change only takes effect when you click another control in the GUI.

• Shutdown Type:

• Not Required: The Reconfigurable Module does not need to be informed that it will be
removed.

• Hardware Only: The Reconfigurable Module needs to be informed that it will be removed,
but there is no software that needs to be informed.

• HW then SW: The Reconfigurable Module needs to be informed that it will be removed,
and the software needs to be informed as well. The Reconfigurable Module should be
informed first.

• SW then HW: The Reconfigurable Module needs to be informed that it will be removed,
and software needs to be informed as well. The software should be informed first.

For more information, see Reconfigurable Module Hardware and Software Shutdown.

• Startup Type:

• Not Required: The system software does not need to be informed that the
Reconfigurable Module has been loaded.

• Software Only: The system software needs to be informed that the Reconfigurable
Module has been loaded.

For more information, see Reconfigurable Module Software Startup.

• Reset Type:

• Not Required: The Reconfigurable Module does not need to be reset after it has been
loaded.

• Active High: The Reconfigurable Module needs to be reset with an active-High signal after
it has been loaded.

• Active Low: The Reconfigurable Module needs to be reset with an active-Low signal after
it has been loaded.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=58

• Duration of Reset: This control is only enabled if the Reconfigurable Module requires an
active-High or active-Low reset. It is used to specify how many clock cycles the
Reconfigurable Modules reset should be asserted. The maximum reset duration is 256 clock
cycles.

• Bitstream 0 Address: The address of this Reconfigurable Module bitstream in the
configuration library interface. This must be aligned to a 32-bit word boundary (bottom two
bits must be 0).

• Bitstream 0 Size: The size (in bytes) of this Reconfigurable Module bitstream in the
configuration library interface. This must be a multiple of 32 bits (bottom two bits of the size
must be 0).

• Bitstream 0 is a Clearing Bitstream: Click this option if this bitstream is a clearing Bitstream.
This option is only available when the device to be managed is an UltraScale device.

• Bitstream 1 Address: The address of this Reconfigurable Module bitstream in the
configuration library interface. This must be aligned to a 32-bit word boundary (bottom two
bits must be 0). This option is only available when the device to be managed is an UltraScale
device.

• Bitstream 1 Size: The size (in bytes) of this Reconfigurable Module bitstream in the
configuration library interface. This must be a multiple of 32 bits (bottom two bits of the size
must be 0). This option is only available when the device to be managed is an UltraScale
device.

• Bitstream 1 is a Clearing Bitstream: Click this option if this bitstream is a clearing Bitstream.
This option is only available when the device to be managed is an UltraScale device.

Related Information
Reconfigurable Module Hardware and Software Shutdown
Reconfigurable Module Software Startup

Trigger Options

• Number of Hardware Triggers: Specify the number of triggers in the Virtual Socket Manager
that can be activated from dedicated hardware signals. For more information, see Hardware
Triggers.

• Number of Triggers Allocated: Specify the number of triggers that this Virtual Socket Manager
has.

• First Trigger to display: A Virtual Socket Manager can contain many more triggers than it is
efficient to display in the Customize IP dialog box. A maximum of four triggers are shown at
any one time, with the first trigger shown selected by this drop-down list.

• Trigger ID: [Read only] The identifier of the trigger in each row of the table.

• Reconfigurable Module to Load: The Reconfigurable Module to load when the Trigger ID
trigger is seen for this Virtual Socket Manager.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=59

• Lock the Trigger: Used to control whether the trigger is locked to the specified Reconfigurable
Module, or whether it will change when Reconfigurable Modules are added or removed.

By default, trigger T loads the Reconfigurable Module with identifier T, modulus the number of
Reconfigurable Modules in the Virtual Socket Manager. This means that, by default, every trigger
maps to a defined Reconfigurable Module, and all Reconfigurable Modules can be triggered.
Adding a new Reconfigurable Module causes the triggers to remap without any intervention.

To override this for a trigger, lock it to the value selected by the Reconfigurable Module to Load
option. When a trigger is locked, it will not change if new Reconfigurable Modules are added. If a
trigger’s Reconfigurable Module is subsequently deleted, the trigger will unlock (if locked) and
revert to using its default value.

Related Information
Hardware Triggers

User Parameters
The following table shows the relationship between the fields in the Vivado® IDE and the user
parameters (which can be viewed in the Tcl Console).

Table 20: Customization Parameters to User Parameter Relationship

Vivado IDE Parameter/
Value User Parameter/Value Default Value

Enable the AXI Lite Interface HAS_AXI_LITE_IF 1

Reset Active Level RESET_ACTIVE_LEVEL 0

CAP arbitration protocol CP_ARBITRATION_PROTOCOL
0: No Arbitration Required
1: Latency has not been added to the arbiter
signals
2: Latency has been added to the arbiter signals

0

Specify if partial bitstreams are
compressed

CP_COMPRESSION
0: Partial bitstreams are not compressed
1: Partial bitstreams are compressed

0

FIFO Depth CP_FIFO_DEPTH 32

FIFO Implementation CP_FIFO_TYPE lutram

Block RAM blockram

Distributed RAM lutram

Managed Device Type CP_FAMILY By default, this uses the device
type specified in the project
settings.

7series If a 7 series device is being managed.

ultrascale If an UltraScale device is being managed.

ultrascale_plus If an UltraScale+ device is being managed.

CDC Stages CDC_STAGES 6

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=60

Table 20: Customization Parameters to User Parameter Relationship (cont'd)

Vivado IDE Parameter/
Value User Parameter/Value Default Value

Virtual Socket to Configure No equivalent User Parameter

Virtual Socket Name No equivalent User Parameter
The name of each Virtual Socket Manager is specified
as part of the user parameter name (shown as
<vsname> below)

Has Status Channel VS.<vsname>.HAS_AXIS_STATUS 0

Has Control Channel VS.<vsname>.HAS_AXIS_CONTROL 0

Start in Shutdown VS.<vsname>.START_IN_SHUTDOWN 0

Shutdown on Error VS.<vsname>.SHUTDOWN_ON_ERROR 1

Skip RM Startup After Reset VS.<vsname>.SKIP_RM_STARTUP_AFTER_RESET 0

Has PoR RM VS.<vsname>.HAS_POR_RM
VS.<vsname>.POR_RM

• 0: If the Virtual Socket
contains no RM in the Power
On configuration.

