

MMY DDR4 4GB-2133 / 2400 / 2666 / 2933 / 3200 SO-DIMM

GENERAL DESCRIPTION

This chapter gives an overview of the 260–pin SO DDR4 Dual-In-Line memory modules product family and describes its main characteristics.

FEATURES

- 1. 260-Pin SO-DIMM (Lead-Free) DDR4 SDRAM Memory Module.
- 2. Data transfer rates: . PC4-17000/19200/21300/23400/25600.
- 3. Power supply: VDD: $1.20V \pm 0.06V$
- 4. Module organization: 512Meg × 64.
- Chip organization: 512M × 8. 5. Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- 6. Low-power auto self refresh (LPASR)
- 7. Data bus inversion (DBI) for data bus
- 8. On-die VREFDQ generation and calibration
- 9. On-board I² serial presence-detect (SPD) EEPROM
- 10. 16 internal banks; 4 groups of 4 banks each
- 11. Fixed burst chop (BC) of 4 and burst length (BL) of 8 via the mode register set (MRS)
- 12. Selectable BC4 or BL8 on-the-fly (OTF)
- 13. Fly-by topology
- 14. Terminated control command and address bus
- 15. Operating Temperature : 0 °C ~ 85 °C
- 16. Storage Temperature : -55 °C ~ 100 °C

Ordering Information for Compliant Products

Product Type	Compliance Code	Description	DRAM Organisation	# of SDRAMs
MM4S4GC3PG-2133C-A00	4GB, PC4 - 17000, 15-15-15	1 Rank, Non-ECC	512Mx8	8
MM4S4GC3PG-2400C-A00	4GB, PC4 - 19200, 17-17-17	1 Rank, Non-ECC	512Mx8	8
MM4S4GC3PG-2666C-A00	4GB, PC4 - 21300, 19-19-19	1 Rank, Non-ECC	512Mx8	8
MM4S4GC3PG-2933C-A00	4GB, PC4 - 23400, 21-21-21	1 Rank, Non-ECC	512Mx8	8
MM4S4GC3PG-3200C-A00	4GB, PC4 - 25600, 22-22-22	1 Rank, Non-ECC	512Mx8	8

