
Vitis Unified Software
Platform Documentation

Embedded Software Development

UG1400 (v2019.2) November 11, 2019

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
11/11/2019 Version 2019.2

Installing the Vitis Software Platform Updated content.
Removed licensing information.

10/30/2019 Version 2019.2

Initial release. N/A

Revision History

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=2

Table of Contents
Revision History...2

Section I: Getting Started.. 10

Chapter 1: Overview...11
Key Concepts.. 11
Document Scope and Audience... 12

Chapter 2: Migrating to the Vitis Software Platform from
Xilinx SDK... 13

Chapter 3: Installing the Vitis Software Platform.................................14
Installation Requirements...14
Vitis Software Platform Installation... 16
Licensing... 20

Chapter 4: Create a Platform.. 22
Create a Hardware Design (XSA File)...22
Create a Platform Project.. 22

Chapter 5: Create a Sample Application... 25
Build a Sample Application... 25
Debug and Run the Application... 26

Chapter 6: Vitis IDE Extensions.. 27

Section II: Using the Vitis IDE.. 29

Chapter 7: Develop.. 30
Platform...30
Applications.. 36
Using Custom Libraries in Application Projects... 55

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=3

Chapter 8: Run, Debug, and Optimize..57
Run Application Project... 57
Debug Application Project.. 67
Cross-Triggering...88
Profile/Analyze... 95
Optimize.. 104
Packaging the System/Utilities...129

Chapter 9: Other Xilinx Utilities.. 132
Xilinx Software Command-Line Tool..132
Program FPGA.. 132
Dump/Restore Data File..134
Launch Shell..134
Import..134
Export.. 135
Generating Device Tree... 136

Section III: Embedded Software Development Flow in Vitis..............138

Chapter 11: Creating a Platform Project...139

Chapter 12: Customizing a Pre-Built Platform...................................... 142

Chapter 13: Adding Domains to a Platform Project........................... 144

Chapter 14: Creating Applications from Domains in a Platform.145

Chapter 15: Managing Multiple Applications in a System
Project.. 149

Chapter 17: Switching FSBL Targeting Processor................................ 152

Chapter 18: Creating Multiple Domains for a Single Hardware.. 153

Chapter 19: Changing a Referenced Domain... 156

Chapter 20: Changing and Updating the Hardware
Specification... 158

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=4

Chapter 21: Debugging the Application on Hardware......................159

Chapter 22: Running and Debugging Applications under a
System Project Together .. 160

Chapter 23: Creating a Bootable Image ...161

Chapter 24: Flash Programming..163

Chapter 25: Generating Device Tree..165

Chapter 10: Overview.. 166
Document Scope and Audience .. 166
New Concepts in the Vitis Software Platform...167

Chapter 16: Creating and Building Applications for XSA
Exported from the Vivado Design Suite..170
Exporting the DSA/XSA files from the Vivado Design Suite..173

Chapter 26: Debugging an Application using the User-
Modified/Custom FSBL... 174
Creating a Hello World Application..174
Modifying the Source Code of the FSBL in Platform..174
Modifying the BSP Settings of the FSBL in Platform..174
Debugging the “Hello World” Application using the Modified FSBL...........................175

Chapter 27: Modifying the Domain Sources (Driver and
Library Code)..176
Creating a Repository.. 176
Adding the Repository...177
Creating the Application Project.. 178

Section IV: Bootgen Tool...180

Chapter 28: Introduction... 181
Installing Bootgen..182
Boot Time Security... 182

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=5

Chapter 29: Boot Image Layout... 184
Zynq-7000 SoC Boot and Configuration.. 184
Zynq UltraScale+ MPSoC Boot and Configuration... 193

Chapter 30: Creating Boot Images... 206
Boot Image Format (BIF)...206
BIF Syntax and Supported File Types.. 207
Attributes ... 209

Chapter 31: Using Bootgen Interfaces...215
Bootgen GUI Options.. 215
Using Bootgen on the Command Line.. 216
Commands and Descriptions... 217

Chapter 32: Boot Time Security..220
Using Encryption.. 221
Using Authentication... 229
Using HSM Mode..239

Chapter 33: FPGA Support... 256
Encryption and Authentication...256
HSM Mode...257

Chapter 34: Use Cases and Examples..260
Zynq MPSoC Use Cases... 260

Chapter 35: BIF Attribute Reference... 270
aarch32_mode.. 270
aeskeyfile...270
alignment.. 272
auth_params... 273
authentication.. 275
big_endian...275
bh_keyfile...276
bh_key_iv... 276
bhsignature...277
blocks...277
boot_device... 278

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=6

bootimage...279
bootloader.. 280
bootvectors... 281
checksum.. 281
destination_cpu.. 282
destination_device... 283
early_handoff..283
encryption... 284
exception_level... 284
familykey... 285
fsbl_config... 286
headersignature...286
hivec...287
init.. 288
keysrc_encryption...288
load.. 289
offset..290
partition_owner.. 290
pid.. 291
pmufw_image... 291
ppkfile.. 292
presign...292
pskfile.. 293
puf_file... 294
reserve...294
split...295
spkfile.. 296
spksignature... 297
spk_select.. 297
sskfile... 298
startup... 299
trustzone... 299
udf_bh..300
udf_data...301
xip_mode... 301

Chapter 36: Command Reference... 303
arch.. 303

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=7

bif_help.. 303
dual_qspi_mode..304
efuseppkbits... 304
encrypt...305
encryption_dump... 305
fill..306
generate_hashes.. 306
generate_keys...307
image... 309
log.. 309
nonbooting... 310
o..310
p..311
padimageheader..311
process_bitstream..312
read..312
spksignature... 313
split...313
verify.. 314
verify_kdf... 314
w... 315
zynqmpes1..315
Initialization Pairs and INT File Attribute.. 316

Chapter 37: Bootgen Utility..318

Section V: Xilinx Software Command-Line Tool...320

Chapter 38: Xilinx Software Command-Line Tool................................ 321
System Requirements..322

Chapter 39: Installing and Launching XSCT.. 324
Installing and Launching XSCT on Windows...324
Installing and Launching XSCT on Linux... 325

Chapter 40: XSCT Commands.. 327
Target Connection Management... 328
Target Registers... 331
Program Execution.. 333

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=8

Target Memory... 345
Target Download FPGA/BINARY...351
Target Reset.. 354
Target Breakpoints/Watchpoints... 355
JTAG UART... 360
Miscellaneous... 362
JTAG Access... 370
Target File System.. 377
SVF Operations... 385
Device Configuration System... 389
Vitis Projects..391

Chapter 41: XSCT Use Cases..433
Changing Compiler Options of an Application Project... 434
Creating an Application Project Using an Application Template (Zynq UltraScale+

MPSoC FSBL).. 434
Creating a Bootable Image and Program the Flash.. 434
Debugging a Program Already Running on the Target.. 435
Debugging Applications on Zynq UltraScale+ MPSoC...437
Modifying BSP Settings... 440
Performing Standalone Application Debug..440
Generating SVF Files.. 443
Running an Application in Non-Interactive Mode... 444
Running Tcl Scripts...444
Switching Between XSCT and Vitis Integrated Development Environment............... 445
Using JTAG UART.. 446
Working with Libraries.. 447
Editing FSBL/PMUFW Source File... 448
Editing FSBL/PMUFW Settings..448

Section VI: Embedded Design Tutorials... 449

Section VII: Embedded Drivers and Libraries... 450

Appendix A: Additional Resources and Legal Notices........................... 451
Xilinx Resources...451
Documentation Navigator and Design Hubs.. 451
Please Read: Important Legal Notices... 452

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=9

Section I

Getting Started

Section I: Getting Started

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=10

Chapter 1

Overview
The Vitis™ integrated development environment (IDE) is part of the Vitis unified software
platform. The Vitis IDE is designed to be used for the development of embedded software
applications targeted towards Xilinx® embedded processors. The Vitis IDE works with hardware
designs created with Vivado® Design Suite. The Vitis IDE is based on the Eclipse open source
standard. The features for software developers include:

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic Makefile generation

• Error navigation

• Integrated environment for seamless debugging and profiling of embedded targets

• Source code version control

• System-level performance analysis

• Focused special tools to configure FPGA

• Bootable image creation

• Flash programming

• Script-based command-line tool

Key Concepts
The concepts listed below are key to understanding the Vitis embedded software development
flow.

• Workspace: When you open the Vitis software platform, you create a workspace. A
workspace is a directory location used by the Vitis software platform to store project data and
metadata. You must provide an initial workspace location when the Vitis software platform is
launched. You can create multiple workspaces to more easily manage multiple software
versions.

• Platform: The target platform or platform is a combination of hardware components (XSA) and
software components (domains/BSPs, boot components such as FSBL, and so on).

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=11

• Platform Project: A platform project is customizable for adding domains and modifying
domain settings. A platform project can be created by importing an XSA, or by importing an
existing platform.

• Domain: A domain is a board support package (BSP) or the operating system (OS) with a
collection of software drivers, on which to build your application. The created software image
contains only the portions of the Xilinx library you use in your embedded design. You can
create multiple applications to run on the domain. A domain is tied to a single processor or a
cluster of isomorphic processors (for example: A53_0 or A53) in the platform.

• System Project: A system project groups together applications that run simultaneously on the
device. Two standalone applications for the same processor cannot sit together in a system
project. Two Linux applications can sit together in a system project.

• Application (Software Project): A software project contains one or more source files, along
with the necessary header files, to allow compilation and generation of a binary output (ELF)
file. A workspace can contain multiple software projects. Each software project must have a
corresponding domain.

Document Scope and Audience
The purpose of this content is to familiarize software application developers and system software
developers with the Vitis software platform and help them get started with using the tool. This
content provides an overview of the Vitis software platform and the features listed here.

• Creating a platform project

• Creating an application project

• Vitis integrated development environment (IDE) extensions

Chapter 1: Overview

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=12

Chapter 2

Migrating to the Vitis Software
Platform from Xilinx SDK

If you are a Xilinx® Software Development Kit (SDK) user and are migrating to the Vitis™
software platform, the Section III: Embedded Software Development Flow in Vitis section lists a
set of use cases that show you how to perform some of the regular tasks like working with
platforms, applications, domains, debugging, flash programming, and so on.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=13

Chapter 3

Installing the Vitis Software
Platform

This section gives you information on installing the Vitis software platform. It details the
requirements for installation, the packages, and installation and setup instructions.

Installation Requirements
The Vitis software platform consists of an integrated development environment (IDE) for
interactive project development, and command-line tools for scripted or manual application
development. The Vitis software platform also includes the Vivado® Design Suite for
implementing the kernel on the target device, and for developing custom hardware platforms.

TIP: The complete Vivado Design Suite is installed as part of the Vitis software platform. There is no need to
install it separately.

Note: Windows OS support is limited to the Vitis embedded software development flow.

IMPORTANT! For Linux, GLX version 1.3 or higher is required.

Some requirements listed here are only required for software acceleration features, but not for
embedded software development features. Xilinx recommends installing all the required
packages to have the best experience with the Vitis software platform.

To install and run on a computer, your system must meet the following minimum requirements:

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=14

Table 1: Embedded Software Development Flow Minimum System Requirements

Component Requirement
Operating System Linux, 64-bit:

• Ubuntu 16.04.5 LTS, 16.04.6 LTS, 18.04.1 LTS, 18.04.2 LTS
• CentOS 7.4, 7.5, 7.6
• RHEL 7.4, 7.5, 7.6
• SUSE Enterprise Linux 12.4

Windows, 64-bit:
• Windows 7 Professional (with SP1)
• Windows 10 Professional (1809 update, 1903 Pre-

release)

System Memory 32 GB (64 GB is recommended)

Internet Connection Required for downloading drivers and utilities.

Hard disk space 100 GB

Install Required CentOS/RHEL Packages
Before installing the Vitis software platform on CentOS or RedHat, you must install the Extra
Packages for Enterprise Linux (EPEL), and ensure you have the proper kernel-headers and kernel-
devel packages installed. The initial setup commands depend on your operating system. For more
information, see https://fedoraproject.org/wiki/EPEL.

Note: Ubuntu does not require additional packages.

1. Install EPEL.

On RedHat:

To enable an additional repository on your system and install the packages, open a terminal
window, and enter the following command:

$ sudo yum-config-manager --enable rhel-7-server-optional-rpms

$ sudo yum install -y https://dl.fedoraproject.org/pub/epel/
epel-release-latest-7.noarch.rpm

On CentOS:

Open a terminal window, and enter the following command:

sudo yum install epel-release

2. To install kernel headers and kernel development packages, run the following commands:

$ sudo yum install kernel-headers-`uname -r`
$ sudo yum install kernel-devel-`uname -r`

Note: Ensure that uname is surrounded by backticks (`) and not single quotes (').

3. Cold reboot your system.

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 15Send Feedback

https://fedoraproject.org/wiki/EPEL
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=15

OpenCL Installable Client Driver Loader
A system can have multiple OpenCL™ platforms, each with its own driver and OpenCL version.
The Vitis™ environment supports the OpenCL Installable Client Driver (ICD) extension
(cl_khr_icd). This extension allows multiple implementations of OpenCL to co-exist on the
same system. The ICD Loader acts as a supervisor for all installed platforms, and provides a
standard handler for all API calls.

Applications can choose an OpenCL platform from the list of installed platforms. Based on the
platform ID specified by the application, the ICD dispatches the OpenCL host calls to the right
runtime.

Xilinx does not provide the OpenCL ICD library, so the following should be used to install the
library on your preferred system.

Ubuntu

On Ubuntu the ICD library is packaged with the distribution. Install the following packages:

• ocl-icd-libopencl1

• opencl-headers

• ocl-icd-opencl-dev

Linux

For RHEL/CentOS 7.X use EPEL 7, install the following packages:

• ocl-icd

• ocl-icd-devel

• opencl-headers

Vitis Software Platform Installation
For hardware-accelerated application development, do the following: install the Vitis™ tools,
Xilinx Runtime (XRT), and applicable platform files, as outlined below:

1. Install the Vitis Software Platform

2. Follow the instructions in Installing Xilinx Runtime.

3. Install the embedded platform, as described in Installing Embedded Platforms

4. Follow the instructions in Setting Up the Environment to Run the Vitis Software Platform.

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=16

Note: To install and use XRT on CentOS/RedHat, ensure that you have already installed all required
packages and recommended libraries, as described in Install Required CentOS/RHEL Packages.

Install the Vitis Software Platform
Ensure your system meets all requirements described in Installation Requirements.

TIP: To reduce installation time, disable anti-virus software and close all open programs that are not needed.

1. Go to the Xilinx Downloads Website.

2. Download the installer for your operating system.

3. Run the installer, which opens the Xilinx Unified 2019.2 Installer.

4. Click Next.

5. Enter your Xilinx user account credentials, and then select Download and Install Now.

6. Click Next.

7. Accept the terms and conditions by clicking each I Agree check box.

8. Click Next.

9. Select Vitis, and then click Next.

10. Customize your installation by selecting design tools and devices, and then click Next.

IMPORTANT! Do not deselect the following options. They are required for installation.

• Devices → Install devices for Alveo and Xilinx Edge acceleration platforms

• Devices for Custom Platforms → 7 Series → Virtex-7

Note: By default, both the Vitis tools and Vivado Design Suite are installed. You do not need to
separately install Vivado tools. You can also install System Generator and Model Composer if needed.

11. Select the installation directory, optional shortcut and file association options, and then click
Next.

12. Review the installation summary, which shows the options and locations you have selected.

13. To proceed with the installation of the Vitis software platform, click Install.

After a successful installation, a confirmation message is displayed.

IMPORTANT! If you are installing the Vitis tools on a network system that remote users will be accessing, you
must also enable user permissions for specific files in the installation. Enter the following commands from the
Vitis installation directory:

chmod -R o=g <install_dir>/Vitis/2019.2/tps/lnx64/jre9.0.4
chmod -R o=g <install_dir>/Vivado/2019.2/tps/lnx64/jre9.0.4
chmod -R o=g <install_dir>/.xinstall/Vitis_2019.2/tps/lnx64/jre9.0.4

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 17Send Feedback

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vitis.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=17

If the software was installed with sudo privileges, you must use sudo for the preceding commands.