• 1: If the Virtual Socket
contains an RM in the Power
On configuration.

Note: Note: This must be set to 1
when an UltraScale device is
being managed.

RM_0

Number of RMs allocated VS.<vsname>.NUM_RMS_ALLOCATED 2

Reconfigurable Module to
Configure

No equivalent User Parameter

Reconfigurable Module Name No equivalent User Parameter
The name of each Reconfigurable Module is specified
as part of the user parameter name (shown as
<rmname> below)

Shutdown Type VS.<vsname>.RM.<rmname>.SHUTDOWN_REQUIRED no

Not Required no

Hardware Only hw

HW then SW hw/sw

SW then HW sw/hw

Startup Type VS.<vsname>.RM.<rmname>.STARTUP_REQUIRED no

Not Required no

Software Only sw

Reset Type VS.<vsname>.RM.<rmname>.RESET_REQUIRED no

Not Required no

Active High high

Active Low low

Duration of Reset VS.<vsname>.RM.<rmname>.RESET_DURATION 1

Bitstream Address VS.<vsname>.RM.<rmname>.BS.<bsid>.ADDRESS1 0

Bitstream Size VS.<vsname>.RM.<rmname>.BS.<bsid>.SIZE1 0

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=61

Table 20: Customization Parameters to User Parameter Relationship (cont'd)

Vivado IDE Parameter/
Value User Parameter/Value Default Value

Bitstream is Clearing VS.<vsname>.RM.<rmname>.BS.<bsid>.CLEAR1 0

Number of Hardware Triggers VS.<vsname>.NUM_HW_TRIGGERS 0

Number of Triggers Allocated VS.<vsname>.NUM_TRIGGERS_ALLOCATED 2

First Trigger to Display No equivalent User Parameter

Trigger ID No equivalent User Parameter
See "Reconfigurable Module to Load"

Reconfigurable Module to Load VS.<vsname>.TRIGGER<trigger_id>_TO_RM trigger_id mod Number of
Reconfigurable Modules defined
in the Virtual Socket Manager

Lock the Trigger No equivalent User Parameter
Only triggers that have non-default values need to be
specified, which has the effect of locking that trigger

Notes:
1. <bsid> can only be 0 when the device to be managed is a 7 series or an UltraScale+ device. <bsid> can be 0 or 1

when the device being managed is an UltraScale device.

Configuring Tcl User Parameters

The DFX Controller core can be configured from the Tcl command line by setting properties
directly. A custom set_property command is required. The following command has to be
executed in the Vivado Tcl command line to access
dfx_controller_v1_0::set_property:

source [get_property REPOSITORY \
 [get_ipdefs *dfx_controller:1.0]]/xilinx/dfx_controller_v1_0/tcl/api.tcl -
notrace

Example:

create_ip -name dfx_controller -vendor xilinx.com -library ip -module_name
dut
dfx_controller_v1_0::set_property -dict [list \
 CONFIG.HAS_AXI_LITE_IF 0 \
 CONFIG.RESET_ACTIVE_LEVEL 1 \
 CONFIG.CP_FIFO_DEPTH 16 \
 CONFIG.CP_ARBITRATION_PROTOCOL 0 \
 CONFIG.CP_COMPRESSION 0 \
 CONFIG.CP_FIFO_TYPE lutram \
 CONFIG.VS0.HAS_AXIS_STATUS 0 \
 CONFIG.VS0.HAS_AXIS_CONTROL 0 \
 CONFIG.VS0.NUM_TRIGGERS_ALLOCATED 4 \
 CONFIG.VS0.NUM_HW_TRIGGERS 4 \
 CONFIG.VS0.NUM_RMS_ALLOCATED 2 \
 CONFIG.VS0.POR_RM 0 \
 CONFIG.VS0.SKIP_RM_STARTUP_AFTER_RESET 0 \
 CONFIG.VS0.START_IN_SHUTDOWN 0 \
 CONFIG.VS0.SHUTDOWN_ON_ERROR 0 \
 CONFIG.VS0.RM0.SHUTDOWN_REQUIRED no \
 CONFIG.VS0.RM0.STARTUP_REQUIRED no \

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=62

 CONFIG.VS0.RM0.RESET_REQUIRED high \
 CONFIG.VS0.RM0.RESET_DURATION 3 \
 CONFIG.VS0.RM0.BS.0.ADDRESS 0xAE9DF4 \
 CONFIG.VS0.RM0.BS.0.SIZE 375300 \
 CONFIG.VS0.RM1.SHUTDOWN_REQUIRED sw/hw \
 CONFIG.VS0.RM1.STARTUP_REQUIRED sw \
 CONFIG.VS0.RM1.RESET_REQUIRED high \
 CONFIG.VS0.RM1.RESET_DURATION 10 \
 CONFIG.VS0.RM1.BS0.ADDRESS 0xB45840 \
 CONFIG.VS0.RM1.BS0.SIZE 375300 \
 CONFIG.VS1.HAS_AXIS_STATUS 0 \
 CONFIG.VS1.HAS_AXIS_CONTROL 0 \
 CONFIG.VS1.NUM_TRIGGERS_ALLOCATED 4 \
 CONFIG.VS1.NUM_HW_TRIGGERS 4 \
 CONFIG.VS1.NUM_RMS_ALLOCATED 2 \
 CONFIG.VS1.POR_RM 1 \
 CONFIG.VS1.SKIP_RM_STARTUP_AFTER_RESET 0 \
 CONFIG.VS1.START_IN_SHUTDOWN 0 \
 CONFIG.VS1.SHUTDOWN_ON_ERROR 0 \
 CONFIG.VS1.RM0.SHUTDOWN_REQUIRED hw/sw \
 CONFIG.VS1.RM0.STARTUP_REQUIRED no \
 CONFIG.VS1.RM0.RESET_REQUIRED high \
 CONFIG.VS1.RM0.RESET_DURATION 16 \
 CONFIG.VS1.RM0.BS0.ADDRESS 0xBA128C \
 CONFIG.VS1.RM0.BS0.SIZE 404792 \
 CONFIG.VS1.RM1.SHUTDOWN_REQUIRED no \
 CONFIG.VS1.RM1.STARTUP_REQUIRED no \
 CONFIG.VS1.RM1.RESET_REQUIRED high \
 CONFIG.VS1.RM1.RESET_DURATION 32 \
 CONFIG.VS1.RM1.BS0.ADDRESS 0xC0400C \
 CONFIG.VS1.RM1.BS0.SIZE 404792 \
] [get_ips dut]
generate_target {all} [get_ips dut]