Pinout

99. 		260-	Pin DDR4	SODI	MM Front			260-Pin DDR4 SODIMM Back							
Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol	Pin	Symbol
1	V _{SS}	67	DQ29	133	A1	199	DM5_n/ DBI5_n	2	V _{SS}	68	V _{SS}	134	EVENT_n, NF	200	DQS5_t
3	DQ5	69	V _{SS}	135	V _{DD}	201	V _{SS}	4	DQ4	70	DQ24	136	V _{DD}	202	V _{SS}
5	V _{SS}	71	DQ25	137	CK0_t	203	DQ46	6	Vss	72	V _{SS}	138	CK1_t/NF	204	DQ47
7	DQ1	73	V _{SS}	139	CK0_c	205	Vss	8	DQ0	74	DQS3_c	140	CK1_c/NF	206	V _{SS}
9	V _{SS}	75	DM3_n/ DBI3_n	141	V _{DD}	207	DQ42	10	V _{SS}	76	DQS3_t	142	V _{DD}	208	DQ43
11	DQS0_c	77	V _{SS}	143	PARITY	209	V _{SS}	12	DM0_n/ DBI0_n	78	V _{SS}	144	A0	210	Vss
13	DQS0_t	79	DQ30	145	BA1	211	DQ52	14	V _{SS}	80	DQ31	146	A10/AP	212	DQ53
15	V _{SS}	81	V _{SS}	147	V _{DD}	213	V _{SS}	16	DQ6	82	V _{SS}	148	VDD	214	V _{SS}
17	DQ7	83	DQ26	149	CS0_n	215	DQ49	18	Vss	84	DQ27	150	BA0	216	DQ48
19	V _{SS}	85	V _{SS}	151	WE_n/ A14	217	V _{SS}	20	DQ2	86	V _{SS}	152	RAS_n/ A16	218	V _{SS}
21	DQ3	87	CB5/NC	153	V _{DD}	219	DQS6_c	22	V _{SS}	88	CB4/NC	154	V _{DD}	220	DM6_n/ DBI6_n
23	V _{SS}	89	V _{SS}	155	ODT0	221	DQS6_t	24	DQ12	90	V _{SS}	156	CAS_n/ A15	222	V _{SS}
25	DQ13	91	CB1/NC	157	CS1_n	223	V _{SS}	26	V _{SS}	92	CB0/NC	158	A13	224	DQ54
27	V _{SS}	93	V _{SS}	159	V _{DD}	225	DQ55	28	DQ8	94	V _{SS}	160	V _{DD}	226	V _{SS}
29	DQ9	95	DQS8_c	161	ODT1	227	V _{SS}	30	V _{SS}	96	DM8_n/ DBI_n/NC	162	C0/ CS2_n/NC	228	DQ50
31	V _{SS}	97	DQS8_t	163	V _{DD}	229	DQ51	32	DQS1_c	98	V _{SS}	164	VREFCA	230	Vss
33	DM1_n/ DBI_n	99	V _{SS}	165	C1, CS3_n, NC	231	V _{SS}	34	DQS1_t	100	CB6/NC	166	SA2	232	DQ60
35	V _{SS}	101	CB2/NC	167	V _{SS}	233	DQ61	36	Vss	102	V _{SS}	168	V _{SS}	234	V _{SS}
37	DQ15	103	V _{SS}	169	DQ37	235	Vss	38	DQ14	104	CB7/NC	170	DQ36	236	DQ57
39	V _{SS}	105	CB3/NC	171	V _{SS}	237	DQ56	40	V _{SS}	106	V _{SS}	172	V _{SS}	238	V _{SS}
41	DQ10	107	V _{SS}	173	DQ33	239	V _{SS}	42	DQ11	108	RESET_n	174	DQ32	240	DQS7_c
43	V _{SS}	109	CKE0	175	V _{SS}	241	DM7_n/ DBI7_n	44	V _{SS}	110	CKE1	176	V _{SS}	242	DQS7_t
45	DQ21	111	V _{DD}	177	DQS4_c	243	V _{SS}	46	DQ20	112	V _{DD}	178	DM4_n/ DBI4_n	244	V _{SS}
47	Vss	113	BG1	179	DQS4_t	245	DQ62	48	V _{SS}	114	ACT_n	180	Vss	246	DQ63
49	DQ17	115	BG0	181	V _{SS}	247	V _{SS}	50	DQ16	116	ALERT_n	182	DQ39	248	V _{SS}
51	V _{SS}	117	VDD	183	DQ38	249	DQ58	52	V _{SS}	118	VDD	184	V _{SS}	250	DQ59
53	DQS2_c	119	A12	185	V _{SS}	251	V _{SS}	54	DM2_n/ DBI2_n	120	A11	186	DQ35	252	V _{SS}
55	DQS2_t	121	A9	187	DQ34	253	SCL	56	Vss	122	A7	188	Vss	254	SDA
57	V _{SS}	123	VDD	189	V _{SS}	255	VDDSPD	58	DQ22	124	VDD	190	DQ45	256	SA0
59	DQ23	125	A8	191	DQ44	257	V _{PP}	60	V _{SS}	126	A5	192	V _{SS}	258	VTT
61	V _{SS}	127	A6	193	V _{SS}	259	VPP	62	DQ18	128	A4	194	DQ41	260	SA1
63	DQ19	129	VDD	195	DQ40		-	64	Vss	130	VDD	196	Vss	-	-
65	V _{SS}	131	A3	197	V _{SS}	-	-	66	DQ28	132	A2	198	DQS5_c	-	-