Installing Xilinx Runtime
Xilinx Runtime (XRT) is implemented as a combination of user-space and kernel driver
components. XRT supports Alveo PCIe-based cards, as well as Zynq UltraScale+ MPSoC-based
embedded system platforms, and provides a software interface to Xilinx programmable logic
devices.

You only need to install XRT once, regardless of how many platforms you may be installing.

IMPORTANT! XRT installation uses standard Linux RPM and Linux DEB distribution files, and root access is
required for all software and firmware installations.

<rpm-dir> or <deb-dir> is the directory where you downloaded the packages to install.

To download and install the XRT package for your operating system, do the following.

CentOS/RedHat

1. To download the RPM file, click this link.

2. To install the package, enter the following command.

sudo yum install <rpm-dir>/<xrt_filename>.rpm

Ubuntu

1. To download the DEB file, click one of the following:

• Ubuntu 16.04

• Ubuntu 18.04

.

2. To install the package, enter the following command.

sudo apt install <deb-dir>/<xrt_filename_OS>.deb

Note: <OS> represents the Ubuntu operating system version (16.04 or 18.04) you are using.

IMPORTANT! When installing XRT on Ubuntu, if the 2015 version of pyopencl is installed on your system,
you must uninstall it. The XRT installation will install the 2019 version of pyopencl and will return an error if
the 2015 version is installed. For more information, see AR#73055.

Installing Embedded Platforms
IMPORTANT! Embedded platforms require the installation of XRT, as described in Installing Xilinx Runtime.

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 18Send Feedback

https://www.xilinx.com/bin/public/openDownload?filename=xrt_201920.2.3.1301_7.4.1708-xrt.rpm
https://www.xilinx.com/bin/public/openDownload?filename=xrt_201920.2.3.1301_16.04-xrt.deb
https://www.xilinx.com/bin/public/openDownload?filename=xrt_201920.2.3.1301_18.04-xrt.deb
https://www.xilinx.com/support/answers/73055.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=18

Embedded targets must run Linux and XRT to support the Vitis application acceleration development flow. You
can also use embedded platforms with standalone/bare metal or RTOS domains for the Vitis embedded
software development flow. The embedded processor platforms can be found at https://developer.xilinx.com/.

The embedded platforms currently supported by XRT include the platforms listed below. These
platforms are available for use with the Vitis tools in embedded processor applications but must
be separately installed and configured.

• zcu102_base.zip: Provides the platform definition, XRT drivers, and shared libraries for
the zcu102_base platform.

• zcu104_base.zip: Provides the platform definition, XRT drivers, and shared libraries for
the zcu104_base platform.

• zc702_base.zip: Provides the platform definition, XRT drivers, and shared libraries for the
zc702_base platform.

• zc706_base.zip: Provides the platform definition, XRT drivers, and shared libraries for the
zc706_base platform.

• sdk.sh: Sets up the sysroot headers, libs, and include files for compilation of applications
running on the embedded platforms. This setup script must be run to configure the Vitis
application for use with these platforms.

IMPORTANT! Embedded platforms are configured without <SYSROOT> in the platform, so you must set this
environment variable before you launch the Vitis tools.

For example, point <SYSROOT> to /path/to/aarch64-xilinx-linux, which is the output generated
after running sdk.sh.

To make the embedded platforms available to the Vitis tools, extract the archive into the
<VITIS_INSTALL_DIR>/platforms directory (where you installed the Vitis tools), which is
where the tool automatically looks for platforms.

Setting Up the Environment to Run Vitis Tools
To configure the environment to run the Vitis tools, source the files below so that the vitis
command, XRT, and Vitis compiler are in the PATH.

Linux

C Shell:

source <VITIS_INSTALL_DIR>/Vitis/2019.2/settings64.csh
source <XRT_INSTALL_DIR>/xilinx/xrt/setup.csh

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 19Send Feedback

https://developer.xilinx.com/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=19

Bash:

source <VITIS_INSTALL_DIR>/Vitis/2019.2/settings64.sh
source <XRT_INSTALL_DIR>/xilinx/xrt/setup.sh

Windows

To launch the Vitis software platform, do one of the following:

• Launch from a desktop icon or Start menu command.

• From a Windows command shell, use settings64.bat:

C:> <VITIS_INSTALL_DIR>\VITIS\2019.2\settings64.bat

Licensing
A license is required for the Vitis™ software platform. To obtain the license key, refer to the
instructions on the lounge.

Install Certificate-Based Node-Locked License Key
File
After generating a license file, you will receive an email from xilinx.notification@entitlenow.com.

1. Save the license file (.lic) attached to the e-mail to a temporary directory on your local
system.

2. Open the Vivado License Manager.

Linux:

Open a command-line shell and enter vlm.

3. In the left pane, expand Getting a License, and then select Load License.

4. If you received a certificate license (.lic) file, on the Load License screen, click Copy
License.

5. Browse to your license file (Xilinx.lic) and click Open.

This copies the license file to a directory on your computer, where it will be automatically
found by the Xilinx tools.

Note: Typically, these are the directories:

• Linux: %APPDATA%\Xilinx

• Windows: $HOME/.Xilinx

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 20Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=20

6. Click OK.

Serving Certificate-Based Floating Licenses
For existing FLEXnet license servers serving certificate-based licenses, a common practice is to
copy the contents of the license file, mailed from xilinx.notification@entitlenow.com, into the
existing license file on your FLEXnet server.

Note: Restart the floating license server to ensure the new Xilinx licenses are enabled.

Serve New License Servers

1. Go to the Xilinx Downloads Website.

2. In License Management Tools, select and download the applicable Xilinx FLEXnet license
utilities for your server's operating system.

3. Unzip these utilities into a destination directory.

RECOMMENDED: Xilinx recommends you place this directory into your application search path

4. After the FLEXnet utilities are installed, run the following commands to start the floating
license server:

Linux:

<Server Tool directory>/lnx64.o/lmgrd.sh -c <path_to_license>/<license
file>.lic -l <path_to_license>/<log filename>.log

Serve Client Machines Pointing to a Floating License

1. Run the Vivado License Manager (VLM).

2. Under Manage License, click Manage License Search Path.

3. In the XILINXD_LICENSE_FILE field, enter the network path to the license server in the
port@server format.

The default Xilinx port number is 2100.

4. Click Set.

Chapter 3: Installing the Vitis Software Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 21Send Feedback

https://www.xilinx.com/support/download.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=21

Chapter 4

Create a Platform
A platform project is the container for the hardware platform, runtime library, the settings for
each processor, and the bootloader for the device. It can be as simple as a standalone board
support package for a Cortex™-A53, or a combination of different kinds of runtime
configurations for Cortex-A53, Cortex-R5F and MicroBlaze™ processors. This section explains
how to create a hardware design and use that hardware design to create an application platform.

Create a Hardware Design (XSA File)
To create a hardware design, create a Vivado® project, customize the Zynq® UltraScale+™
MPSoC settings, connect to the PL peripherals, and generate the block design. For information
on how to create a Vivado project, see Zynq UltraScale+ MPSoC: Embedded Design Tutorial
(UG1209).

Note: A bd.tcl should be prepared in the hw_src directory. If you have cloned this repository, the
Vivado block diagram design can be recreated in Vivado.

1. Create a Vivado block diagram design using the command source hw_src/
design_1.tcl.

2. From IP integrator, run Generate Block Design. The block design is generated.

3. Select File → Export → Export Hardware to export the hardware platform from Vivado.

4. On the Export Hardware dialog, click OK.

Create a Platform Project
After exporting a hardware design, you can create a platform project. To create a platform
project, do the following.

1. Launch the Vitis™ software platform.

2. Select File → New → Platform Project. The New Platform Project window opens.

3. In the Project name field, enter a name for your platform project and click Next.

4. Select Create from hardware specification (XSA/DSA) and click Next.

Chapter 4: Create a Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 22Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=22

5. In the XSA/DSA file field, browse and select the XSA file that you exported from the Vivado
Design Suite.

6. Use the dropdown menus to select standalone as the operating system and psu_cortexa53_0
as the processor. The Generate boot components checkbox is selected. You can deselect this
if you do not need boot components.

7. Click Finish. The platform is generated with multiple domains, one that you specified and the
rest are the ones required for the boot components. It can later be modified to add new
domains.

8. Double-click platform.spr in the Explorer view. This opens the platform tab for viewing and
modification. You can modify settings for FSBL, standalone domains, and PMUFW.

Chapter 4: Create a Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=23

9. In the platform view, click

to generate the platform. The Generation Successful message pops up.

Chapter 4: Create a Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=24

Chapter 5

Create a Sample Application
After installing the Vitis™ software platform, the next step is to create a software application
project. Software application projects are the final application containers. The project directory
that is created contains (or links to) your C/C++ source files, executable output file, and
associated utility files, such as the Makefiles used to build the project.

Note: The Vitis software platform automatically creates a system project for you. A system project is a top-
level container project that holds all of the applications that can run in a system at the same time. This is
useful if you have many processors in your system, especially if they communicate with one another,
because you can debug, launch, and profile applications as a set instead of as individual items.

Build a Sample Application
This section describes how to create a sample Hello World application using an existing template.

1. Launch the Vitis software platform.

2. Select a workspace directory for your first project.

3. Click Launch. The welcome page appears.

4. Close the welcome page. The development perspective opens.

5. Select File → New → Vitis Application Project.

6. Enter a name in the Project name field and click Next. The Select platform tab opens. You
should choose a platform for your project. You can either use a pre-supplied platform (from
Xilinx or another vendor), a previously created custom platform, or you can create one
automatically from an exported Vivado® hardware project.

7. On the Select platform tab, click the platform you just created and click Next. To use your

own hardware platform, click the icon and add your platform to the list.

8. Select the system configuration for your project and click Next. The Templates window
opens.

9. Select Hello World and click Next. Your workspace opens with the Explorer pane showing
the hello_world_system system project and the zcu102 platform project.

10. Right-click the system project and select Build Project. You have now built your application
and the Console tab shows the details of the file and application size.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=25

Debug and Run the Application
Now that you have generated the executable binary, you can test it on a board. To run the
application on the board, perform the following preliminary steps:

• Connect a JTAG cable to the computer.

• Set the Boot Mode switch of the board to JTAG mode.

• Connect a USB UART cable and setup your UART console.

• Power up the board.

1. Open the Debug drop-down menu and select Debug As → Launch on Hardware (Single
Application Debug).

2. On the Confirm Perspective Switch dialog, click Yes. The Vitis IDE switches to the Debug
perspective and the debugger stops at the entry to your main() function.

3. Using the commands in the toolbar, step through the application. After you step through the
print() function, Hello World appears in the UART console.

Chapter 5: Create a Sample Application

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=26

Chapter 6

Vitis IDE Extensions
The Vitis software platform has the following IDE extensions.

• XSCT Console: Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable
command-line interface to the Vitis software platform. As with other Xilinx tools, the scripting
language for XSCT is based on Tools Command Language (Tcl). You can run XSCT commands
interactively or script the commands for automation. XSCT supports the following actions.

• Creating platform projects and application projects

• Manage repositories

• Manage domain settings and add libraries to domains

• Set toolchain preferences

• Configure and build applications

• Download and run applications on hardware targets

• Create and flash boot images by running Bootgen and program_flash tools

• Bootgen Utility: Bootgen is a Xilinx tool that lets you stitch binary files together and generate
device boot images. Bootgen defines multiple properties, attributes and parameters that are
input while creating boot images for use in a Xilinx device. Bootgen comes with both a
graphical user interface and a command line option. The tool is integrated into the Vitis
software platform for generating basic boot images using a GUI, but the majority of Bootgen
options are command line-driven.

For more information on the Bootgen utility, see Bootgen User Guide (UG1283).

• Program Flash: Program Flash is a tool used to program the flash memories in the design.
Various types of flash types are supported by the Vitis software platform for programming.

• Repositories: A software repository is a directory where you can install third-party software
components, as well as custom copies of drivers, libraries, and operating systems. When you
add a software repository, the Vitis software platform automatically infers all the components
contained with the repository and makes them available for use in its environment. Your
workspace can point to multiple software repositories.

• Program FPGA: You can use the Program FPGA feature to program FPGA using bitstream.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 27Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=27

• Device Tree Generation: Device tree (DT) is a data structure that describes hardware. This
describes hardware that is readable by an operating system like Linux so that it does not need
to hard code details of the machine. Linux uses the DT basically for platform identification,
runtime configuration like bootargs, and device node population.

Chapter 6: Vitis IDE Extensions

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=28

Section II

Using the Vitis IDE
This section describes how to use the Vitis™ integrated design environment (IDE) to develop,
run, debug and optimize platforms and applications. It also contains information about Other
Xilinx Utilities utilities.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=29

Chapter 7

Develop
This section describes how you can use the Vitis™ integrated design environment (IDE) to create
and manage target platforms and applications.

Platform
In the Vitis software platform, hardware is referred to as the target platform. The target platform
is a combination of hardware components (XSA) and software components (domains, boot
components like U-Boot and so on). Using this platform, you can create an application without
creating the domain separately.

A platform project is a container for the hardware platform, runtime library, and settings for each
processor, as well as the bootloader for the device. It can be as simple as a standalone domain for
Cortex™-A53 or a combination of different kinds of runtime configurations for Cortex-A53,
Cortex-R5F and MicroBlaze processors. This section explains how to create a hardware design
and use that hardware design to create an application platform.

Creating a Platform
To create a new platform for application development in the Vitis integrated design environment
(IDE), do the following:

1. Click File → New → Platform Project.

2. Click Specify to create a new Hardware Platform Specification.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=30

3. Provide a new name for the domain in the Project name field if you wish to override the
default value.

4. Select the location for the board support project files. To use the default location, as
displayed in the Location field, leave the Use default location check box selected. Otherwise,
deselect the checkbox and then type or browse to the directory location.

5. From the Hardware Platform drop-down choose the appropriate platform for your
application or click the New button to browse to an existing Hardware Platform.

6. Select the target CPU from the drop-down list.

7. From the Board Support Package OS list box, select the type of board support package to
create. A description of the platform types displays in the box below the drop-down list.

8. Click Finish. The wizard creates a new software platform and displays it in the Vitis Navigator
pane.

9. Select Project → Build Automatically to automatically build the board support package.

10. The Board Support Package Settings dialog box opens. Here you can customize the settings
for the domain. For details, see Using the Board Support Package Settings Page.

11. Click OK to accept the settings, build the platform, and close the dialog box.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=31

Configuring a Domain/Board Support Package
There are various ways to launch the Board Support Package Settings dialog box.

1. From the Explorer, double-click platform.spr file and select the appropriate domain/
board support package. The overview page opens.

2. In the overview page, click Modify BSP Settings.

Using the Board Support Package Overview Page

Using the Overview page, you can select the OS Version and which of the Supported Libraries
are to be enabled in this domain/BSP.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=32

Note: You cannot change the OS choice in this page, because the OS type was determined during the
software platform creation.

Using the Board Support Package Settings Page

The Board Support Package settings page enables you to configure parameters of the OS and its
constituent libraries.

Note: Options for only the libraries that you enabled in the Overview page will be visible. Options for the
OS/standalone supported peripherals, that are present in the hardware platform, are also shown on the
page.

Using the Board Support Package Drivers Page

The Drivers page lists all the device drivers assigned for each peripheral in your system. You can
select each peripheral and change its default device driver assignment and its version. If you
want to remove a driver for a peripheral, assign the driver to none.

Some device drivers export parameters that you can configure. If a device in the driver list has
parameters, it is listed in navigation pane on the left and you can access them by clicking on the
device name.

Using the Board Support Package Settings Driver Configuration
Page

The Driver Configuration page lists all of the configurable driver parameters for the device
selected under the drivers entry on the left. To change a parameter, click on the corresponding
Value field and type the new setting.

When you finish with all the settings you want to make, click OK. The Vitis software platform re-
generates the domain/BSP sources.

If the Build Automatically option is selected in the Project menu, Vitis software platform
automatically rebuilds your target platform with your new settings applied.

Note: The exact list of software components appearing in the Board Support Package Settings dialog box
depends on the components available in your Vitis software platform install, as well as the list of
components found in any software repositories that are set up in your workspace. For more information
about how repositories work, see Vitis IDE Extensions.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=33

Adding a Domain to an Existing Platform

Adding a Linux Domain

1. Double-click the platform.spr file in the Vitis Explorer view.

Note: If you have not yet created a platform file, refer to Creating a Platform.