RECOMMENDED: If dfx_controller_v1_0::set_property  is called from within a script, Xilinx
recommends that you source the script using the -notrace  option. Large core configurations can take a
substantial amount of time to complete when -notrace  is not used.

Output Generation
The DFX Controller core delivers standard synthesis and simulation models. For details, see the
Vivado Design Suite User Guide: Designing with IP (UG896).

In addition, a configuration information text file is delivered with the core, and located in:

<ip source dir>/documentation/configuration_information.txt

This text file contains the following information:

• The property values used to configure the core.

• The integer identifiers assigned to the Virtual Socket Manager and the Reconfigurable
Modules.

○ The Virtual Socket Manager identifiers are required to access the registers in the Virtual
Socket Managers.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 63Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=63

○ The Reconfigurable Module identifiers are required to access the correct registers in the
Reconfigurable Module information register bank. They are also required if the triggers are
reprogrammed at run-time.

• The MSBs and LSBs of the following address fields:

○ Virtual Socket Manager Select

○ Bank Select

○ Register Select

• The address of each register in the generated core.

Constraining the Core
Required Constraints

This section is not applicable for this IP core.

Device, Package, and Speed Grade Selections

The DFX Controller core works with 7 series, UltraScale, and UltraScale+ devices.

Clock Frequencies

The ICAP clock has to be constrained to the maximum frequency of the ICAP port, or less. For
the maximum frequency for your device family, see the applicable DC and AC switching
characteristics data sheet (see References).

Clock Management

This section is not applicable for this IP core.

Clock Placement

This section is not applicable for this IP core.

Banking

This section is not applicable for this IP core.

Transceiver Placement

This section is not applicable for this IP core.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=64

I/O Standard and Placement

This section is not applicable for this IP core.

Related Information
References

Simulation
For comprehensive information about Vivado® simulation components, as well as information
about using supported third-party tools, see the Vivado Design Suite User Guide: Logic Simulation
(UG900).

IMPORTANT! For cores targeting 7 series or Zynq®-7000 devices, UNIFAST libraries are not supported. Xilinx
IP is tested and qualified with UNISIM libraries only.

Synthesis and Implementation
For details about synthesis and implementation, see the Vivado Design Suite User Guide: Designing
with IP (UG896).

Customizing the Core Post Implementation
The registers in the following Virtual Socket Manager register banks can be configured directly in
the static netlist used to configure the device:

• Bank 1: Trigger to Reconfigurable Module Registers

• Bank 2: Reconfigurable Module Information Registers

• Bank 3: Bitstream Information Registers

Customizing the core post implementation can be useful when the partial bitstream sizes are not
known when the DFX Controller core is initially configured, or when the final set of
Reconfigurable Modules have not been decided when the DFX Controller core is initially
configured.

IMPORTANT! Changes made to the netlist are not reflected in the original core configuration. Updating the
original core configuration could trigger a new implementation run of the entire design.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 65Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=65

To customize the core post implementation, type the following commands:

1. Load the DFX Controller Tcl API.

source [get_property REPOSITORY [get_ipdefs *dfx_controller:1.0]]/xilinx/
dfx_controller_v1_0/tcl/api.tcl –notrace

2. Load the DFX Controller core configuration.

• If the DFX Controller IP core definition and the netlist are already open, type this
command:

set config [get_property CONFIG.ALL_PARAMS [get_ips <IP NAME>]]

• Otherwise, type these commands instead:

open_project <path to xpr file>
set config [get_property CONFIG.ALL_PARAMS [get_ips <IP NAME>]]
close_project

3. Create a descriptor for the DFX Controller instance in the netlist you want to modify.

set dscr [dfx_controller_v1_0::netlist::get_descriptor $config <ip path>]

Note: <ip path> is the path to the DFX Controller instance in the netlist. For example,
i_dfx_controller/U0.

See Mandatory Commands for more information.

4. Modify the descriptor as required using the High Level Commands or Low Level Commands.
For example,

dfx_controller_v1_0::netlist::set_trigger dscr vs_shift 0 rm_shift_left
dfx_controller_v1_0::netlist::set_rm_bs_address dscr vs_shift
rm_shift_left 0xAE9DF4
dfx_controller_v1_0::netlist::set_rm_bs_size dscr vs_shift rm_shift_left
375300

5. Apply the changes in the descriptor to the DFX Controller instance in the netlist.

dfx_controller_v1_0::netlist::apply_descriptor dscr

6. Save the netlist in a checkpoint

write_checkpoint Implement/Config_shift_right_count_up/
top_route_design.dcp -force

TIP: An example is provided in Example Usage.

Note: The command descriptions below use the following terms:

• <descriptor>: A data structure returned by get_descriptor.

• <vsm_name>: The name of the Virtual Socket Manager you want to change.

• <rm_name>: The name of the Reconfigurable Module you want to change, or in the case of trigger
modification, the Reconfigurable Module you want to select.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=66

• <table_type>: The table holding the Register Bank you want to modify. The valid values are:

• trigger_table: Trigger to Reconfigurable Module Registers. For details, see Bank 1: Trigger to
Reconfigurable Module Registers.