江苏华存电子科技有限公司

Jiangsu Huacun Electronic Technology

Pin Descriptions

Pin Name	Description	Pin Name	Descripti on
A0-A17 ¹	SDRAM address bus	SCL	I ² C serial bus clock for SPD-TSE
BA0, BA1	SDRAM bank select	SDA	I ² C serial bus line for SPD-TSE
BG0, BG1	SDRAM bank group select	SA0-SA2	I ² C slave address select for SPD-TSE
RAS_n ²	SDRAM row address strobe	PARITY	SDRAM parity input
CAS_n ³	SDRAM column address strobe	VDD	SDRAM I/OO and core power supply
WE_ n ⁴	SDRAM write enable	C0, C1, C2	Chip ID lines
CS0_n, CS1_n,	DIMM Rank Select Lines	12V	Optional power Supply on socket but not used on UDIMM
CKE0, CEK1	SDRAM clock enable lines input	VREFCA	SDRAM command/address reference supply
ODT0, ODT1	SDRAM on-die termination control lines input	VSS	Power supply return (ground)
ACT _n	SDRAM activate	VDDSPD	Serial SPD-TSE positive power supply
DQ0-DQ63	DIMM memory data bus	ALERT_n	SDRAM ALERT_n output
CB0-CB7	DIMM ECC check bits	VPP	SDRAM Supply
TDQS0_t- TDQS8_t TDQS0_c- TDQS8_c	Dummy loads for mixed populations of x4 based and x8 based RDIMMs. Not used on UDIMMs.		
DQS0_t- DQS8_t	SDRAM data strobes (positive line of differential pair)		
DQS0_c- DQS8_c	SDRAM data strobes (negative line of differential pair)	RESET_n	Set DRAMs to a Known State
DM0_n- DM8_n, DBI0_n- DBI8_n	SDRAM data masks/data bus inersion (x8-based x72 DIMMs)	EVENT_ n	SPD signals a thermal event has occurred
CK0_t, CK1_t	SDRAM clock (positive line of differen- tial pair)	VTT	SDRAM I/O termination supply
CK0_c, CK1_c	SDRAM clock (positive line of differen- tial pair)	RFU	Reserved for future use

• Address A17 is not valid for x8 and x16 based SDRAMs. For UDIMMs, this connection pin is NC.

• RAS_n is a multiplexed function with A16.

• CAS_n is a multiplexed function with A15.

• WE_n is a multiplexed function with A14.

Jiangsu Huacun Electronic Technology

Absolute Maximum DC Ratings

Symbol	Parameter	Rating	Units	NOTE
VDD	Voltage on VDD pin relative to Vss	-0.3 ~ 1.5	V	1,3
VDDQ	Voltage on VDDQ pin relative to Vss	-0.3 ~ 1.5	V	1,3
VPP	Voltage on VPP pin relative to Vss	-0.3 ~ 3.0	V	4
V _{IN} , V _{OUT}	Voltage on any pin except VREFCA relative to Vss	-0.3 ~ 1.5	V	1,3 <mark>,</mark> 5
T _{STG}	Storage Temperature	-55 to +100	°C	1,2

NOTE :

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at hese or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability
- 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
- 3. VDD and VDDQ must be within 300 mV of each other at all times;and VREFCA must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500 mV; VREFCA may be equal to or less than 300 mV
- 4. VPP must be equal or greater than VDD/VDDQ at all times
- 5. Overshoot area above 1.5V is specified in DDR4 Device Operation.

DRAM Component Operating Temperature Range

Symbol	Parameter	Rating	Units	Notes
T _{OPER}	Normal Operating Temperature Range	0 to 85	°C	1,2
	Extended Temperature Range	85 to 95	°C	1,3

NOTE:

- 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2.
- The Normal Temperature Range specifies the temperatures where all DRAM specifications Will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85°C under all operating conditions.
- 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply:
 - Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability
 - If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b) or enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).

江苏华存电子科技有限公司	江苏省南通市通州区新世纪大道 266 号 C4 楼 9 层 (南通高新区江海智汇园)
Jiangsu Huacun Electronic Technology	9F, C4 Building, 266 New Century Avenue, Tongzhou District, Nantong City, Jiangsu Province Page 4

Recommended DC Operating Conditions

Symbol	Parameter		Unit	NOTE		
Symbol	i didileter	Min.	Тур.	Max.	Unic	
VDD	Supply Voltage	1.14	1.2	1.26	V	1,2,3
VDDQ	Supply Voltage for Output	1.14	1.2	1.26	V	1,2,3
VPP	Supply Voltage for DRAM Activating	2.375	2.5	2.75	V	3

NOTE:

- Under all conditions VDDQ must be less than or equal to VDD.
- ◆ VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
- DC bandwidth is limited to 20MHz. Recommended DC Operating Conditions

Physical Dimensions

Note: 1. Tolerances on all dimensions ±0.15 unless otherwise specified.

2. The dimensional diagram is for reference only.