2. Click the button.

3. Select the Operating System as Linux and a Processor of your choice.

4. Click Finish. This creates a platform project and the Platform Overview page opens.

5. Click Click here to configure the Linux domain.

6. Use pre-built software components: You can give a custom Boot directory and Bif file for
generation.

7. Click OK. The Linux domain is configured.

8. Click the icon to generate or build the platform. The Explorer view shows the generated
image files in the platform project.

Adding a Standalone Domain

1. Double-click the platform.spr file in the Vitis Explorer view.

Note: If you have not yet created a platform file, refer to Creating a Platform.

2. Click the button.

3. Select the OS as Standalone and a Processor of your choice.

4. Click OK.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=34

Adding a FreeRTOS Domain

1. Double-click the platform.spr file in the Vitis Explorer view.

Note: If you have not yet created a platform file, refer to Creating a Platform.

2. Click the button.

3. Select the OS as FreeRTOS and a Processor of your choice.

4. Click OK.

Generating a Platform

To generate a platform, follow these steps.

1. Double click platform.spr in the Explorer view. This opens the platform tab for viewing and
modification. You can modify settings for FSBL, standalone domains, and PMUFW.

2. In the platform view, click to generate the platform. The Generation Successful message
pops up.

Modifying Source Code for FSBL and PMU Firmware
1. To modify the source code for FSBL or PMU firmware, go to Explorer view and expand the

corresponding platform.

2. Expand the boot domain folder and modify the source files inside.

3. Save your changes and click the icon. This will build the boot components with the new
changes.

Note: To reset domain/BSP sources anytime, click the Reset BSP Sources option on the Board Support
Package overview page.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=35

Re-targeting a Platform for a New Hardware
Specification
The Vitis software platform workspace supports multiple hardware projects and multiple
domains per hardware project. A single software project can be portable across these hardware
platforms and board support platforms. At any given time, the software domain project and the
software applications associated with that domain project are targeted at (or referenced to) a
single hardware project. Therefore, when running or debugging a software project on another
hardware project, you must re-target your software domain project to another hardware project.

To re-target your platform project to another hardware specification:

1. Right-click the platform project that your software application currently references.

2. Select Update Hardware Specification.

3. Browse and locate the new hardware specification file and click OK.

4. In the Explorer view, right click the platform and select Build Project.

This new platform is re-targeted to the hardware specification that you selected.

Resetting BSP Sources for a Domain
This feature allows you to reset the source files of a domain's BSP. To reset:

1. Click the platform.spr file in the Explorer tab and select the appropriate domain.

2. Click Reset BSP Sources.

3. Click Yes. This resets the sources for the domain/BSP selected.

Note: Only the source files are reverted back to their original state. The settings however, are retained.

Applications
Creating a Standalone Application Project
You can create a C or C++ standalone application project by using the New Application Project
wizard.

To create a project:

1. Click File → New → Application Project. The New Application Project dialog box appears.

Note: This is equivalent to clicking on File → New →  Project to open the New Project wizard, selecting
Xilinx → Application Project, and clicking Next.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=36

2. Type a project name into the Project Name field.

3. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

4. Select Create a new platform from hardware (XSA). The Vitis IDE lists the all the available
pre-defined hardware designs.

5. Select any one hardware design from the list and click Next.

6. From the CPU drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design. In
this case you can either select psu_cortexa53_0 or psu_cortexr5_0.

7. Select your preferred language: C or C++.

8. Select an OS for the targeted application.

9. Click Next to advance to the Templates screen.

10. The Vitis software platform provides useful sample applications listed in the Templates dialog
box that you can use to create your project. The Description box displays a brief description
of the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source and header files and linker script.

11. Select the desired template. If you want to create a blank project, select Empty Application.
You can then add C files to the project, after the project is created.

12. Click Finish to create your application project and board support package (if it does not exist).

Note: Xilinx recommends that you use the managed make flow rather than standard make C/C++
unless you are comfortable working with Makefiles.

Creating a Linux Application Project
You can create a C or C++ Linux application project by using the New Application Project wizard.

To create a project:

1. Click File → New → Application Project. The New Application Project dialog box appears.

2. Type a project name into the Project Name field.

3. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

4. Select Next.

5. On the Select platform tab, select the Platform that has a Linux domain and click Next.

6. On the Domain window, select the domain from the Domain drop-down.

7. Select your preferred language: C or C++.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=37

8. Optionally, select Linux System Root to specify the Linux sysroot path and select Linux
Toolchain to specify the Linux toolchain path.

9. Click Next to move to the Templates screen.

10. The Vitis software platform provides useful sample applications listed in the Templates dialog
box that you can use to create your project. The Description box displays a brief description
of the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source and header files and linker script.

11. Select the desired template. If you want to create a blank project, select Empty Application.
You can then add C files to the project, after the project is created.

12. Click Finish to create your Linux application project.

13. Click the icon to generate or build the application project.

Creating a User Application Template
The Vitis software platform and XSCT support creation of user-defined application templates
using the repository functionality. To create a standalone or Linux application template:

1. A great way to start creating an user-defined application template is to look at an existing
template for the directory structure and files that needs to be defined along with the source
files.

a. Sample standalone OS application template files are available at <Vitis software
platform installation directory>\data\embeddedsw\lib\sw_apps
\lwip_echo_server.

b. Sample Linux OS application template files are available at <Vitis software
platform installation directory>\data\embeddedsw\lib
\sw_apps_linux\linux_hello_world .

c. Observe the folder name. Also note that the file names are the same as the application
template names, excluding the file extensions.

d. Decide on your application template name and OS.

e. Create an application Tcl file. The Tcl file name should be same as the application
template name.

f. Add the following functions to the Tcl file:

i. swapp_get_name: This function returns the application template name. The return
value should be same as the application template name.

proc swapp_get_name {} {
 return "lwIP Echo Server";
}

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=38

ii. swapp_get_description: This function returns the description of the application
template in the Vitis IDE. You can customize the description according to the
application details.

proc swapp_get_description {} {
return "The lwIP Echo Server application provides a simple
demonstration of
how to use the light-weight IP stack (lwIP). This application sets
up the board
to use IP address 192.168.1.10, with MAC address
00:0a:35:00:01:02. The server listens
for input at port 7 and simply echoes back whatever data is sent
to that port."
}

iii. swapp_is_supported_sw: This function checks for the required software libraries
for the application project. For example, the lwip_echo_server application
template requires the lwip library in the domain.

iv. swapp_is_supported_hw: This function checks if the application is supported for
a particular design or not. For example, lwip is not supported for MicroBlaze™
processors.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=39

v. swapp_get_linker_constraints: This function is used to generate the linker
script. If this function returns lscript no, the linkerscript is copied from the
application template. For example, the FSBL application does not generate a linker
script. There exists a default linker script in the src folder that is used to create an
application.

proc swapp_get_linker_constraints {} {
 # don't generate a linker script. fsbl has its own linker
script
 return "lscript no";
}

vi. swapp_get_supported_processors: This function checks the supported
processors for the application template. For example, the linux_hello_world
project supports the ps7_cortexa9, psu_cortexa53, and microblaze
processors.

proc swapp_get_supported_processors {} {
 return "ps7_cortexa9 psu_cortexa53 microblaze";
}

vii. proc swap_get_supported_os: This function checks the OS supported by the
application template.

proc swapp_get_supported_os {} {
 return "linux";
}

2. Create an application MSS file to provide specific driver libraries to the application template.
The MSS file name should be similar to the application template name.

3. Provide the OS and LIBRARY parameter details.

4. Copy the newly created TCL and MSS files to the data folder.

5. Create your source source files and save them in the src folder. Copy the lscript.ld file
to the src folder, if required.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=40

6. Move the data and src folders to a newly created folder. For example:

• For standalone application templates, create a folder sw_apps and move the data and
src folders to the newly created folder. The Vitis software platform considers the
applications created in the sw_apps folder as standalone applications.

• For Linux application templates, create a folder sw_apps_linux and move the data and
src folders to the newly created folder. The Vitis software platform considers the
applications created in the sw_apps_linux folder as Linux applications.

Accessing User Application Templates

You can access the user template applications in the Vitis IDE or using the XSCT. To access the
user application templates:

1. Using the Vitis IDE:

a. Launch the Vitis IDE.

b. Select Xilinx Tools → Repositories → Add.

c. Select the repository folder, from the dialog box that appears.

Note: For standalone applications, the parent folder that contains the applications should be
sw_apps. Example: C:\temp\repo\sw_apps\custom_app_name. For Linux applications, the
parent folder that contains the applications should be sw_apps_linux. Example: C:\temp
\repo\sw_apps_linux\custom_app_name.

d. Select File → New → Application Project. The New Project wizard page appears.

e. Specify a project name. From the OS Platform drop down, select the OS supported by the
user template application.

f. From the Processor drop down, select the processor supported by the user template
application.

g. Click Next. The Templates page appears. This page lists all the available templates
including the user template application created by you.

h. Select the user application template, from the Available Templates list and click Finish to
create an application based on the selected user application template.

2. Using XSCT:

a. Execute the following commands at the XSCT prompt:

setws {c:\temp\workspace}
repo –set {C:\temp\repo}
app create –name custom_app –hw zc702 -os standalone -proc -template
{custom_app_name}
app build -name custom_app

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=41

Working with Projects

Building Projects

The first step in developing a software application is to create a board support package to be
used by the application. Then, you can create an application project.

When you build an executable for this application, Vitis automatically performs the following
actions. Configuration options can also be provided for these steps.

1. The Vitis software platform builds the board support package. This is sometimes called a
platform.

2. The Vitis software platform compiles the application software using a platform-specific
gcc/g++ compiler.

3. The object files from the application and the board support package are linked together to
form the final executable. This step is performed by a linker which takes as input a set of
object files and a linker script that specifies where object files should be placed in memory.

The following sections provide an overview of concepts involved in building applications.

Build Configurations

Software developers typically build different versions of executables, with different settings used
to build those executables. For example, an application that is built for debugging uses a certain
set of options (such as compiler flags and macro definitions), while the same application is built
with a different set of options for eventual release to customers. The Vitis software platform
makes it easier to maintain these different profiles using the concept of build configurations.

A build configuration is a named collection of build tools options. The set of options in a given
build configuration causes the build tools to generate a final binary with specific characteristics.
When the wizard completes its process, it generates launch configurations with names that
follow the pattern <projectname>, where <projectname> represents the name of the
project.

Each build configuration can customize:

• Compiler settings: debug and optimization levels

• Macros passed for compilation

• Linker settings

By default, the Vitis software platform provides three build configurations, as listed in the
following table:

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=42

Table 2: Build Configurations

Configuration Type Compiler Flags
Debug -O0 -g

Release -O2

Profile -O2 -g -pg

Changing the Build Configuration

Use the Tool Settings properties tab to customize the tools and tool options used in your build
configuration. Follow these steps to change build settings:

1. Select the project for which you want to modify the build settings in the Project Explorer
view.

2. Select Project  → Properties. The Properties for <project> window appears. The left panel of
the window has a properties list. This list shows the build properties that apply to the current
project.

3. Expand the C/C++ Build property.

4. Select Settings.

5. Use the Configuration list to select the configuration that needs to be modified.

6. Click the Tool Settings tab.

7. Select the tool and change the settings as per your requirement.

8. Click Apply to save the settings.

9. When you finish updating the tools and their settings, click OK to save and close the
Properties for <project> window.

Adding Libraries and Library Paths

You can add libraries and library paths for Application projects. If you have a custom library to
link against, you should specify the library path and the library name to the linker.

To set properties for your Application project:

1. Right-click your Application project and select C/C++ Build Settings. Alternatively, select
Properties and navigate to C/C++ Build > Settings.

2. Expand the target linker section and select the libraries to which you want to add the custom
library path and library name.

Specifying the Linker Options

You can specify the linker options for Application projects. Any other linker flags not covered in
the Tool Settings can be specified here.

To set properties for your project:

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=43

1. Right-click your managed make project and select C/C++ Build Settings. Alternatively, select
Properties and navigate to C/C++ Build → Settings.

2. Under the Tool Settings tab, expand the target linker section.

3. Select Miscellaneous.

4. Specify linker options in the Linker Flags field by clicking the Add button. Options can be
deleted using the Delete button, or modified using the Edit button.

Specifying Debug and Optimization Compiler Flags

Based on the build configuration selected, the Vitis software platform assigns a default
optimization level and debug flags for compilation. You can change the default value for your
project.

To set properties for your project:

1. Right-click your managed make project.

2. Select Properties. Alternatively, to set properties for a specific source file in your project,
right-click a source file within your standard make project and select Properties to open the
properties dialog box.

3. Expand the list under C/C++ Build.

4. Click on Settings.

5. Under the Tool Settings tab, expand the gcc compiler list.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=44

6. Select Optimization to change the optimization level and Debugging to change the
debugging level.

Specifying Miscellaneous Compiler Flags

You can specify any other compiler flags not covered in the Tool Settings for program
compilation.

To set properties for your project:

1. Right-click your managed make project and select Properties. Alternatively, to set properties
for a specific source file in your project, right-click a source file within your standard make
project and select Properties.

2. Click C/C++ Build to expand the list and click on Settings.

3. In the Tool Settings tab, expand the gcc compiler list.

4. Select Miscellaneous.

5. In the Other flags field, specify compiler flags.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=45

Restoring Build Configuration

Follow these steps to restore the build properties to have a factory-default configuration, or to
revert to a last-known working build configuration:

1. Select the project for which you want to modify the build settings in the Project Explorer
view.

2. Select Project  → Properties. The Properties for <project> window appears. The left panel of
the window has a properties list. This list shows the build properties that apply to the current
project.

3. Click the Restore Defaults button.

4. When you finish restoring the build settings, click OK to save and close the Properties for
<project> window.

Makefiles

Compilation of source files into object files is controlled using Makefiles. With the Vitis software
platform, there are two possible options for Makefiles:

• Managed Make: For managed make projects, the Vitis software platform automatically creates
Makefiles. Makefiles created by the Vitis software platform typically compile the sources into
object files, and finally link the different object files into an executable. In most cases,
managed make eliminates the job of writing Makefiles. This is the suggested option.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=46

• Standard Make: If you want ultimate control over the compilation process, use standard make
projects. In this case, you must manually write a Makefile with steps to compile and link an
application. Using the standard make flow hides a number of dependencies from the Vitis
software platform. You must follow manual steps for other tasks such as debugging or running
the application from within the Vitis software platform. Therefore, the standard make flow is
not recommended for general use.

Debugging Projects

The debugger in the Vitis software platform enables you to see what is happening to a program
while it executes. You can set breakpoints or watchpoints to stop the processor, step through
program execution, view the program variables and stack, and view the contents of the memory
in the system.

The debugger supports debugging through Xilinx System Debugger and GNU Debugger (GDB).
Xilinx System Debugger is derived from open-source tools and is integrated with the Vitis
software platform.

Hardware Debug Target

The Vitis software platform supports debugging of a program on a processor running on an FPGA
or a Zynq-7000 SoC device. All processor architectures (MicroBlaze and Arm® Cortex A9
processors) are supported. The Vitis software platform communicates to the processor on the
FPGA or Zynq-7000 SoC device.

Before you debug the processor on the FPGA, configure the FPGA with the appropriate system
bitstream.

The debug logic for each processor enables program debugging by controlling the processor
execution. The debug logic on soft MicroBlaze processor cores is configurable and can be
enabled or disabled by the hardware designer when building the embedded hardware. Enabling
the debug logic on MicroBlaze processors provides advanced debugging capabilities such as
hardware breakpoints, read/write memory watchpoints, safe-mode debugging, and more
visibility into MicroBlaze processors. This is the recommended method for debugging MicroBlaze
software.

Working with GDB

This topic describes how to use GDB to debug bare-metal applications.

To debug bare-metal applications:

1. Create a sample Hello World project.

2. Select the application and click Run → Debug As → Single Application Debug (GDB). The
Debug Configuration window opens with the Main tab selected.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=47

3. By default, the GDB shipped within the Vitis software platform is used with the default port,
but you can specify the GDB and the port in the Debugger tab in Debug Configurations.