• rm_bs_index_table: BS Index Registers in the Reconfigurable Module Information Registers. For
details, see RM_BS_INDEX Regsiter.

• rm_ctrl_table: Control Registers in the Reconfigurable Module Information Registers. For details,
see RM_CONTROL Register.

• bs_id_table: ID Registers in the Bitstream Information Registers. For details, see BS_ID Register.

• bs_address_table: Address Registers in the Bitstream Information Registers. For details, see
BS_ADDRESS Register.

• bs_size_table: Size Registers in the Bitstream Information Registers. For details, see BS_SIZE
Register.

Related Information
Bank 1: Trigger to Reconfigurable Module Registers
RM_BS_INDEX Register
RM_CONTROL Register
BS_ID Register
BS_ADDRESS Register
BS_SIZE Register
Mandatory Commands
Low Level Commands
High Level Commands
Example Usage

Mandatory Commands
These commands must be run when customizing the core post implementation.

Table 21: Mandatory Commands

Command Description
get_descriptor <configuration> <path to instance in netlist> Returns a data structure that is needed by all other

commands.
<configuration> is the value of the IP core
CONFIG.ALL_PARAMS parameter. You can access this value
using get_property CONFIG.ALL_PARAMS [get_ips <ip
name>]

apply_descriptor <descriptor> Write the descriptor information back into the netlist.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=67

Low Level Commands
These commands let you access and modify the tables that implement the register banks directly.

Table 22: Low Level Commands

Command Description
get_table_entry <descriptor> <vsm_name> <table_type>
<row>

Get the value of the row of the named table in the Virtual
Socket Manager <vsm_name>.

set_table_entry <descriptor> <vsm_name> <table_type>
<row> <value>

Set the value of the row of the named table in the Virtual
Socket Manager <vsm_name> to <value>. No error checking
is performed on this value.

print_table_entry <descriptor> <vsm_name> <table_type>
<row>

Print the value of the row of the named table in the Virtual
Socket Manager <vsm_name>.

print_table <descriptor> <vsm_name> <table_type> <row> Print the entire named table in the Virtual Socket Manager
<vsm_name>. Note that this prints the entire memory even
if only a subset of the addresses are used. For example, if
the design has two triggers allocated, the trigger table will
be implemented in a 32 element deep Distributed RAM. All
32 rows will be printed.

High Level Commands
These commands get and set values through an abstraction layer that contains error checking.

Table 23: High Level Commands

Command Description
get_trigger <descriptor> <vsm_name> <trigger_id> Get the Reconfigurable Module that is selected by the

trigger <trigger_id> in the Virtual Socket Manager
<vsm_name>.

set_trigger <descriptor> <vsm_name> <trigger_id>
<rm_name>

Map the trigger <trigger_id> to the Reconfigurable Module
<rm_name> in the Virtual Socket Manager <vsm_name>.

get_rm_shutdown_required <descriptor> <vsm_name>
<rm_name>

Get the shutdown required value for the Reconfigurable
Module <rm_name> in the Virtual Socket Manager
<vsm_name>.

set_rm_shutdown_required <descriptor> <vsm_name>
<rm_name> <val>

Set the shutdown required value for the Reconfigurable
Module <rm_name> in the Virtual Socket Manager
<vsm_name>.

get_rm_startup_required <descriptor> <vsm_name>
<rm_name>

Get the startup required value for the Reconfigurable
Module <rm_name> in the Virtual Socket Manager
<vsm_name>.

set_rm_startup_required <descriptor> <vsm_name>
<rm_name> <val>

Set the startup required value for the Reconfigurable
Module <rm_name> in the Virtual Socket Manager
<vsm_name>.

get_rm_reset_required <descriptor> <vsm_name>
<rm_name>

Get the reset required value for the Reconfigurable Module
<rm_name> in the Virtual Socket Manager <vsm_name>.

set_rm_reset_required <descriptor> <vsm_name>
<rm_name> <val>

Set the reset required value for the Reconfigurable Module
<rm_name> in the Virtual Socket Manager <vsm_name>.

get_rm_reset_duration <descriptor> <vsm_name>
<rm_name>

Get the reset duration value for the Reconfigurable Module
<rm_name> in the Virtual Socket Manager <vsm_name>.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=68

Table 23: High Level Commands (cont'd)

Command Description
set_rm_reset_duration <descriptor> <vsm_name>
<rm_name> <val>

Set the reset duration value for the Reconfigurable Module
<rm_name> in the Virtual Socket Manager <vsm_name>.

get_rm_bs_address <descriptor> <vsm_name> <rm_name> Get the address in memory of the partial bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

set_rm_bs_address <descriptor> <vsm_name> <rm_name>
<address>

Set the address in memory of the partial bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

get_rm_bs_size <descriptor> <vsm_name> <rm_name> Get the size in memory of the partial bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

set_rm_bs_size <descriptor> <vsm_name> <rm_name> <size> Set the size in memory of the partial bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

get_rm_clearing_bs_address <descriptor> <vsm_name>
<rm_name>

Get the address in memory of the clearing bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

set_rm_clearing_bs_address <descriptor> <vsm_name>
<rm_name> <address>

Set the address in memory of the clearing bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

get_rm_clearing_bs_size <descriptor> <vsm_name>
<rm_name>

Get the size in memory of the clearing bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

set_rm_clearing_bs_size <descriptor> <vsm_name>
<rm_name> <size>

Set the size in memory of the clearing bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

get_rm_bs_id <descriptor> <vsm_name> <rm_name> Get the identifier of the partial bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

set_rm_bs_id <descriptor> <vsm_name> <rm_name> <id> Set the identifier of the partial bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

get_rm_clearing_bs_id <descriptor> <vsm_name>
<rm_name>

Get the identifier of the clearing bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

set_rm_clearing_bs_id <descriptor> <vsm_name>
<rm_name> <id>

Set the identifier of the clearing bitstream for the
Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

get_rm_bs_index <descriptor> <vsm_name> <rm_name> Get the BS_INDEX field from the RM_BS_INDEX register for
the Reconfigurable Module <rm_name> in the Virtual Socket
Manager <vsm_name>.

set_rm_bs_index <descriptor> <vsm_name> <rm_name>
<val>

[ADVANCED] This command is not usually required because
the BS_INDEX is automatically set during core configuration
and when create_rm is used.
Set the BS_INDEX field in the RM_BS_INDEX register to
specify which row of the Bitstream Information tables holds
the partial bitstream for the Reconfigurable Module
<rm_name> in the Virtual Socket Manager <vsm_name>.

get_rm_clearing_bs_index <descriptor> <vsm_name>
<rm_name>

Get the CLEAR_BS_INDEX field from the RM_BS_INDEX
register for the Reconfigurable Module <rm_name> in the
Virtual Socket Manager <vsm_name>.