Note: Default ports used by the GDB server for different architectures are as follows:

• Arm: 3000

• A64: 3001

• MicroBlaze: 3002

4. Click the Debug button to start debugging the application.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=48

Linker Scripts
The final step in creating an executable from object files and libraries is linking. This is performed
by a linker that accepts linker command language files called linker scripts. The primary purpose
of a linker script is to describe the memory layout of the target machine, and specify where each
section of the program should be placed in memory.

The Vitis software platform provides a linker script generator to simplify the task of creating a
linker script. The linker script generator GUI examines the target hardware platform and
determines the available memory sections. The only action required by you is to assign the
different code and data sections in the ELF file to different memory regions.

Note:

• For multi-processor systems, each processor runs a different ELF file, and each ELF file requires its own
linker script. Ensure that the two ELF files do not overlap in memory.

• The default linker always points to the DDR address available in memory. If you are creating an app
under a given hardware/domain project, the memory will overlap for the applications.

Generating a Linker Script for an Application

To generate a linker script for an application, do the following:

1. Select the application project in the Project Navigator view.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=49

2. Right-click Generate Linker Script. Alternatively, you can click Xilinx Tools → Generate Linker
Script. The left side of the dialog box is read-only, except for the Output Script name and
project build settings in the Modify project build settings as follows field. This region shows
all the available memory areas for the design. You have two choices of how to allocate
memory: using the Basic tab or the Advanced tab. Both perform the same tasks; however, the
Basic tab is less granular and treats all types of data as “data” and all types of instructions as
“code”. This is often sufficient to accomplish most tasks. Use the Advanced tab for precise
allocation of software blocks into various types of memory.

3. Click OK.

If there are errors, they must be corrected before you can build your application with the new
linker script.

Note: If the linker script already exists, a message window appears, asking if you want to overwrite the
file. Click OK to overwrite the file or Cancel to cancel the overwrite.

The Vitis software platform automatically adds the linker script to the linker settings for a
managed make project based on the options selected in Modify project build settings as
follows.

Basic Tab

Configure the following sections of the Linker Script Generator dialog box Basic tab. Placing
these key sections into the appropriate memory region can improve performance. Use the drop-
down menu next to the code, data, and heap or stack sections to select the region and type of
memory that you want these blocks to reside in.

• Code Sections: This is used to store the executable code (instructions). Typically DDR memory
is used for this task. Sometimes interrupt handlers or frequently used functions are built into
separate sections and can be mapped to lower latency memory such as BRAM or OCM.

• Data Sections: Place initialized and uninitialized data in this region. Often DDR memory is
used; however, if the data size requirements are small, OCM or BRAM can be used to improve
performance.

• Heap and Stack: Heap is accessed through dynamic memory allocation calls such as
malloc(). These sections are typically left in DDR unless they are known to be small, in
which case they can be placed in OCM or BRAM. If the stack is lightly used, no significant
performance loss will occur if left in DDR.

• Heap Size: Specify the heap size. Even if a programmer does not use dynamic memory
allocation explicitly, there are some functions that use the heap such as printf(). It is a
good idea to allocate a few KB for such functions, as a precaution.

• Stack Size: Specify the stack size. Remember that the stack size grows down in memory and
could overrun the heap without warning. Make certain that you allocate enough memory,
especially if you use recursive functions or deep hierarchies.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=50

Advanced Tab

If you require more control over the definition of memory sections and assignments to them, use
the LinkerScript Generator dialog box Advanced tab.

• Code Section Assignments: Typically there is only one code section, .text, unless you
specifically created other code sections. All the code sections appear in this region.

• Data Sections Assignments: The compilers automatically generate a number of different types
of data sections including read-only data (.rodata), initialized data (.data), and uninitialized
data (.bss).

• Heap and Stack Section Assignments: Use this area to map the heap and stack onto memory
and define their sizes.

• Heap Size: Specify the heap size. Even if a programmer does not use dynamic memory
allocation explicitly, there are some functions that use the heap such as printf(). It is a
good idea to allocate a few KB for such functions, as a precaution.

• Stack Size: Specify the stack size. Remember that the stack size grows down in memory and
could overrun the heap without warning. Make certain that you allocate enough memory,
especially if you use recursive functions or deep hierarchies.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=51

Manually Adding the Linker Script

If you want to manually add the linker script for a managed make flow, do the following:

1. Right-click your managed make project and select C/C++ Build Settings.

2. Click the linker corresponding to your target processor, for example ARM v8 gcc linker.

3. Select Linker Script to add the linker script.

4. For standard make projects, add the linker script manually to your Makefile linker options.

Modifying a Linker Script

When you generate a linker script, there are multiple ways in which you can update it.

1. Open the linker script using a text editor, and directly edit the linker script. Right-click on the
linker script and select Open With → Text Editor.

2. Regenerate the linker script with different settings using the linker script generator.

3. Use the linker script editor to make modifications. To do this, double-click on the linker script.
The custom linker script editor displays relevant sections of the linker script.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=52

The linker script editor provides the following functionality.

Table 3: Linker Script Editor Functionality

Name Function

Available Memory Regions This section lists the memory regions specified in the linker script. You can add a new
region by clicking on the Add button to the right. You can modify the name, base
address and size of each defined memory region.

Stack and Heap Sizes This section displays the sizes of the stack and heap sections. Simply edit the value in
the text box to update the sizes for these sections.

Section to Memory Region
Mapping

This section provides a way to change the assigned memory region for any section
defined in the linker script. To change the assigned memory region, simply click on the
memory region to bring a drop down menu from which an alternative memory region
can be selected.

Creating a Library Project
You can create a managed make library project by using the New Library Project wizard.

To create a library project:

1. Click File → New → Other. The New Project dialog box appears.

2. Expand Xilinx and select Library Project.

3. Click Next. The New Library Project wizard appears.

4. Type a project name into the Project Name field.

5. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=53

6. The Library Type drop-down allows you to select the supported library types. You can choose
to create a Shared Library or a Static Library project. The following table lists the flags set by
the tool during the library project creation.

Table 4: Library Project Creation Flags

Standalone Linux
Static Library Static Library Shared Library

Processor Toolchain
Extra

Compiler
Flags

Archiver
Flags

Extra
Linker
Flags

Extra
Compiler

Flags
Archiver

Flags
Extra

Compile
r Flags

Extra
Linker
Flags

A9 Linaro "-
mcpu=corte
x-A9 -
mfpu=vfpv3
-mfloat-
abi=hard"

None None "--static" None "-fPIC" "-shared"

A9 Code
Sourcery

None None None "--static" None "-fPIC" "-shared"

A53 Linaro None None None "--static" None "-fPIC" "-shared"

A53-32 Bit Linaro "-
march=arm
v7-a"

None None "--static" None "-fPIC" "-shared"

R5 Linaro "-
mcpu=corte
x-r5"

None None NA NA NA NA

MicroBlaze Xilinx "-mcpu=v9.5
-mlittle-
endian -
mno-xl-soft-
mul -mxl-
barrel-shift -
mxl-pattern-
compare"

"-mlittle-
endian"

None "--static" None "-fPIC" "-shared"

7. The OS Platform allows you to select which operating system you are writing code for. The
supported OS platforms are as follows:

• Linux: Shared libraries can be created only on the Linux OS platform.

• Standalone: Select this option if you plan to create a library for FreeRtos.

8. From the Processor drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design such
as any Zynq device PS.

9. Compiler type is 32-bit for all the processors except the psu_cortexa53 processor. You can
also specify extra compiler settings under Advanced → Extra Compiler Flags on the wizard
page.

10. Select your preferred language: C or C++.

11. Click Finish to create your library project.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=54

Note: For MicroBlaze processor based projects, the Vitis software platform does not support any
option to specify hardware. Specify the compiler options in the Extra Compiler Flags based on your
hardware.

12. You can now add your source files, write exposed APIs in the header files, update compiler
settings, and build the project to generate a library. Depending on the library type selected
during the creation of the library project, a shared library (<library_name>.so) or a static
library (<library_name>.a) is generated.

Creating a New Zynq UltraScale+ MPSoC FSBL
Application Project
To create a new Zynq UltraScale+ MPSoC FSBL application in the Vitis software platform, do the
following:

1. Click File → New → Application Project.

The New Application Project dialog box appears.

2. In the Project Name field, type a name for the new project.

3. Select the location for the project. To use the default location as displayed in the Location
field, leave the Use default location check box selected. Otherwise, click to deselect the
check box, then type or browse to the directory location.

4. Select Create a new platform from hardware (XSA). The Vitis IDE lists the all the available
pre-defined hardware designs.

5. Select any one hardware design from the list and click Next.

6. From the CPU drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design. In
this case you can either select psu_cortexa53_0 or psu_cortexr5_0.

7. Select your preferred language: C or C++.

8. Select an OS for the targeted application.

9. Click Next.

10. In the Templates dialog box, select the Zynq UltraScale+ MPSoC FSBL template.

11. Click Finish to create your application project and board support package (if it does not exist).

Using Custom Libraries in Application Projects
You can create custom libraries for common utilities and use them in the application projects. To
use the custom libraries in an application project, do the following:

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=55

1. Create a custom library using the New Library Project wizard. For more details, see Creating a
Library Project.

2. Select the project for which you want to include the custom library, in the Project Explorer
view.

3. Select Project  → Properties. The Properties for <project> window appears. The left panel of
the window has a properties list. This list shows the build properties that apply to the current
project.

4. Expand the C/C++ Build property.

5. Click on Settings.

6. Under Tool Settings tab, expand the gcc compiler list.

7. Select Directories to change the add the library header file path. You can now include the
required header files from the library project to the application.

8. Expand the gcc linker list.

9. Select Libraries to add the custom library and the library path to the application project.

10. Click Apply to save the settings.

11. When you finish updating the tools and their settings, click OK to save and close the
Properties for <project> window.

Chapter 7: Develop

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=56

Chapter 8

Run, Debug, and Optimize

Run Application Project
Launch Configurations
To debug, run, and profile an application, you must create a launch configuration that captures
the settings for executing the application. To do this, right-click on the application project and
select Run As → Run Configurations The Run configuration window opens. Double click the
Single Application Debug to create a Run Configuration. The Run Configuration window opens
with the Main tab.

Main Tab

The main tab has the following options:

• Debug Type: You can choose from Standalone Application Debug, Linux Application Debug, or
Attach to running target.

• Connection: In the connection field, you can create a target connection by clicking New.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=57

Note: The other options will populate automatically to run the application.

Application Tab

In the Application tab, set up the details for your application project and select the ELF file.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=58

• Stop At Main: Used to stop the debugger at main() function.

• Stop at Program Entry: Used to stop the debugger at program entry.

• Reset Processor: You can choose to reset the entire hardware system or the specific
processor, or choose not to reset. Performing a reset ensures that there are no side effects
from a previous debug session.

• Advanced Options: These options are used for profiling an application. Click Edit to see the
options. The options to select are This is a self relocating application and Profiling Options.

Target Setup Tab

Provide a unique name for your configuration. Next, in the Target Setup tab, set up the following
details:

• Debug Type

• Connection: Local or Remote

Select Local for running the program on a target that is connected to local host.

Create a remote connection by clicking New, and select the same for running the program on a
target connected to the remote host.

• FPGA Device: This is automatically selected for you.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=59

• PS Device: This is automatically selected for you.

• Hardware Platform: Select the hardware platform for your design.

• Bitstream file: Search or browse to your Bitstream file.

• FSBL File or Initialization File: Selects either the FSBL file or Initialization file based on
whether the checkbox is selected. By default, the Use FSBL Flow for Initialization check-box is
checked.

• Reset Entire System: Perform a system reset if there is only one processor in the system.

• Initialize Using FSBL file: Initialize PS using FSBL file.

• Reset APU: Reset all the APU processor cores.

• Reset RPU: Reset all the RPU processor cores.

• Enable RPU Split Mode: Put RPU cores in split mode so that they can be used independent of
each other.

• Program FPGA: To program the bit file.

• Skip Revision Check: Enabling this option will skip the device revision while programming bit
stream.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=60

Profiler

The Vitis™ unified software platform provides capability to profile your software application. Use
the Profiler tab to specify options for the profiler. Refer to Profile/Analyze for more information.

Creating or Editing a Launch Configuration

You can launch Run, Debug and Profile tasks directly with a set of default configurations. Right-
click on the desired application and select Run As, or Debug As. Select Launch on Hardware
(System Debugger) from the context menu.

Customizing Launch Configurations

The Launch Configurations preferences page allows you set filtering options that are used
throughout the workbench to limit the exposure of certain kinds of launch configurations. These
filtering setting affect the launch dialog, launch histories and the workbench.

Table 5: Launch Configuration Options

Option Description Default
Filter configurations in closed projects Filter out configurations that are associated with a project

that is currently closed
On

Filter configurations in deleted or
missing projects

Filter out configurations that are associated with a project
that has been deleted or are simply no longer available

On

Apply windows working set Applies the filtering from any working sets currently active
to the visibility of configurations associated with resources
in the active working sets. That is to say, if project P has
two configurations associated with it, but is not in the
currently active working set, the configurations do not
appear in the UI, much like P does not.

On

Filter checked launch configuration
types

Filter all configurations of the selected type regardless of
the other filtering options. The checked options are not
displayed in the Run/Debug Configurations dialog box.

Note: To avoid confusion, only configurations that are
supported by the Vitis software platform are available by
default.

On

Delete configurations when associated
project is deleted

Any launch configurations associated with a project being
deleted are also deleted if this option is enabled. After
they have been deleted, the configurations are not
recoverable.

On

Migrate As new features are added to the launching framework,
there sometimes exists the need to make changes to
launch configurations. Some of these changes are made
automatically, but those that are not (nonreversible ones)
are left up to the end user. The migration section allows
you to self-migrate any launch configurations that require
it. Upon pressing the Migrate... button, if there are any
configurations requiring migration, they are presented to
you, and you can select the ones that you want to migrate.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=61

Target Connections
The Target Connections view allows you to configure multiple remote targets. It shows
connected targets and gives you an option to add or delete target connections.

The Vitis software platform establishes target connections through the Hardware Server agent. In
order to connect to remote targets, the hardware server agent must be running on the remote
host, which is connected to the target.

The target connection has been extended to all utilities within the Vitis software platform that
deal with targets at runtime.

Creating a New Target Connection

You can configure the remote target details by adding a new connection in the Target
Connections view.

To create new target connection:

1. In the Target Connections window of the Vitis IDE, click the Add Target Connection button
().

2. The Target Connection Details dialog box opens.

3. In the Target Name field, type a name for the new remote connection.

4. Check the Set as default target checkbox to set this target as default. The Vitis software
platform uses the default target for all the future interactions with the board.

5. In the Host field, type the name or IP address of the remote host machine. This is the
machine that is connected to the target and the hw_server is running.

6. In the Port field, type the port number on which the hw_server is running. By default, the
hw_server runs on port 3121.

7. Select Use Symbol Server, if the hardware server is running on a remote host.

8. Click OK to create a new target connection.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=62

Setting Custom JTAG Frequency

You can now operate at a different frequency supported by the JTAG cable, by setting a custom
JTAG frequency.

To set a custom JTAG frequency:

1. In the Target Connections view, click the Add Target Connection button (). The Target
Connection Details dialog box opens.

2. Specify the name of the new remote target connection, for example test.

3. Check the Set as default target checkbox to set this target as default. The Vitis software
platform uses the default target for all the future interactions with the board.

4. Specify the name or IP address of the remote host machine. This is the machine that is
connected to the target and the hw_server is running.

5. Specify the port number on which the hw_server is running. By default, the hw_server runs
on port 3121. Select Use Symbol Server, if the hardware server is running on a remote host.

6. Click Advanced to view the JTAG device chain details.

7. Select the JTAG device chain and click Frequency to open the Set JTAG Frequency dialog
box.

8. From the Set custom frequency drop-down list, select the frequency.

Note: Current frequency can be the default frequency set by the server or the custom frequency set by
a debug client.

9. Click OK to save the configuration and close the Set JTAG Frequency dialog box. The
selected frequency is saved in the workspace and is used to set the frequency before
executing a connect command for the selected device.

10. Click OK to create a new target connection.

Note: If only one client is connected to the server, the frequency of the cable is reset to the default
value whenever the connection is closed. However, in case of multiple clients connected to the server,
it is not recommended to perform simultaneous debug operations from different clients.

Establishing a Target Connection

To establish a target connection, you can use either the local board or the remote board. By
default, the local target connection is selected in the Target Connections view. You can confirm
connections to the local board by checking the local connection.

To use a remote board to establish a target connection:

1. Ensure that the target is connected to the remote host.

2. Launch the hw_server manually on the remote host:

a. Take a shell on the remote host.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=63

b. Source the setup scripts. C:/Xilinx/Vitis/<version>/settings64.bat
(or) /opt/Xilinx/ Vitis/<version>/settings64.csh

3. Run the hw_server on the machine that connects to the board.

Note: Ensure that the target (board) is connected to the remote host.

4. Select the port number and the hostname to create a target connection to the host running
the hw_server.

5. Right-click the newly created target connection and select Set As Default.

Viewing Memory Contents
The Memory view lets you monitor and modify your process memory. The process memory is
presented as a list called memory monitors. Each monitor represents a section of memory
specified by its location called base address. Each memory monitor can be displayed in different
predefined data formats known as memory renderings.

The Memory view contains these two panes:

• Monitors panel - Displays the list of memory monitors added to the debug session currently
selected in the Debug view.

• Renderings panel - Displays memory renderings. The content of this panel is controlled by the
selection in the Monitors panel.

To open the Memory view, click the Memory tab of the Debug perspective. Alternatively, from
the IDE menu bar, select Window → Show View → Memory.

Dump/Restore Memory

The Memory window does not have the ability to load or dump memory contents from or to a
file.

You can use the Dump/Restore Memory function to copy the memory file contents to a data file
and restore data file contents back to memory. To do this:

1. Launch the hardware server, if it is not already running.

2. Select Xilinx Tools → Dump/Restore Memory.

3. The Dump/Restore Memory dialog box opens.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=64

4. Click Select to select a Processor from the Select Peer and Context window. The Vitis
software platform creates peers based on available target connections. For this example, the
Vitis software platform creates a peer called Zc706_remote.

5. Select the peer corresponding to your Target connection from the Peers list (in this case,
Zc706_remote), and then select the related processor, ARM Cortex-A9 MPCore #0, from the
APU Context.

Note: Select the processor context, not the device context. In the example here, the processor context
is APU.

6. Click OK to select the processor.

7. Set the location of the data file to restore from or dump to.

8. Select either the Restore Memory or Dump Memory option button.

9. In the Start field, specify the starting memory address from which you want to dump or
restore memory.

10. In the Size (in bytes) field, specify the number of bytes to be dumped or restored.

11. Click OK. The Vitis software platform dumps or restores data from the starting address
specified.

Viewing Target Registers
The Registers view lists all registers, including general purpose registers and system registers. As
an example, for Zynq® devices, the Registers view shows all the processor and co-processor
registers when Cortex™-A9 targets are selected in the Debug view. The Registers view shows
system registers and IOU registers when an APU target is selected.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=65

To open the Registers view, click the Registers tab of the Debug perspective. Alternatively, from
the IDE menu bar, select Window → Show View → Registers.

You can modify editable field values, during debug. You can also pin the Registers view using the
Pin to Debug Context toolbar icon, as shown in the figure below.

Viewing IP Register Details
The Vitis software platform now supports viewing of IP register details, using either the
Hardware (system.xsa) view or during debug using the Registers view. After successful
platform project creation, the system.xsa file in the Hardware Specification view is opened.
The file now displays cross-references to the registers of IP blocks present in the design.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=66

To view register details, click on the Registers link on the Hardware Specification view.

Debug Application Project
System Debugger Supported Design Flows

Standalone Application Debug Using Xilinx System Debugger

This topic describes how to use the Xilinx System Debugger to debug bare-metal applications.

1. Create a sample Hello World project.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=67

2. Select the application and click Run → Debug As → Launch on Hardware System Debugger.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=68

Linux Application Debugging with System Debugger

1. Launch the Vitis software platform.

2. Create a Linux application.

3. Select the application you want to debug.

4. Select Run → Debug Configurations.

5. Click Launch on Hardware (Single Application Debug) to create a new configuration.

6. In the Debug Configuration window:

a. Click the Target Setup tab.

b. From the Debug Type drop-down list, select Linux Application Debug.

c. Provide the Linux host name or IP address in the Host Name field.

d. By default, tcf-agent runs on the 1534 port on the Linux. If you are running tcf-agent on a
different port, update the Port field with the correct port number.

e. In the Application Tab, click Browse and select the project name. The Vitis software
platform automatically fills the information in the application.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=69

f. In the Remote File Path field, specify the path where you want to download the
application in Linux.

g. If your application is expecting some arguments, specify them in the Arguments tab.

h. If your application is expecting to set some environment variables, specify them in the
Environments tab.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=70

i. Click the Debug button. A separate console automatically opens for process standard I/O
operations.

j. Click the Terminate button to terminate the application.

Troubleshooting

My application already exists in the Linux target. How can I tell System Debugger to use my
existing application, instead of downloading the application?

1. In the Application tab of System Debugger, leave the Project Name and Local File Path fields
empty.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=71

2. In the Remote File Path field, specify the remote application path and click the Debug button.
System debugger loads the specified application.

Attach and Debug using Xilinx System Debugger

It is possible to debug the Linux kernel using Xilinx System Debugger. Follow the steps below to
attach to the Linux kernel running on the target and to debug the source code.

1. Compile the kernel source using the following configuration options:

CONFIG_DEBUG_KERNEL=y
CONFIG_DEBUG_INFO=y

2. Launch the Vitis software platform.

3. Click Window → Open Perspective → Debug.

4. Click Run → Debug Configurations.

5. In the Debug Configurations dialog box, select Launch on Hardware (Single Application

Debug) and click the New button ().

6. Name the configuration Zynq_Linux_Kernel_Debug.

7. Debugging begins, with the processors in the running state.

8. Click the Pause button to suspend the processor: . Debug starts in the Disassembly mode.

9. Add vmlinux symbol files to both processor cores:

a. Right-click on ARM Cortex-A9 MPCore#0 and select Symbol Files.

b. Click add and add vmlinux symbol files.

c. Click OK.

d. Right-click on ARM Cortex-A9 MPCore#1 and select Symbol Files.

e. Click add and add vmlinux symbol files.

f. Click OK.

10. You must set up Source Lookup if you built the code on a Linux machine and try to run the
debugger on Windows.

11. Select the debug configuration Zynq_Linux_Kernel_Debug, then right-click it and select Edit
Source Lookup.

12. Click Add.

13. Select Path Mapping from the Add Source dialog box.

14. Add the Compilation path and local file system path by clicking Add.

15. Successful source lookup takes you to the source code debug.

16. You can add function breakpoints using the Breakpoints view toolbar.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=72

17. Add a breakpoint at the start_kernel function.

18. Click the reset button. The Zynq-7000 SoC processor boots from the SD card and stops at
the beginning of the kernel initialization.

Note: The Linux kernel is always compiled with full optimizations and in-lining enabled. Therefore,
stepping through code might not work as expected due to the possible reordering of some
instructions. Furthermore, some variables might be optimized out by the compiler and consequently
might not be available for the debugger.

Standalone Application Debug using System Debugger on QEMU

1. Launch the Vitis software platform.

2. Create a standalone application project. Alternatively, you can also select an existing project.

3. Select Debug As → Debug Configurations.

4. Double-click Launch on Emulator (Single Application Debug) and select the Emulation check
box on the Main Tab to create a new configuration.

Note: Only hardware platforms based on Zynq UltraScale+ MPSoC can be selected for standalone
application debugging.

5. In the Debug Configuration dialog box:

a. If your application is expecting some arguments, specify them in the Arguments tab page.

b. If your application is expecting to set some environment variables, specify them in the
Environments tab page.

6. Click Debug.

7. You can also launch the Emulation Console by selecting Window → Show View → Other. The
Emulation Console can be used to interact with the program running on QEMU. The STDIN
can be provided in the input box at the qemu% prompt. Output is displayed in the area above
the input text.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=73

Multi-Processor Debugging with System Debugger
You can debug multiple processors simultaneously with a single System Debugger debug
configuration.

1. Create application projects for the processors included in the design.

2. Select any application and click Debug As → Debug Configurations.

3. In the Debug Configurations window, left panel, select the configuration type Xilinx C/C++

application and click the New button: .

4. Name the configuration Multi_Processor_ZC706_Debug.

5. In the Target Setup tab, select the appropriate setup.

6. Select the Standalone Application Debug from the Debug Type dropdown list.

7. Select the target you want to connect. With this selection, no resets or initializations are
performed on the target before launching the debugger.

8. To automatically populate bitstream and initialization files, from the Hardware platform drop-
down list, select the appropriate hardware platform. Use the Browse buttons if you wish to
select different bitstream and initialization files.

9. If you want to reset the entire system, enable the Reset entire system checkbox in the Debug
Configurations window.

10. If you want to program the bitstream after system reset, enable the Program FPGA checkbox.

11. Enable the Run ps7_init checkbox to run the PS initialization file.

Note: The Summary window displays a summary of System Debugger operations.

12. Select the Applications tab to display all processors available to the selected hardware
platform.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=74

13. Select the Download Application checkbox if you want to download the application to the
selected processor.

Note: If a single project exists for the processor, the Project Name and Application Name fields
populate automatically when you select the Download Application checkbox. If more than one project
exists for the processor, you must make the Project Name selection manually.

14. Select the Stop at program entry checkbox if you want to stop the processor before
application main().

15. Click the Debug button to launch multi-processor debugging.

Using a Remote Host with System Debugger

1. Setting Up the Remote System Environment

a. Running the hw_server with non-default port (for example: 3122) enables remote
connections. Use the following command to launch the hw_server on port 3122:

 the hw_server -s TCP::3122

b. Make sure your board is correctly connected.

c. In a cmd window of the host machine, check the IP Address:

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=75

2. Setting Up the Local System for Remote Debug:

a. Launch the Vitis software platform.

b. Select the application to debug remotely.

c. Select Debug As → Debug Configurations.

d. Create a new system debugger configuration.

e. In the Target Setup tab, click New to create a new target connection.

f. In the New Target Connection dialog box, add the required details for the remote host
that is connected to the target.

g. Target Name: Type a name for the target.

h. Host: IP address or name of the host machine.

i. Port: Port on which the hardware server was launched, such as 3121.

j. Select Use Symbol Server to ensure that the source code view is available, during
debugging the application remotely. Symbol server acts as a mediator between hardware
server and the Vitis software platform.

k. Click OK.

l. Now you can see that there are two available connections. In this case, remote_zc702_1
is the remote connection.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=76

m. Select or add the remaining debug configuration details and click Debug.

OS Aware Debugging
OS aware debug over JTAG helps in visualizing OS specific information such as processes or
threads that are currently running, process or thread specific stack trace, registers, variables view.
By enabling the OS awareness, you can debug the OS running on the processor cores and the
processes or the threads running on the OS simultaneously.

Enabling OS Aware Debug

This section describes setting up OS aware debug for a Zynq board running Linux from an SD
card, using the Vitis IDE. It is assumed that users are aware of setting up a Jtag connection to the
board, building Linux kernel and booting it from an SD card. For details on how to set up the
kernel debug, refer to Attach and Debug using Xilinx System Debugger.

1. Compile the kernel source using the following configuration options:

CONFIG_DEBUG_KERNEL=y
CONFIG_DEBUG_INFO=y

2. Launch the Vitis software platform.

3. Click Window → Open Perspective → Debug.

4. Click Debug As → Debug Configurations.

5. In the Debug Configurations dialog box, select Single Application Debug and click the New

button ().

6. Click Debug.

7. Debugging begins, with the processors in the running state.

8. Select the Enable Linux OS Awareness option from the Debug view in the processor context.

9. You can also perform the following actions from the menu that appears.

• Refresh OSA Processes: Select this option to refresh the list of running processes.

• Auto refresh on exec: When selected, all the running processes are refreshed and seen in
the Debug view. When not selected, new processes are not visible in the debug view.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=77

• Auto refresh on suspend: When selected, all the processes will be re-synced whenever the
processor suspends. When not selected, only the current process is re-synced.

• Linux OSA File Selection: Select this option to change the symbol file.

10. Alternatively, OS aware debugging can also be enabled using the -osa command in the Xilinx
System Debugger (XSDB) command-line console.

osa -file <symbol-file> -fast-step -fast-exec

Process/Thread Level Debugging

The Debug view is updated with the list of processes running on the Linux kernel, when the OS
aware debugging is enabled. For details on how to enable OS aware debugging, refer to Enabling
OS Aware Debug. The processes list is updated for the first time when the processor core is
halted and is updated dynamically thereafter (new processes are added to the list and terminated
processes are removed).

A process context can be expanded to see the threads that are part of the process.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=78

Symbol files can be added for a process context to enable source level debugging and see stack
trace variables. Source level breakpoints can also be set. Alternatively, the source level debugging
can be enabled by setting the Path Map. The debugger uses the Path Map setting to search and
load symbols files for all executable files and shared libraries in the system.

Note: Path Map is used for both symbols and source lookups.

Debugging a Process from main()

To debug a new process from main(), a global breakpoint (not against any particular target/
context) should be set, before starting the process. Symbol files are loaded based on path map
settings, so there should be a corresponding entry for the new process before starting it.

To debug a process from main():

1. Select a project in the Project Explorer view.

2. Select Debug As → Debug Configurations. The Debug Configurations window appears.

3. Click the Path Map tab to set the path mappings for the selected debug configuration. Path
maps help enable source level debugging. The debugger uses Path Map setting to search and
load symbols files for all executable files and shared libraries in the system.

4. Set either the line breakpoint in the source file of the Linux application or function breakpoint
at main(). Every time a new process starts, the debugger checks symbols of the process and
plants the breakpoint in the process if the source file or the main() function is found in the
symbols.

5. Run the application from the terminal.

6. As soon as the control hits a breakpoint, the Debug view is updated with the information of
the process.

7. The Debug view also shows the file, function and the line information of the breakpoint hit. A
thread label includes the name of the CPU core, if the thread is currently running on a core.

8. Source level debugging such as stepping in, stepping out, watching variables, stack trace can
be performed. The target side path for a binary file does not include a mount point path. This
is a known limitation. For example, when the process is located on the SD card, which is
mounted at /mnt, the debugger shows the file as <filename> and not as the
expected /mnt/<filename>.

Debugging a Loadable Kernel Module

To debug a kernel module, set path mapping to map the module name to symbol file of the
module. To see loaded modules, select Kernel in the Debug view, and look at the Modules view.
Kernel modules are listed by name and not by the file path.

To debug a kernel module:

1. Select a project in the Project Explorer view.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=79

2. Select Debug As → Debug Configurations. The Debug Configurations window appears.

3. Click the Path Map tab to set the path mappings for the selected debug configuration.

4. Click Add to insert the kernel module.

5. Insert a function or line breakpoint and run the core. As soon as the breakpoint is hit, the
debug view is updated with all the information.

6. Similar to any other process or thread level debugging, you can insert breakpoints, step in,
step out, watch variables, stack trace or perform other source level debugging tasks.

Xen Aware Debugging
Xen aware debug helps users in visualizing the hypervisor specific information such as different
domains (Dom-0 and Dom-Us), virtual processors (VCPUs) on each domain.

This feature enables debugging following Xen components:

• Hypervisor

• Dom-0/Dom-U kernel

• Dom-0/Dom-U user space processes

• Dom-U standalone applications

Enabling Xen Awareness

This section describes setting up the Xen aware debug for Zynq UltraScale+ MPSoC devices
running Linux from SD card, using the Vitis IDE. It is assumed that the following prerequisites
have been satisfied:

• You have the ZCU102 board running a Xen and Dom-0.

• You have the Xen symbol file (xen-syms).

For details on how to boot Xen and Dom-0, refer to PetaLinux Tools Documentation: Reference
Guide (UG1144).