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=69

Table 23: High Level Commands (cont'd)

Command Description
set_rm_clearing_bs_index <descriptor> <vsm_name>
<rm_name> <val>

[ADVANCED] This command is not usually required because
the CLEAR_BS_INDEX is automatically set during core
configuration and when create_rm is used.
Set the CLEAR_BS_INDEX field in the RM_BS_INDEX register
to specify which row of the BS Information tables holds the
clearing bitstream for the Reconfigurable Module
<rm_name> in the Virtual Socket Manager <vsm_name>.

create_rm <descriptor> <vsm_name> <rm_name>
[partial_index] [clearing_index]

Add a new Reconfigurable Module to the Virtual Socket
Manager <vsm_name>. This maps a Reconfigurable Module
with the name <rm_name> to the next available
Reconfigurable Module identifier (which is the first free row
in the Reconfigurable Module Information table).
This new Reconfigurable Module’s identifier is returned by
the function.
The index values for the partial bitstream and the clearing
bitstream (if required) can be optionally specified. If not
specified, the first free rows in the Bitstream Information
tables are used.

Example Usage
The following example can be used as a starting point for your own customization.

Store a copy of the DFX Controller core's original configuration.
If the netlist to be modified is in an open project along with the DFX core, the
open/close project commands will not be needed
#
open_project ./Sources/generated/dfx_controller.xpr
set config [get_property CONFIG.ALL_PARAMS [get_ips <IP NAME>]]
close_project

source [get_property REPOSITORY [get_ipdefs *dfx_controller:1.0]]/xilinx/
dfx_controller_v1_0/tcl/api.tcl –notrace

Change this to point at the core instance in the netlist
set dscr [dfx_controller_v1_0::netlist::get_descriptor $config "i_dfx_controller/U0"]

dfx_controller_v1_0::netlist::set_trigger dscr vs_shift 0 rm_shift_left
dfx_controller_v1_0::netlist::set_trigger dscr vs_shift 1 rm_shift_right
dfx_controller_v1_0::netlist::set_rm_shutdown_required dscr vs_shift rm_shift_left hw
dfx_controller_v1_0::netlist::set_rm_startup_required dscr vs_shift rm_shift_left sw
dfx_controller_v1_0::netlist::set_rm_reset_required dscr vs_shift rm_shift_left low
dfx_controller_v1_0::netlist::set_rm_reset_duration dscr vs_shift rm_shift_left 24
dfx_controller_v1_0::netlist::set_rm_bs_address dscr vs_shift rm_shift_left 0xAE9DF4
dfx_controller_v1_0::netlist::set_rm_bs_size dscr vs_shift rm_shift_left 375300
dfx_controller_v1_0::netlist::set_rm_bs_address dscr vs_shift rm_shift_right 0xB45840
dfx_controller_v1_0::netlist::set_rm_bs_size dscr vs_shift rm_shift_right 375300
dfx_controller_v1_0::netlist::set_rm_bs_address dscr vs_count rm_count_up 0xBA128C
dfx_controller_v1_0::netlist::set_rm_bs_size dscr vs_count rm_count_up 404792
dfx_controller_v1_0::netlist::set_rm_bs_address dscr vs_count rm_count_down 0xC0400C
dfx_controller_v1_0::netlist::set_rm_bs_size dscr vs_count rm_count_down 404792
dfx_controller_v1_0::netlist::apply_descriptor dscr

write_checkpoint Implement/Config_shift_right_count_up/top_route_design.dcp -force

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=70

Important Notes

Changes made to the netlist directly are not reflected in the original IP configuration. Doing so
could trigger a new implementation run of the entire design.

These commands use the IP configuration as their starting point. Any changes made in the netlist
will be lost if a new descriptor is created and further changes are made. For example, the
following steps will cause Reconfigurable Module A to be lost:

1. A descriptor is created based on the IP configuration (get_descriptor) and
Reconfigurable Module A is added.

2. The descriptor is applied to the netlist (apply_descriptor). The DFX Controller instance
in the netlist now contains the new Reconfigurable Module A.

3. A descriptor is created based on the IP configuration (get_descriptor) because further
changes have to be made.

4. Reconfigurable Module A has now been lost. The descriptor is only based on the IP
configuration and Reconfigurable Module A does not exist in that (it was only added to the
DFX Controller instance in the netlist, not to the core configuration).

To avoid losing netlist changes, all changes must be made to the same descriptor.

Partial Bitstream Preparation
The following process should be used to create partial bitstreams for use with the DFX Controller
core:

1. Use write_bitstream to generate partial bitstreams with a .bin extension.

2. Format the partial bitstreams using the format_bin_for_icap API function. For example:

dfx_controller_v1_0::format_bin_for_icap -i $input_file -o $output_file

The -o switch is optional. If omitted, the bitstream is written to
$input_file.bin_for_icap.

If bitstream compression has been enabled in the core then the -c 1 parameter must be
added to the command. If bitstream compression is disabled then -c 0 can be added, or the
-c option can be completely omitted. For example:

dfx_controller_v1_0::format_bin_for_icap -i $input_file -o $output_file
Does not compress the file
dfx_controller_v1_0::format_bin_for_icap -i $input_file -o $output_file -c 0
Does not compress the file
dfx_controller_v1_0::format_bin_for_icap -i $input_file -o $output_file -c 1
Compresses the file

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=71

The format_bin_for_icap API function can optionally perform byte swapping on the file.
To enable this, add -bs 1 to the command. To disable this behavior, add -bs 0 to the
command (or omit the -bs option). Whether byte swapping is required depends on the
design of the system. For example, if the partial bitstreams are being stored in BPI Flash, or
transported over TFTP (see Loading Partial Bitstreams using TFTP (XAPP1292)) then byte
swapping is required. If the partial bitstreams are to be fetched directly from DDR memory,
byte swapping is not required.

If you are unsure if byte swapping is required, a simple hardware check can be performed:

a. Create a version of the design with an ILA on the DFX Controller Configuration Library
interface.

b. Trigger the ILA on m_axi_mem_rvalid asserting and look at the data on
m_axi_mem_rdata.

c. If compression is disabled, the following words should be quickly seen:

000000bb
11220044
aa995566

Note: These will be surrounded by FFFFFFFF words and might not appear immediately next to
each other.

d. If compression is enabled, the first word to be fetched should be 950000XX, where XX
can take on any value. For example, 9500000F, 9500001C.

e. If you receive (compression off):

bb000000
44002211
665599aa

or

XX000095 (compression on)

then the byte swapping option needs to be changed.

If any other values are received, the partial bitstream is not stored at the location
programmed into the DFX Controller.

3. Format the files created by format_bin_for_icap for storage if required.

For example, to create a BPI flash image for the KC705 board:

write_cfgmem -force -checksum FF -size 32\
 -format MCS\
 -interface BPIx16\
 -loadbit "up 0 static.bit”\
 -loaddata "up 00574EFA shift_left_partial.bin\
 up 005A2C20 shift_right_partial.bin\
 up 005D0946 count_up_partial.bin\
 up 00602006 count_down_partial.bin" \
 dfx_prom

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 72Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1292-loading-partial-bitstreams-using-tftp.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=72

4. The addresses used must match the bitstream addresses programmed into the core. Also, the
BIN file sizes must match the bitstream sizes programmed into the core. The sizes are
available from the file system or the Vivado Tcl command line using this command:

file size <partial>.bin

Note: This information is required when the core is configured, but is not available until the static and
partial bitstreams have been generated. There are several ways to program the core with this
information:

• Program the values directly into the netlist using the commands described in Customizing the Core
Post Implementation.

• Use the AXI4-Lite interface to program the core at run time.

• Leave the information as zero in the DFX Controller, implement the entire design, obtain the
required values, configure the DFX Controller core with the correct information, and execute a
second complete implementation run. This approach is not suitable if the partial bitstream files
change size between runs. This can occur if bitstream compression is enabled, or if you change any
of the following:

○ the composition of the Pblocks of the Reconfigurable Partition.

○ the bitstream generation options, such as, per-frame CRC.

If the design uses the Dynamic Function eXchange Bitstream Monitor IP core to trace partial
bitstream flow, then dfx_controller_v1_0::format_bin_for_icap can be used to
instrument the partial bitstreams with the required identifiers.

Note: If bitstream compression is used in the DFX Controller,
dfx_controller_v1_0::format_bin_for_icap must be used for this.

To enable this, add -insert_ids 1 to the command. To disable the behavior, add -
insert_ids 0 to the command (or omit the -insert_ids option).

When -insert_ids 1 is used, the following command switches become mandatory:

• -sp_id <32 bit identifier>: Static Partition Identifier

• -rp_id <32 bit identifier>: Reconfigurable Partition Identifier

• -rm_id <32 bit identifier>: Reconfigurable Module Identifier

• -bs_id <32 bit identifier>: Bitstream Identifier

For an explanation of these options, see the Dynamic Function eXchange Bitstream Monitor IP
LogiCORE IP Product Guide (PG376).

For example, the following command compresses the bin file and inserts:

• A static partition ID of 0xaabbccdd

• An RP ID of 0

• An RM ID of 1

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 73Send Feedback

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_bitstream_monitor;v=latest;d=pg376-dfx-bitstream-monitor.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=73

• A Bitstream ID of 123

dfx_controller_v1_0::format_bin_for_icap -i rp0rm1.bin -o rp0rm1_ids.bin
-insert_ids 1 -sp_id 0xaabbccdd -rp_id 0 -rm_id 1 -bs_id 123 -c 1

Chapter 5: Design Flow Steps

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=74

Appendix A

Upgrading
The DFX Controller IP core supersedes the Partial Reconfiguration Controller IP core. This
section identifies any required migration changes.

Upgrading from the Partial Reconfiguration Controller to the DFX Controller

The DFX Controller IP core is a direct replacement for the Partial Reconfiguration Controller IP
core and is functionally equivalent. When adding a Partial Reconfiguration Controller IP core to a
project in Vivado® 2020.1 or newer, or when calling create_ip to generate a Partial
Reconfiguration Controller IP core, you will see a message like this:

WARNING: [IP_Flow 19-2162] IP 'my_controller' is locked:
* IP definition 'Partial Reconfiguration Controller (1.3)' for IP
'my_controller' has been replaced in the IP Catalog by 'DFX Controller
(1.0)'. * IP definition 'Partial Reconfiguration Controller (1.3)' for IP
'my_controller' (customized with software release 2019.2) has a different
revision in the IP Catalog.

You can perform a direct upgrade from an existing Partial Reconfiguration Controller IP instance
to the DFX Controller core through the standard upgrade process. With a DFX project or a
Managed IP project open, select Reports → Report IP Status to identify any IP in need of
upgrading. This IP will appear as locked in its current state.

Figure 29: Locked Status

Check any Partial Reconfiguration Controller IP and select Upgrade Selected. You will be given a
choice of which IP to upgrade to; select the DFX version.

Appendix A: Upgrading

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=75

Figure 30: Upgrade IP

The conversion replaces the Partial Reconfiguration Controller IP with the equivalent DFX
Controller IP, with the same set of options and settings. The feature set is identical if upgrading
from Partial Reconfiguration Controller 1.3 to DFX Controller 1.0.