1. Launch the Vitis IDE.

2. Select Window → Open Perspective → Debug.

3. Select Debug As → Debug Configurations.

4. In the Debug Configurations dialog box, select Launch on Hardware (Single Application
Debug).

5. Click New ().

6. Select Attach to running target debug type and click Debug. Debugging begins with the
processors in the running state.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 80Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=80

7. Right click Cortex-A53 #0 target and select Symbol Files.

8. Select the symbol file (xen-syms).

9. Select the OS awareness checkbox.

Debugging Hypervisor

1. Boot Xen and Dom-0. For details on how to boot Xen and Dom-0, refer to PetaLinux Tools
Documentation: Reference Guide (UG1144).

2. Enable Xen awareness by enabling OS aware debug for Xen symbol file. Symbol files are
added to a process context to enable source level debugging. For details on how to enable
Xen awareness, refer to Enabling Xen Awareness.

3. The Debug view is updated with the list of processes running on the Linux kernel when OS-
aware debugging is enabled. The processes list is updated for the first time when the
processor core is halted, and is updated dynamically thereafter (new processes are added to
the list and terminated processes are removed).

4. Click Edit Source Lookup Path to set the path mappings for the selected debug configuration.
The debugger uses path map to search and load symbols files for all executable files and
shared libraries in the system.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 81Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=81

Note: Path Map is used for both symbols and source lookups.

5. Add a breakpoint or suspend the core. As soon as the breakpoint is hit, the debug view is
updated with all the information.

6. You can now insert breakpoints, step in, step out, watch variables, stack trace or perform
other source level debugging tasks.

Debugging a Dom-0/Dom-U Kernel

1. Boot Xen and Dom-0. For details on how to boot Xen and Dom-0, refer to PetaLinux Tools
Documentation: Reference Guide (UG1144).

2. Enable Xen awareness by enabling OS aware debug for Xen symbol file. Symbol files are
added to a process context to enable source level debugging. For details on how to enable
Xen awareness, refer to Enabling Xen Awareness.

3. Debug Dom-0 kernel.

a. Enable OS awareness on the Linux symbol file in the Debug view for Dom-0 VCPU
context. For details on OS aware debug, refer to OS Aware Debugging.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 82Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=82

b. Suspend the Dom-0 VCPU#0 core. You can now insert breakpoints, step in, step out,
watch variables, stack trace or perform other source level debugging tasks.

4. Debug the Dom-U Kernel:

a. Copy the guest Linux images to Dom-0 file system.

b. Create a Dom-U guest.

c. Enable OS awareness on the Linux symbol file in the Debug view for Dom-U VCPU
context. For details on OS aware debug, refer OS Aware Debugging.

d. Suspend the Dom-U VCPU#0 core. You can now insert breakpoints, step in, step out,
watch variables, stack trace or perform other source level debugging tasks.

Debugging Dom-0/Dom-U User Space Processes

1. Boot Xen and Dom-0. For details on how to boot Xen and Dom-0, refer to PetaLinux Tools
Documentation: Reference Guide (UG1144).

2. Enable Xen awareness by enabling OS aware debug for Xen symbol file. Symbol files are
added to a process context to enable source level debugging. For details on how to enable
Xen awareness, refer to Enabling Xen Awareness.

3. Create a Linux application project. For details on how to create a Linux application project,
refer Creating a Linux Application Project.

4. Configure the Dom-0 user space process by adding the symbol file of the application running
on Linux for the debug context of the virtual CPU (VCPU#) of the host domain (Dom-0).

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 83Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=83

5. Configure Dom-U user space process.

a. Copy the guest Linux images to Dom-0 file system.

b. Create the Linux guests with para-virtual networking.

 name = "guest 0"
 kernel = "/boot/Image"
 extra = "console=hvc0 rdinit=/sbin/init"
 memory = 256
 vcpus = 2
 vif = ['bridge=xenbr0']

c. Add the symbol file of the application running on Linux for the debug context of the
virtual cpu (VCPU#) of the guest domain (Dom-U).

6. When the symbol files are set, you can insert breakpoints, step in, step out, watch variables,
stack trace or perform other source level debugging tasks.

Debugging a Dom-U Standalone Application

1. Create a new standalone hypervisor guest application.

a. Click File → New → Application Project. The New Application Project dialog box appears.

Note: This is equivalent to clicking on File → New → Project to open the New Project wizard,
selecting Xilinx → Application Project, and clicking Next.

b. Type a project name into the Project Name field.

c. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

d. The OS Platform allows you to select which operating system you will be writing code for.
Select standalone.

Note: This selection alters what templates you view in the next screen and what supporting code is
provided in your project.

e. Select the Hardware Platform XML or HDF file, if it was not specified earlier. If you have
not build hardware yet, you can select one of the pre-defined platforms from the drop-
down. Alternatively, you can drag and drop an existing hardware specification XML/HDF
file or search for one by clicking the New button and create a new hardware project.
After completing the new hardware project creation, you are returned to the New
Application Project dialog box.

f. From the Processor drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design.

g. Select your preferred language: C or C++.

h. Select the compiler: 64-bit or 32-bit.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=84

i. From the Hypervisor Guest drop-down list, select Yes to create an application with a pre-
defined linker script suitable to run the Xen.

j. Specify a board support package or domain. You can create a new customizable domain,
or select an existing domain. The domain created by the wizard will have the
hypervisor_guest parameter set to true. It will also ensure that the stdin and
stdout are pointing to psu_uart_1.

k. Click Next to advance to the Templates screen.

l. The Vitis software platform provides useful sample applications listed in Templates dialog
box that you can use to create your project. The Description box displays a brief
description of the selected sample application. When you use a sample application for
your project, the Vitis software platform creates the required source and header files and
linker script.

m. Select the desired template. If you want to create a blank project, select the Empty
Application. You can then add C files to the project, after the project is created.

n. Click Finish to create your application project and board support package (if it does not
exist).

Note: Xilinx recommends that you use Managed Make flow rather than Standard Make C/C++
unless you are comfortable working with make files.

2. Build the newly created hypervisor guest standalone application to generate a .bin file. This
file is needed to work with Xen.

3. Boot Xen and Dom-0. For details on how to boot Xen and Dom-0, refer to PetaLinux Tools
Documentation: Reference Guide (UG1144).

4. Enable Xen awareness by enabling OS aware debug for Xen symbol file. Symbol files are
added to a process context to enable source level debugging. For details on how to enable
Xen awareness, refer to Enabling Xen Awareness.

5. Copy the application to Dom-0 file system.

6. Create the guest domain hello using the Xen configuration file.

 name = "hello"
 kernel = "/boot/hello.bin"
 memory = 8
 vcpus = 1
 cpus = [1]
 irqs = [54]
 iomem = ["0xff010,1"]

7. Suspend the Dom-U VCPU#0 core. You can now insert breakpoints, step in, step out, watch
variables, stack trace, or perform other source level debugging tasks.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 85Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=85

Debugging Self-Relocating Programs
System debugger supports source level debugging of self-relocating programs such as U-boot. A
self-relocating program is a program which relocates its own code and data sections during
runtime. The debug information available in such files does not provide details about where the
program sections have been relocated. For this reason, you must supply to the debugger the
address where the program sections have been relocated. This can be done in two ways.

1. Update the system debugger launch configuration to provide the address to which program
sections are relocated.

a. Select Debug As → Debug Configurations to launch the system debugger launch
configuration.

b. Click the Application tab and select the application you wish to download.

c. Select the This is a self-relocating application checkbox.

d. Enter the address where all the program sections are to be relocated in the Relative
address to which the program sections are relocated textbox.

e. Launch the debug configuration. When the program sections are relocated during
runtime, the debugger will have enough information to support source level debugging of
the relocated sections.

Note: This method is supported only when the 'Debug Type' is set to 'Standalone' in the 'Target Setup'
tab of the debug configuration.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=86

2. Alternatively, you can also use the memmap command in XSDB to provide the address where
the program sections are relocated. memmap command in XSDB can be used to add symbol
files to the debugger. This is useful for debugging the applications which are already running
on the target. For example, boot from flash. In case of relocatable ELF files, you can use the -
relocate-section-map option, to provide the relocation address.

xsdb% targets 2
 1 APU
 2 ARM Cortex-A9 MPCore #0 (Suspended)
 3 ARM Cortex-A9 MPCore #1 (Suspended)
 4 xc7z020
xsdb% targets 2
xsdb% memmap -reloc 0x3bf37000 -file u-boot

xsdb% stop
Info: ARM Cortex-A9 MPCore #0 (target 2) Stopped at 0x3ff7b478
(Suspended)
xsdb% bt
 0 0x3ff7b478 __udelay()+1005809800: lib/time.c, line 91
 1 0x3ff7b4ac udelay()+1005809696: lib/time.c, line 104
 2 0x3ff5d878 genphy_update_link()+1005809860: drivers/net/phy/phy.c,
line 250
 3 0x3ff5df84 m88e1118_startup()+1005809712: drivers/net/phy/marvell.c,
line 356
 4 0x3ff5d154 zynq_gem_init()+1005810192: drivers/net/zynq_gem.c, line
402
 5 0x3ff7dc58 eth_init()+1005809720: net/eth.c, line 886
 6 0x3ff7e0e4 net_loop()+1005809728: net/net.c, line 407
 7 0x3ff46330 netboot_common()+1005809972: common/cmd_net.c, line 230
 8 0x3ff46520 do_tftpb()+1005809708: common/cmd_net.c, line 33
 9 0x3ff5295c cmd_process()+1005809824: common/command.c, line 493
 10 0x3ff5295c cmd_process()+1005809824: common/command.c, line 493
 11 0x3ff3b710 run_list_real()+1005811444: common/cli_hush.c, line 1656
 12 0x3ff3b710 run_list_real()+1005811444: common/cli_hush.c, line 1656
 13 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line
2003
 14 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line
2003
 15 0x3ff3b008 parse_string_outer()+1005809872: common/cli_hush.c, line
3254
 16 0x3ff3b6b8 run_list_real()+1005811356: common/cli_hush.c, line 1617
 17 0x3ff3b6b8 run_list_real()+1005811356: common/cli_hush.c, line 1617
 18 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line
2003
 19 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line
2003
 20 0x3ff3afd0 parse_string_outer()+1005809816: common/cli_hush.c, line
3248
 21 0x3ff5140c do_run()+1005809740: common/cli.c, line 131
 22 0x3ff5295c cmd_process()+1005809824: common/command.c, line 493
 23 0x3ff5295c cmd_process()+1005809824: common/command.c, line 493
 24 0x3ff3b710 run_list_real()+1005811444: common/cli_hush.c, line 1656
 25 0x3ff3b710 run_list_real()+1005811444: common/cli_hush.c, line 1656
 26 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line
2003
 27 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line
2003
 28 0x3ff3b008 parse_string_outer()+1005809872: common/cli_hush.c, line
3254
 29 0x3ff3b6b8 run_list_real()+1005811356: common/cli_hush.c, line 1617
 30 0x3ff3b6b8 run_list_real()+1005811356: common/cli_hush.c, line 1617
 31 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=87

2003
 32 0x3ff3be3c parse_stream_outer()+1005811244: common/cli_hush.c, line
2003
 33 0x3ff3afd0 parse_string_outer()+1005809816: common/cli_hush.c, line
3248
 34 0x3ff39ab4 main_loop()+1005809724: common/main.c, line 85
 35 0x3ff3c4f4 run_main_loop()+1005809672: common/board_r.c, line 675
 36 0x3ff73b54 initcall_run_list()+1005809716: lib/initcall.c, line 27
 37 0x3ff3c66c board_init_r()+1005809676: common/board_r.c, line 908
 38 0x3ff3837c clbss_l()+1005809688: arch/arm/lib/crt0.S, line 174
 39 unknown-pc

Cross-Triggering
Cross-triggering is supported by the embedded cross-triggering (ECT) module supplied by Arm.
ECT provides a mechanism for multiple subsystems in an SoC to interact with each other by
exchanging debug triggers. ECT consists of two modules:

• Cross Trigger Interface (CTI) - CTI combines and maps the trigger requests, and broadcasts
them to all other interfaces on the ECT as channel events. When the CTI receives a channel
event, it maps this onto a trigger output. This enables subsystems to cross trigger with each
other.

• Cross Trigger Matrix (CTM) - CTM controls the distribution of channel events. It provides
Channel Interfaces for connection to either a CTI or CTM. This enables multiple ECTs to be
connected to each other.

The figure below shows how CTIs and CTM are used in a generic setup.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=88

Figure 1: CTIs and CTM in a Generic Setup

CTM forms an event broadcasting network with multiple channels. A CTI listens to one or more
channels for an event, maps a received event into a trigger, and sends the trigger to one or more
CoreSight components connected to the CTI. A CTI also combines and maps the triggers from
the connected CoreSight components and broadcasts them as events on one or more channels.
Through its register interface, each CTI can be configured to listen to specific channels for events
or broadcast triggers as events to specific channels.

In the above example, there are four channels. The CTI at the top is configured to propagate the
trigger event on Trigger Input 0 to Channel 0. Other CTIs can be configured to listen to this
channel for events and broadcast the events through trigger outputs, to the debug components
connected to these CTIs. CTIs also support channel gating such that selected channels can be
turned off, without having to disable the channel to trigger I/O mapping.

Enable Cross-Triggering
You can now create/edit/remove cross-trigger breakpoints and apply the breakpoints on the
target using the Debug Configurations dialog box. To enable cross-triggering, do the following:

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=89

1. Launch the Vitis software platform.

2. Create a standalone application project. Alternatively, you can also select an existing project.

3. Select Run → Debug Configurations.

4. Double-click Launch on Hardware (Single Application Debug) to create a new configuration.

5. On the Target Setup tab page, select Enable Cross-Triggering.

6. Click the button next to the Enable Cross-Triggering check box. The Cross Trigger
Breakpoints dialog box appears.

You can create new breakpoints and edit or remove existing breakpoints using the Cross
Trigger Breakpoints dialog box. The options available on the dialog box are described below.

• Create: Click to create a new cross trigger breakpoint. The New Cross Trigger Breakpoint
dialog box appears. You need to select a cross trigger signal, which can be a source or
destination of a cross-triggering breakpoint. The OK button enables only when you select
at least one input and one output signal.

• Edit: Click to edit an existing breakpoint. The Edit Cross Trigger Breakpoint dialog box
appears that allows you to edit the selected input and output signals.

• Remove: Click to remove the selected breakpoint.

Cross-Triggering in Zynq Devices
In Zynq devices, ECT is configured with four broadcast channels, four CTIs, and a CTM. One CTI
is connected to ETB/TPIU, one to FTM and one to each Cortex-A9 core. The following table
shows the trigger input and trigger output connections of each CTI.

Note: The connections specified in the table below are hard-wired connections.

Table 6: CTI Trigger Ports in Zynq Devices

CTI Trigger Port Signal
CTI connected to ETB, TPIU

Trigger Input 2 ETB full

Trigger Input 3 ETB acquisition complete

Trigger Input 4 ITM trigger

Trigger Output 0 ETB flush

Trigger Output 1 ETB trigger

Trigger Output 2 TPIU flush

Trigger Output 3 TPIU trigger

FTM CTI

Trigger Input 0 FTM trigger

Trigger Input 1 FTM trigger

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=90

Table 6: CTI Trigger Ports in Zynq Devices (cont'd)

CTI Trigger Port Signal
Trigger Input 2 FTM trigger

Trigger Input 3 FTM trigger

Trigger Output 0 FTM trigger

Trigger Output 1 FTM trigger

Trigger Output 2 FTM trigger

Trigger Output 3 FTM trigger

CPU0/1 CTIs

Trigger Input 0 CPU DBGACK

Trigger Input 1 CPU PMU IRQ

Trigger Input 2 PTM EXT

Trigger Input 3 PTM EXT

Trigger Input 4 CPU COMMTX

Trigger Input 5 CPU COMMTX

Trigger Input 6 PTM TRIGGER

Trigger Output 0 CPU debug request

Trigger Output 1 PTM EXT

Trigger Output 2 PTM EXT

Trigger Output 3 PTM EXT

Trigger Output 4 PTM EXT

Trigger Output 7 CPU restart request

Cross-Triggering in Zynq UltraScale+ MPSoCs
In Zynq UltraScale+ MPSoCs, ECT is configured with four broadcast channels, nine CTIs, and a
CTM. The table below shows the trigger input and trigger output connections of each CTI. These
are hard-wired connections. For more details, refer to Zynq UltraScale+ Device Technical Reference
Manual (UG1085).