When using the Partial Reconfiguration Controller Tcl API capabilities, simply replace any
references to prc_v_1_3 with dfx_controller_v_1_0 in scripts or interactive Tcl use and
see the following section for the upgrade code.

Upgrade Code

The following code can be used to make it easier to upgrade the core between versions.

if {[dfx_controller_v1_0::is_api_compatible dfx_controller_v0_0]}
{dfx_controller_v1_0::alias_api dfxc
}

is_api_compatible takes the name of the previous version of the core and returns 1 if the
API from the new version is compatible with the API for the old version.

alias_api <name> imports all the API commands into a namespace called <name>.

Use the following code to migrate from the Partial Reconfiguration Controller to the DFX
Controller.

if {[dfx_controller_v1_0::is_api_compatible prc_v1_3]}
{dfx_controller_v1_0::alias_api dfxc
}

and follow this with dfxc::set_property ... to set the properties for the core.

Appendix A: Upgrading

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=76

Appendix B

Debugging
This appendix includes details about resources available on the Xilinx® Support website and
debugging tools.

If the IP requires a license key, the key must be verified. The Vivado® design tools have several
license checkpoints for gating licensed IP through the flow. If the license check succeeds, the IP
can continue generation. Otherwise, generation halts with an error. License checkpoints are
enforced by the following tools:

• Vivado Synthesis

• Vivado Implementation

• write_bitstream (Tcl command)

IMPORTANT! IP license level is ignored at checkpoints. The test confirms a valid license exists. It does not
check IP license level.

Finding Help on Xilinx.com
To help in the design and debug process when using the core, the Xilinx Support web page
contains key resources such as product documentation, release notes, answer records,
information about known issues, and links for obtaining further product support. The Xilinx
Community Forums are also available where members can learn, participate, share, and ask
questions about Xilinx solutions.

Documentation
This product guide is the main document associated with the core. This guide, along with
documentation related to all products that aid in the design process, can be found on the Xilinx
Support web page or by using the Xilinx® Documentation Navigator. Download the Xilinx
Documentation Navigator from the Downloads page. For more information about this tool and
the features available, open the online help after installation.

Appendix B: Debugging

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 77Send Feedback

https://www.xilinx.com/support.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/download.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=77

Answer Records
Answer Records include information about commonly encountered problems, helpful information
on how to resolve these problems, and any known issues with a Xilinx product. Answer Records
are created and maintained daily ensuring that users have access to the most accurate
information available.

Answer Records for this core can be located by using the Search Support box on the main Xilinx
support web page. To maximize your search results, use keywords such as:

• Product name

• Tool message(s)

• Summary of the issue encountered

A filter search is available after results are returned to further target the results.

Master Answer Record for the Core

AR 73350.

Technical Support
Xilinx provides technical support on the Xilinx Community Forums for this LogiCORE™ IP product
when used as described in the product documentation. Xilinx cannot guarantee timing,
functionality, or support if you do any of the following:

• Implement the solution in devices that are not defined in the documentation.

• Customize the solution beyond that allowed in the product documentation.

• Change any section of the design labeled DO NOT MODIFY.

To ask questions, navigate to the Xilinx Community Forums.

Hardware Debug
If the DFX Controller core does not load a new Reconfigurable Module, the following tips might
be useful in debugging the issue:

• Visually check that the core is not being held in reset. The reset level is programmable and
needs to match the active level of your design's reset.

• Enable the AXI4-Stream status channel on the failing Virtual Socket Manager. This allows live
monitoring of the Virtual Socket Manager's operation. It can be very useful to add ILAs here,
on the Configuration Library interface, and on the ICAP interface.

Appendix B: Debugging

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 78Send Feedback

https://www.xilinx.com/support.html
https://www.xilinx.com/support.html
https://www.xilinx.com/support/answers/73350.html
https://forums.xilinx.com/
https://forums.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=78

• Make sure the failing Virtual Socket Manager is not in the Shutdown state. A bit in the status
information will tell you this. If the Virtual Socket Manager is in the Shutdown state, bring it
out of shutdown using the appropriate Restart command.

• Make sure the registers are programmed correctly. The incoming trigger selects a row in the
Trigger to Reconfigurable Module register bank which gives the row number in the
Reconfigurable Module Information register bank to use. The RM_BS_INDEX register in this
row provides the row number in the Bitstream Information register bank to use. The registers
in this row provide the size and address in memory of the bitstream to be loaded. These are
set correctly when the core is generated, but can be incorrect if programmed through the
AXI4-Lite interface.

○ An ILA on the Configuration Library interface can help here. m_axi_mem_araddr gives
the address from which the Virtual Socket Manager is trying to fetch the bitstream.

• Make sure the bitstreams are loaded into the memory addresses programmed into the core.

○ An ILA on the Configuration Library interface can help here. m_axi_mem_rdata contains
the bitstream data read from memory. This should quickly contain the sync word
0xAA995566 (31:0).

○ Use the Linux command xxd -c 4 to convert the BIN file to a HEX file. The data seen on
m_axi_mem_rdata should match the HEX data directly.

• Make sure the bitstream sizes programmed into the core are the sizes in bytes, not words.

• Make sure the bitstreams are formatted correctly for the core.

○ Bitstreams must be created as described in Partial Bitstream Preparation.

○ An ILA on the Configuration Library interface can help here. m_axi_mem_rdata contains
the bitstream data read from memory. This should quickly contain the sync word
0xAA995566 (31:0).

• Check the ICAP interface using an ILA.

○ If an arbiter is implemented, make sure it grants access to the ICAP.

○ If an arbiter is not implemented, make sure the CAP_GNT port is tied to 1 and the
CAP_REL port is tied to 0.

• Check the status channel for errors.

• Check that the Virtual Socket Manager is not waiting for:

○ a shutdown acknowledge response from the Reconfigurable Module or from the software,
or

○ a startup acknowledge response from the software.

Appendix B: Debugging

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=79

Appendix C

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

Appendix C: Additional Resources and Legal Notices

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 80Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=80

References
As well as the resources on the Dynamic Function eXchange (DFX) in Vivado Design Suite page
on Xilinx.com, the following documents provide supplemental material useful with this guide:

1. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

2. Vivado Design Suite User Guide: Designing with IP (UG896)

3. Vivado Design Suite User Guide: Dynamic Function eXchange (UG909)

4. Vivado Design Suite Tutorial: Dynamic Function eXchange (UG947)

5. Vivado Design Suite User Guide: Getting Started (UG910)

6. Vivado Design Suite User Guide: Logic Simulation (UG900)

7. Vivado Design Suite User Guide: Programming and Debugging (UG908)

8. Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics (DS181)

9. Kintex-7 FPGAs Data Sheet: DC and AC Switching Characteristics (DS182)

10. Virtex-7 FPGAs Data Sheet: DC and AC Switching Characteristics (DS183)

11. Zynq-7000 SoC (Z-7007S, Z-7012S, Z-7014S, Z-7010, Z-7015, and Z-7020) Data Sheet: DC and
AC Switching Characteristics (DS187)

12. Zynq-7000 SoC (Z-7030, Z-7035, Z-7045, and Z-7100) Data Sheet: DC and AC Switching
Characteristics (DS191)

13. Loading Partial Bitstreams using TFTP (XAPP1292)

14. Dynamic Function eXchange Decoupler IP LogiCORE IP Product Guide (PG375)

15. Dynamic Function eXchange Bitstream Monitor IP LogiCORE IP Product Guide (PG376)

16. Dynamic Function eXchange AXI Shutdown Manager IP LogiCORE IP Product Guide (PG377)

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/03/2020 Version 1.0

Initial release. N/A

Appendix C: Additional Resources and Legal Notices

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 81Send Feedback

https://www.xilinx.com/products/design-tools/vivado/implementation/dynamic-function-exchange.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug994-vivado-ip-subsystems.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug896-vivado-ip.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug947-vivado-partial-reconfiguration-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug910-vivado-getting-started.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug900-vivado-logic-simulation.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds182_Kintex_7_Data_Sheet.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds183_Virtex_7_Data_Sheet.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds187-XC7Z010-XC7Z020-Data-Sheet.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds191-XC7Z030-XC7Z045-data-sheet.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1292-loading-partial-bitstreams-using-tftp.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_decoupler;v=latest;d=pg375-dfx-decoupler.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_bitstream_monitor;v=latest;d=pg376-dfx-bitstream-monitor.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=pr_axi_shutdown_manager;v=latest;d=pg377-dfx-axi-shutdown-manager.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=81

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Appendix C: Additional Resources and Legal Notices

PG374 (v1.0) June 3, 2020 www.xilinx.com
Dynamic Function eXchange Controller v1.0 82Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Product_Guide&docId=PG374&Title=Dynamic%20Function%20eXchange%20Controller%20v1.0&releaseVersion=1.0&docPage=82

	Dynamic Function eXchange Controller v1.0
	Table of Contents
	Ch. 1: Introduction
	Features
	IP Facts

	Ch. 2: Overview
	Feature Summary
	Virtual Sockets and Reconfigurable Modules
	Remapable Software and Hardware Triggers
	Reconfigurable Module Management
	Coexistence with Other Dynamic Function Exchange Controllers
	User Control of Virtual Socket Manager Outputs
	AXI4-Lite Interface for Control, Status, and Reprogramming
	AXI4-Stream Channels for Status and Control
	Compatible with Any Bitstream Storage Location
	Bitstream Decompression

	Unsupported Features
	Licensing and Ordering

	Ch. 3: Product Specification
	Overview
	Active State
	Shutdown State
	Exiting the Shutdown State
	User Control of Virtual Socket Manager Outputs

	Error Handling
	Post Reset Behavior

	Performance and Resource Use
	Port Descriptions
	Clock and Reset Ports
	Virtual Socket Interface Ports
	Internal Configuration Access Ports (ICAP)
	Optional Register Interface AXI4-Lite Ports
	Configuration Library AXI4 Ports

	Register Space
	Bank 0: General Registers
	STATUS Register
	CONTROL Register
	SW_TRIGGER Register

	Bank 1: Trigger to Reconfigurable Module Registers
	Bank 2: Reconfigurable Module Information Registers
	RM_BS_INDEX Register
	RM_CONTROL Register

	Bank 3: Bitstream Information Registers
	BS_ID Register
	BS_ADDRESS Register
	BS_SIZE Register

	Ch. 4: Designing with the Core
	Preparing for In-Field Upgrades
	Clocking
	Resets
	Virtual Socket Manager Control Interface
	Shutdown Command
	Restart with No Status Command
	Restart with Status Command
	Proceed Command
	User Control Command

	Protocol Description
	Hardware Triggers
	Reconfigurable Module Hardware and Software Shutdown
	Shutdown Signal Behavior
	Shutdown Signal Response to Reset
	Software Shutdown

	Reconfigurable Module Software Startup
	ICAP Sharing Protocol
	Decoupling
	RM_RESET

	Ch. 5: Design Flow Steps
	Customizing and Generating the Core
	Validation Tab
	Address Map Tab
	Trigger Mapping Tab
	Global Options
	Virtual Manager Socket Options
	Control Buttons
	Virtual Socket Manager Options
	Reconfigurable Module Options
	Trigger Options

	User Parameters
	Configuring Tcl User Parameters

	Output Generation

	Constraining the Core
	Simulation
	Synthesis and Implementation
	Customizing the Core Post Implementation
	Mandatory Commands
	Low Level Commands
	High Level Commands
	Example Usage
	Important Notes

	Partial Bitstream Preparation

	Appx. A: Upgrading
	Appx. B: Debugging
	Finding Help on Xilinx.com
	Documentation
	Answer Records
	Master Answer Record for the Core

	Technical Support

	Hardware Debug

	Appx. C: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