Table 7: CTI Trigger Ports in Zynq UltraScale+ MPSoCs

CTI Trigger Port Signal
CTI 0(soc_debug_fpd)

IN 0 ETF 1 FULL

IN 1 ETF 1 ACQCOMP

IN 2 ETF 2 FULL

IN 3 ETF 2 ACQCOMP

IN 4 ETR FULL

IN 5 ETR ACQCOMP

IN 6 -

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 91Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=91

Table 7: CTI Trigger Ports in Zynq UltraScale+ MPSoCs (cont'd)

CTI Trigger Port Signal
IN 7 -

OUT 0 ETF 1 FLUSHIN

OUT 1 ETF 1 TRIGIN

OUT 2 ETF 2 FLUSHIN

OUT 3 ETF 2 TRIGIN

OUT 4 ETR FLUSHIN

OUT 5 ETR TRIGIN

OUT 6 TPIU FLUSHIN

OUT 7 TPIU TRIGIN

CTI 1(soc_debug_fpd)

IN 0 FTM

IN 1 FTM

IN 2 FTM

IN 3 FTM

IN 4 STM TRIGOUTSPTE

IN 5 STM TRIGOUTSW

IN 6 STM TRIGOUTHETE

IN 7 STM ASYNCOUT

OUT 0 FTM

OUT 1 FTM

OUT 2 FTM

OUT 3 FTM

OUT 4 STM HWEVENTS

OUT 5 STM HWEVENTS

OUT 6 -

OUT 7 HALT SYSTEM TIMER

CTI 2(soc_debug_fpd)

IN 0 ATM 0

IN 1 ATM 1

IN 2 -

IN 3 -

IN 4 -

IN 5 -

IN 6 -

IN 7 -

OUT 0 ATM 0

OUT 1 ATM 1

OUT 2 -

OUT 3 -

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=92

Table 7: CTI Trigger Ports in Zynq UltraScale+ MPSoCs (cont'd)

CTI Trigger Port Signal
OUT 4 -

OUT 5 -

OUT 6 -

OUT 7 picture debug start

CTI 0,1 (RPU)

IN 0 DBGTRIGGER

IN 1 PMUIRQ

IN 2 ETMEXTOUT[0]

IN 3 ETMEXTOUT[1]

IN 4 COMMRX

IN 5 COMMTX

IN 6 ETM TRIGGER

IN 7 -

OUT 0 EDBGRQ

OUT 1 ETMEXTIN[0]

OUT 2 ETMEXTIN[1]

OUT 3 -(CTIIRQ, not connected)

OUT 4 -

OUT 5 -

OUT 6 -

OUT 7 DBGRESTART

CTI 0,1,2,3 (APU)

IN 0 DBGTRIGGER

IN 1 PMUIRQ

IN 2 -

IN 3 -

IN 4 ETMEXTOUT[0]

IN 5 ETMEXTOUT[1]

IN 6 ETMEXTOUT[2]

IN 7 ETMEXTOUT[3]

OUT 0 EDBGRQ

OUT 1 DBGRESTART

OUT 2 CTIIRQ

OUT 3 -

OUT 4 ETMEXTIN[0]

OUT 5 ETMEXTIN[1]

OUT 6 ETMEXTIN[2]

OUT 7 ETMEXTIN[3]

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=93

Use Cases

FPGA to CPU Triggering

This is one of the most common use cases of cross-triggering in Zynq. There are four trigger
inputs on FPGA CTI, which can be configured to halt (EDBGRQ) any of the two CPUs. Similarly,
the four FPGA CTI trigger outputs can be triggered when a CPU is halted (DBGACK). The FPGA
trigger inputs and outputs can be connected to ILA cores such that an ILA trigger can halt the
CPU(s) and the ILA can be triggered to capture the signals it’s monitoring, when any of the two
CPUs is halted. For more details about setting up cross-triggering to the FTM in Vivado Design
Suite, refer to the Cross Trigger Design section in Vivado Design Suite Tutorial: Embedded Processor
Hardware Design (UG940).

PTM to CPU Triggering

Synchronize trace capture with the processor state. For example, an ETB full event can be used
as a trigger to halt the CPU(s).

CPU to CPU Triggering

Cross-triggering can be used to synchronize the entry and exit from debug state between the
CPUs. For example, when CPU0 is halted, the event can be used to trigger a CPU1 debug
request, which can halt CPU1.

XSCT Cross-Triggering Commands

The XSCT breakpoint add command (bpadd) has been enhanced to enable cross triggering
between different components.

For example, use the following command to set a cross trigger to stop Zynq core 1 when core 0
stops.

bpadd -ct-input 0 -ct-output 8

For Zynq, -ct-input 0 refers to CTI CPU0 TrigIn0 (trigger input 0 of the CTI connected to
CPU0), which is connected to DBGACK (asserted when the core is halted). -ct-output 8
refers to CTI CPU1 TrigOut0, which is connected to CPU debug request (asserting this pin
halts the core). hw_server uses an available channel to set up a cross trigger path between
these pins. When core 0 is halted, the event is broadcast to core 1 over the selected channel,
causing core 1 to halt.

Use the following command for the Zynq UltraScale+ MPSoC to halt the A53 core 1 when A53
core 0 stops.

bpadd -ct-input 16 -ct-output 24

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 94Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug940-vivado-tutorial-embedded-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=94

Profile/Analyze
TCF Profiling
TCF profiler supports profiling of both standalone and Linux applications. TCF profiling does not
require any additional compiler flags to be set while building the application. Profiling standalone
applications over Jtag is based on sampling the Program Counter through debug interface. It
doesn’t alter the program execution flow and is non-intrusive when stack trace is not enabled.
When stack trace is enabled, program execution speed decreases as the debugger has to collect
stack trace information.

1. Select the application you want to profile.

2. Right-click the application and select Run As ... → Single Application Debug.

3. When the application stops at main, open the TCF profiler view by selecting Window → 
Show View → Debug → TCF Profiler.

4. Click the button to start profiling. The Profiler Configuration dialog box appears.

5. Select the Aggregate Per Function option, to group all the samples collected for different
addresses in a single function together. When the option is disabled, the samples collected
are shown as per the address.

6. Select the Enable stack tracing option, to show the stack trace for each address in the sample
data. To view the stack trace for an address, click on that address entry in the profiler view.

7. Specify the Max stack frames count for the maximum number of frames that are shown in
the stack trace view.

8. Specify the View update interval for the time interval (in milliseconds) the TCF profiler view
is updated with the new results. Please note that this is different from the interval at which
the profile samples are collected.

9. Resume your application. The profiler view will be updated with the data as shown the figure
below.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=95

gprof Profiling (Zynq-7000 SoC)
IMPORTANT! This feature applies only to Zynq-7000 SoC devices.

This feature applies only to Zynq-7000 SoC devices. GNU gprof provides two kinds of
information that you can use to optimize the program:

• A histogram with which you can identify the functions in the program that take up the most
execution time

• A call graph that shows what functions called which other functions, and how many times

The execution flow of the program is altered so that gprof can obtain data. Consequently, this
method of profiling is considered software-intrusive. The program flow is altered in two ways:

• To obtain histogram data, the program is periodically interrupted to obtain a sample of its
program counter location. This user-defined interval is usually measured in milliseconds. The
program counter location helps identify which function was being executed at that particular
sample. Taking multiple samples over a long interval of a few seconds helps identify which
functions execute for the longest time in the program.

• To obtain the call graph information, the compiler annotates every function call to store the
caller and callee information in a data structure.

The profiling workflow is described in the following diagram:

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=96

Figure 2: Profiling Workflow

Note: Xilinx recommends not to use garbage collector flags when you run profiling. Using garbage collector
flags can cause errors.

For additional information about GNU gprof, refer to http://sourceware.org/binutils/docs-2.18/
gprof/index.html.

Specifying Profiler Configuration

To configure options for the Profiler, do the following:

1. In the Project Explorer or C/C++ Projects view, select a project.

2. Select Run → Run Configuration.

3. In the Run Configurations dialog box, expand Launch on Hardware (Single Application
Debug).

4. Create a run configuration.

5. Click the Application tab.

6. Click the Edit button to view and configure the Advanced Options.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 97Send Feedback

http://sourceware.org/binutils/docs-2.18/gprof/index.html
http://sourceware.org/binutils/docs-2.18/gprof/index.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=97

7. In the Profile Options area, select the Enable Profiling check box.

8. Specify the sampling frequency and the scratch memory to use for profiling, where:

a. The sampling frequency is the interrupt interval that the profiling routine uses to
periodically check which function is currently being executed. The routine performs the
sampling by examining the program counter at each interrupt.

b. The scratch memory address is the location in DDR3 memory that the domain profiling
services use for data collection. The application program should never touch this space.

9. Click Run to profile the application.

Setting Up the Hardware for Profiling

To profile a software application, you must ensure that interrupts are raised periodically to
sample the program counter (PC) value. To do this, you must program a timer and use the timer
interrupt handler to collect and store the PC. The profile interrupt handler requires full access to
the timer, so a separate timer that is not used by the application itself must be available in the
system.

Xilinx profiling libraries that provide the profile interrupt handler support the AXI Timer core.

When profiling on Zynq-7000 SoC processors, the internal SCU timer should be used.

Setting Up the Software for Profiling

There are three important steps involved in setting up the software application for profiling:

1. Enable profiling in the Software Platform to include profiling libraries.

Note: Profiling is supported only for standalone software platforms.

a. Add -pg to the extra compiler flags to build the domain with profiling.

b. Set enable_sw_intrusive_profiling to true in the Board Support Package
Settings window.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=98

2. Enable profiling in application C/C++ build settings from C/C++ Build → Settings → Profiling

Setting up the Domain

1. Application.prj. This opens the Application Overview page. Click Navigate to BSP Settings.
Click Modify BSP Settings.

2. Click on the OS name, such as standalone, to configure its parameters.

3. Set the enable_sw_intrusive_profiling field to true and select the timer for use by the profile
libraries.

4. The domain should be compiled with the -pg compiler option. To perform this step, click on
the drivers item and select the CPU driver. Add the -pg flag to the extra_compiler_flags
option.

5. Click OK.

Setting Up the Software Application

1. Modify the software application code to enable interrupts. If there is an interrupt controller
present in the system with multiple interrupt sources, you must enable interrupts in the
processor and the interrupt controller to allow interrupts from the profile timer to reach the
processor. Example code is shown below:

/* enable interrupt controller */
 XIntc_mMasterEnable(SYSINTC_BASEADDR);
 /* service all interrupts */
 XIntc_SetIntrSvcOption(SYSINTC_BASEADDR,
XIN_SVC_ALL_ISRS_OPTION);
 /* enable the profile timer interrupt */
 XIntc_mEnableIntr(SYSINTC_BASEADDR, PROFILE_TIMER_INTR_MASK);
 /* enable interrupts in the processor */
 microblaze_enable_interrupts();

2. If the profiling timer is the only entity that connects to the input of interrupt controller or
directly to the processor, the tool sets up the interrupt for you automatically, and no change
is required in the application code.

3. Right-click the software application and select C/C++ Settings (or Properties → C/C++ Build 
→ Settings.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=99

4. Select gcc compiler → Profiling and enable profiling by selecting Enable Profiling (-pg).

5. Click OK.

Viewing the Profiling Results

When the program completes execution (reaches exit), or when you click the Stop button to stop
the program, the Vitis software platform downloads the profile data and stores it in a file named
gmon.out.

The Vitis software platform automatically opens the gmon.out file for viewing. The gmon.out
file is generated in the debug folder of the application project.

Profiling Linux Applications with System Debugger
To profile Linux applications using Xilinx System Debugger, perform the following:

1. Create an new Linux application for the target, using the Vitis IDE.

Note: The instructions have been developed based on Cortex-A9 on ZC702 but should be valid for
other targets as well.

2. Import your application sources in to the new project.

3. Build the application.

4. Boot Linux on ZC702 (for example, from the SD card) and start the TCF agent on the target.

5. Create a new target connection for the TCF agent, from the Target Connections icon.

6. Create a new Xilinx System Debugger debug configuration for the application, you wish to
profile, and launch the debug configuration. Create a new Launch on Hardware (Single
Application Debug).

7. On the Main tab, select Linux Application Debug from the Debug Type list.

8. On the Application tab page, specify the local .elf file path and the remote .elf file path.

9. Click Debug.

10. When the process context stops at main(), launch the TCF Profiler view by selecting Window 
→ Show View → Debug → TCF Profiler.

11. In the TCF Profiler view, click the Start toolbar icon to start profiling.

Note: Set a breakpoint at the end of your application code, so that the process is not terminated. If not
set, the data collected by the TCF Profiler is lost when the process terminates.

12. Resume the process context. TCF Profiler view will be updated with the profile date.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=100

Non-Intrusive Profiling for MicroBlaze Processors
When extended debug is enabled in the hardware design, MicroBlaze supports non-intrusive
profiling of the program instructions. You can configure whether the instruction count or the
cycle count should be profiled. The profiling results are stored in a profiling buffer in the debug
memory, which can be accessed by the debugger thru MDM debug registers. The size of the
buffer can be configured from 4K to 128K, using the C_DEBUG_PROFILE_SIZE (a size of 0
indicates profiling is disabled) parameter.

The profile buffer is divided into number of portions known as bins. Each bin is 36 bit wide and
can count the instructions or cycles of a program address range. The address range that is
profiled by each bin is dependent on the total size of the program that is profiled. Bin size is
calculated using the formula:

B = log2((H - L + S * 4) / S * 4)

Where B is the bin size, H, L are high and low address of the program address range being
profiled, and S is the size of the profile buffer.

When profiling is enabled and program starts running, profile statistics for an address range are
stored in its corresponding bin.Xilinx System Debugger can read these results, when needed.

Specifying Non-Intrusive Profiler Configuration

To configure options for the Profiler, do the following:

1. Launch the Vitis software platform.

2. Create a new standalone application project or select an existing one.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=101

3. Select Run → Run Configuration.

4. In the Run Configurations dialog box, expand Launch on Hardware (Single Application
Debug).

5. Create a run configuration.

6. Click the Application tab.

7. Click the Edit button to view and configure the Advanced Options.

8. In the Profile Options area, select the Enable Profiling check box.

9. Select Non-Intrusive.

10. Specify the low address and the high address of the program range to be profiled.
Alternatively, select the Program Start or the Program End check box to auto-calculate the
low or high address from the program.

11. Count Instructions to count the number of instructions executed. Alternatively, select Count
Cycles to count the number of cycles elapsed.

12. Select Cumulative Profiling to profile without clearing the profiling buffers from the last
execution.

13. Click OK to save the configurations.

14. Click Run to profile the selected project.

Viewing the Non-Intrusive Profiling Results

When the application completes execution, or when you click the Stop button to stop the
program, the Vitis software platform downloads the non-intrusive profile data and stores it in a
file named gmon.out.

Note: The Vitis software platform automatically opens the gmon.out file for viewing. The gmon.out file
is generated in the debug folder of the application project.

FreeRTOS Analysis using STM
The Vitis software platfrom supports collection and analysis of trace events generated by
FreeRTOS based applications. Zynq UltraScale+ MPSoC processors support the Software Trace
Microcell (STM) block which is a software application driven trace source to generate a SoftWare
instrumentation trace (SWIT). To collect FreeRTOS events and analyze them, do the following:

1. Click File → New → Application Project. The New Application Project dialog box appears.

2. Type a project name into the Project Name field.

3. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=102

4. The OS Platform allows you to select which operating system you will be writing code for.
Select freertos823_xilinx.

Note: This selection alters what templates you view in the next screen and what supporting code is
provided in your project.

5. Select the Hardware Platform XML or HDF file, if it was not specified earlier. If you have not
build hardware yet, you can select one of the pre-defined platforms from the drop-down.
Alternatively, you can drag and drop an existing hardware specification XML/HDF file or
search for one by clicking the New button and create a new hardware project. After
completing the new hardware project creation, you are returned to the New Application
Project dialog box.

6. From the Processor drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design such
as any Zynq PS.

7. Select your preferred language: C or C++.

8. Select the compiler: 64-bit or 32-bit.

9. Select a board support package or domain. You can opt to have the tools build a customizable
domain for this application, or you can choose an existing domain.

10. Click Next to advance to the Templates screen.

11. The Vitis software platform provides useful sample applications listed in Templates dialog box
that you can use to create your project. The Description box displays a brief description of
the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source and header files and linker script.

12. Select the desired template. If you want to create a blank project, select Empty Application.
You can then add C files to the project, after the project is created.

13. Click Finish to create your FreeRTOS application project and board support package (if it
does not exist).

14. Open BSP Settings → Overview → FreeRTOS and change the value of
enable_stm_event_trace to true.

15. Click Run → Debug Configurations.

16. In the Debug Configurations dialog box, double-click Xilinx C/C++ application to create a
launch configuration for the selected project.

17. Click Debug. Debugging begins, with the processors in the running state.

18. Debug the project using the system debugger on the required target.

19. Wait for project to be downloaded on to board and stop at main().

20. Click Window → Show View → Xilinx. The Show View dialog box appears.

21. Select Trace Session Manager from the Show View dialog box. The launch configuration
related to the application being debugged can be seen in the Trace Session Manager view.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=103

22. Click the start button in the Trace Session Manager view toolbar, to start the FreeRTOS trace
collection.

23. Switch to the Debug view and resume the project.

24. Allow the project to run.

25. Switch back to the Trace Session Manager view and stop the trace collection. All the trace
data collected will be exported to suitable trace file and will be opened in Events editor and
the FreeRTOS Analysis view.

Optimize
Performance Analysis
Performance analysis in the Vitis software platform provides functionality for viewing and
analyzing different types of performance data. Its goal is to provide views, graphs, metrics, etc. to
help extract useful information from the data, in a way that is more user-friendly and informative
than huge text dumps.

Performance analysis provides the following features:

• Support for viewing Arm data.

• Support for viewing APM data with PS and MDM as master.

• Support for viewing MicroBlaze data.

• Support for viewing and analyzing live data.

• Support for offline viewing of data.

• Support for zooming out/in of the data.

• Event filtering and searching.

• Import and export of trace packages.

The Performance analysis feature in the Vitis software platform supports data collection from
AXI Performance Monitor (APM) Event Counters, Arm Performance Monitor Unit (PMU) from a
Zynq-7000 SoC processing system, and MicroBlaze performance monitoring counters. For an
example usage of performance monitoring on a Zynq device, refer to System Performance
Modeling. For a MicroBlaze design, APM can be used in a similar way as SPM.

To collect MicroBlaze performance data, the performance monitoring counters must be enabled
in the Vivado hardware design. For more information, refer MicroBlaze Processor Reference
Guide (UG984). The Vitis software platform monitors the following events for MicroBlaze
processors:

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 104Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug984-vivado-microblaze-ref.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=104

• Number of clock cycles

• Any valid instruction executed

• Read or write data request from/to data cache

• Read or write data cache hit

• Pipeline stalled

• Instruction cache latency for memory read

The data is collected in the Vitis software platform in real time. The values from these counters
are sampled every 10 ms. These values are used to calculate metrics shown in the Performance
Counters view.

The Vitis software platform monitors the following PMU events for each Cortex-A9 CPU:

• Data cache refill

• Data cache access

• Data stall

• Write stall

• Instruction rename

• Branch miss

The following two Level-2 cache controller (L2C-PL330) counters are monitored:

• Number of cache hits

• Number of cache accesses

The following APM counters for each HP and ACP port are monitored:

• Write Byte Count

• Read Byte Count

• Write Transaction Count

• Total Write Latency

• Read Transaction Count

• Total Read Latency

Working with the Performance Analysis Perspective

The Performance Analysis perspective is comprised of many views which provide the capability
of collecting and analyzing the performance data referred as trace.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=105

Project Explorer View

The Project Explorer view displays all the available projects in the workspace. When a
performance analysis session is launched the data from the board is collected and stored as trace
files in tracing project. Each of the hardware project contains a corresponding tracing
project,*_Traces, where the data is stored. Performance counters data from single run is stored
under designated Run_* folder. Data from different sections is stored in different files under the
run folder.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=106

To analyse the data double click the trace file to open it in an Events editor view. After the file is
opened, the tree under the trace file can be expanded to view the list of available analysis views.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=107

Deleting Supplementary Files

Supplementary files are by definition trace specific files that accompany a trace. These files could
be temporary files, persistent indexes, or any other persistent data files created by the tool
during parsing a trace.

All supplementary files are hidden from the user and are handled internally by the tool. However,
there is a possibility to delete the supplementary files so that there are recreated when opening a
trace.

To delete all supplementary files from one or many traces and experiments:

1. Select the relevant traces and experiments in the Project Explorer view.

2. Right-click and select Delete Supplementary Files... from the context menu that appears. The
Delete Resources dialog box, with a list of supplementary files, grouped under the trace or
experiment they belong to, appears.

3. Select the file(s) to delete from the list.

4. Click OK.

Link with Editor

The tracing projects support the Link With Editor feature of the Project Explorer view. With this
feature it is now possible to do the following:

• Select a trace element in the Project Explorer view and the corresponding Events editor will
get focus, if the relevant trace is open.

• Select an Events editor and the corresponding trace element will be highlighted in the Project
Explorer view.

To enable or disable this feature toggle the Link With Editor button of the Project Explorer view
as shown below.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=108

Exporting a Trace Package

The Export Trace Package wizard allows users to select a trace and export its files and bookmarks
to an archive on a media. The Traces folder holds the set of traces available for a tracing
project. To export traces contained in the Traces folder:

1. Select File → Export from the FileExport dialog box appears.

2. Expand Tracing and select Trace Package Export. main menu. The

3. Click Next. The Export trace package dialog box appears.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 109Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=109

4. Select the project containing the traces and then the traces to be exported.

5. You can also open the Export trace package wizard by expanding the project in the Project
Explorer view, selecting the traces under the Traces folder, and selecting the Export Trace
Package from the context menu that appears.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 110Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=110

6. You can now select the content to export and various format options for the resulting file.

7. Click Finish to generate the package and save it to the media. The folder structure of the
selected traces relative to the Traces folder is preserved in the trace package.

Importing a Trace Package

The Import Trace Package wizard allows users select a previously exported trace package from
their media and import the content of the package in the workspace.

The Traces folder holds the set of traces available for a tracing project. To import a trace
package to the Traces folder of a project:

1. Select File → Import from the File main menu. The Import dialog box appears.

2. Expand Tracing and select Trace Package Import.

3. Click Next. The Import trace package dialog box appears.

4. Select the archive containing the traces and the destination project.

5. You can also open the Import Trace Package wizard by expanding the project in the Project
Explorer view and selecting the Import Trace Package from the context menu that appears.

6. You can now select the content to import from the selected trace archive.

7. Click Finish to import the trace to the target folder. The folder structure from the trace
package is restored in the Traces folder of the project.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=111

Events Editor

The Events editor shows the basic trace data elements (events) in a tabular format. The editors
can be dragged in the editor area so that several traces may be shown side by side, as shown in
the following figure.

The header displays the current trace name. The page displays the following fields.

• Timestamp: The event timestamp.

• Type: The event type (PS/ APM/MicroBlaze).

• Content: The raw event content obtained from the hardware server.

The first row of the table is the header row. You can search and filter the information on the
page, using this row.

The highlighted event is the current event, and is synchronized with the other views. If you select
another event, the other views will be updated accordingly. The properties view will display a
more detailed view of the selected event.

An event range can be selected by holding the Shift key while clicking another event or using any
of the cursor keys (Up', Down, PageUp, PageDown, Home, and End). The first and last events in
the selection will be used to determine the current selected time range for synchronization with
the other views.

The Events editor can be closed, disposing a trace. When this is done, all the views displaying the
information will be updated with the trace data of the next event editor tab. If all the editor tabs
are closed, then the views will display their empty states.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=112

Searching and Filtering Events

Searching and filtering of events in the table can be performed by entering matching conditions
in one or multiple columns in the header row (the first row below the column header).

To toggle between searching and filtering, click on the Search or Filter icon in the left margin of
the header row, or right-click on the header row and select Show Filter Bar or Show Search Bar
in the context menu.

To apply a matching condition to a specific column, click on the column's header row cell, type in
a regular expression and press the Enter key. You can also enter a simple text string and it will be
automatically be replaced with a 'contains' regular expression.

When matching conditions are applied to two or more columns, all conditions must be met for
the event to match (for example, 'and' behavior).

To clear all matching conditions in the header row, press the Delete key.

Searching an Event

When a searching condition is applied to the header row, the table selects the next matching
event starting from the top currently displayed event. Wrapping occurs if there is no match until
the end of the trace.

All matching events have a Search match icon in their left margin. Non-matching events are
dimmed.

Press Enter to search for and selects the next matching event. Press Shift+Enter to search for
and select the previous matching event. Wrapping occurs in both directions.

Press Esc to cancel an ongoing search.

Press Del to clear the header row and reset all events to normal.

Filtering an Event

When a filtering condition is entered in the head row, the table will clear all events and fill itself
with matching events as they are found from the beginning of the trace.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=113

A status row will be displayed before and after the matching events, dynamically showing how
many matching events were found and how many events were processed so far. When the
filtering is completed, the status row icon in the left margin will change from a stop to a filter
icon.

Press ESC to stop an ongoing filtering. In this case the status row icon will remain as a 'stop' icon
to indicate that not all events were processed.

Press DEL or right-click on the table and select Clear Filters from the context menu to clear the
header row and remove the filtering. All trace events will be now shown in the table. Note that
the currently selected event will remain selected even after the filter is removed.

You can also search on the subset of filtered events by toggling the header row to the Search Bar
while a filter is applied. Searching and filtering conditions are independent of each other.

Bookmarking an Event

Any event of interest can be tagged with a bookmark.

To add a bookmark, double-click the left margin next to an event, or right-click the margin and
select Add bookmark. Alternatively, use the Edit → Add bookmark menu. Edit the bookmark
description as desired and click OK.

The bookmark will be displayed in the left margin, and hovering the mouse over the bookmark
icon will display the description in a tooltip.

The bookmark will be added to the Bookmarks view. In this view, the bookmark description can
be edited, and the bookmark can be deleted. Double-clicking the bookmark or selecting Go to
from its context menu will open the trace or experiment and go directly to the event that was
bookmarked.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=114

To remove a bookmark, double-click its icon, select Remove Bookmark from the left margin
context menu, or select Delete from the Bookmarks view.

Histogram View

The Histogram View displays the trace events (counters data) distribution with respect to time.
When performance analysis is running, this view is dynamically updated as the events are
received.

The controls on the view are described below.

• Selection Start: Displays the start time of the current selection.

• Selection End: Displays the end time of the current selection.

• Window Span: Displays the current zoom window size in seconds.

The controls can be used to modify their respective value. After validation, the other controls and
views will be synchronized and updated accordingly. To modify both selection times
simultaneously, press the link icon which disables the Selection End control input.

The large (full) histogram, at the bottom, shows the event distribution over the trace. It also has a
smaller semi-transparent orange window, with a cross-hair, that shows the current zoom window.

The smaller (zoom) histogram, on top right, corresponds to the current zoom window, a sub-
range of the event set.

The x-axis of each histogram corresponds to the event timestamps. The start time and end time
of the histogram range is displayed. The y-axis shows the maximum number of events in the
corresponding histogram bars.

The vertical blue line(s) show the current selection time (or range). If applicable, the region in the
selection range will be shaded.

The mouse actions that can be used to control the histogram are listed below.

• Left-click: Sets a selection time

• Left-drag: Sets a selection range

• Shift+left-click or drag: Extend or shrink the selection range

• Middle-click or CTRL+Left-click: Centers the zoom window

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=115

• Middle-drag or CTRL+left-drag: Moves the zoom window

• Right-drag: Sets the zoom window

• SHIFT+Right-click or drag: Extend or shrink the zoom window

• Mouse wheel up: Zoom in

• Mouse wheel down: Zoom out

Hovering the mouse over an histogram bar pops up an information window that displays the
start/end time of the corresponding bar, as well as the number of events it represents. If the
mouse is over the selection range, the selection span in seconds is displayed.

The actions performed by various keystrokes when they are used in the Histogram view are
listed below.

• Left Arrow: Moves the current event to the previous non-empty bar.

• Right Arrow: Moves the current event to the next non-empty bar.

• Home: Sets the current time to the first non-empty bar.

• End: Sets the current time to the last non-empty histogram bar.

• Plus (+): Zoom in

• Minus (-): Zoom out

Colors View

The Colors view allows you to define a prioritized list of color settings.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=116

A color setting associates a foreground and background color (used in any events table), and a
tick color (used in the Time Chart view), with an event filter.

In an events table, any event row that matches the event filter of a color setting will be displayed
with the specified foreground and background colors. If the event matches multiple filters, the
color setting with the highest priority will be used.

The same principle applies to the event tick colors in the Time Chart view. If a tick represents
many events, the tick color of the highest priority matching event will be used.

Color settings can be inserted, deleted, reordered, imported and exported using the buttons in
the Colors view toolbar. Changes to the color settings are applied immediately, and are persisted
to disk.

Filters View

The Filters view allows you to define preset filters that can be applied to any events table.

The filters can be more complex than what can be achieved with the filter header row in the
events table. The filter is defined in a tree node structure, where the node types can be any of
TRACETYPE, AND, OR, CONTAINS, EQUALS, MATCHES. or COMPARE. Some nodes types have
restrictions on their possible children in the tree.

The TRACETYPE node filters against the trace type of the trace as defined in a plug-in extension
or in a custom parser. When used, any child node will have its aspect combo box restricted to the
possible aspects of that trace type.

The AND node applies the logical and condition on all of its children. All children conditions
must be true for the filter to match. A not operator can be applied to invert the condition.

The OR node applies the logical or condition on all of its children. At least one children condition
must be true for the filter to match. A not operator can be applied to invert the condition.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=117

The CONTAINS node matches when the specified event aspect value contains the specified
value string. A not operator can be applied to invert the condition. The condition can be case
sensitive or insensitive.

The EQUALS node matches when the specified event aspect value equals exactly the specified
value string. A not operator can be applied to invert the condition. The condition can be case
sensitive or insensitive.

The MATCHES node matches when the specified event aspect value matches against the
specified regular expression. A not operator can be applied to invert the condition.

The COMPARE node matches when the specified event aspect value compared with the
specified value gives the specified result. The result can be set to smaller than, equal or
greater than. The type of comparison can be numerical, alphanumerical or based on time
stamp. A not operator can be applied to invert the condition.

For numerical comparisons, strings prefixed by "0x", "0X" or "#" are treated as hexadecimal
numbers and strings prefixed by "0" are treated as octal numbers.

For time stamp comparisons, strings are treated as seconds with or without fraction of seconds.
This corresponds to the TTT format in the Time Format preferences. The value for a selected
event can be found in the Properties view under the Timestamp property. The common
'Timestamp' aspect can always be used for time stamp comparisons regardless of its time format.

Filters can be added, deleted, imported and exported using the buttons in the Filters view
toolbar. The nodes in the view can be Cut (Ctrl-X), Copied (Ctrl-C) and Pasted (Ctrl-V) by using
the buttons in the toolbar or by using the key bindings. This makes it easier to quickly build new
filters from existing ones. Changes to the preset filters are only applied and persisted to disk
when the Save filters button is pressed.

Time Chart View

The Time Chart view allows you to visualize every open trace in a common time chart. Each trace
is displayed in its own row, and ticks are displayed for every punctual event. As you zoom using
the mouse wheel, or by right-clicking and dragging in the time scale, more detailed event data is
computed from the traces.

Time synchronization is enabled between the time chart view and other trace viewers such as
the events table.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 118Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=118

Color settings defined in the Colors view can be used to change the tick color of events displayed
in the Time Chart view.

When a search is applied in the events table, the ticks corresponding to matching events in the
Time Chart view are decorated with a marker below the tick.

When a bookmark is applied in the events table, the ticks corresponding to the bookmarked
event in the Time Chart view is decorated with a bookmark above the tick.

When a filter is applied in the events table, the non-matching ticks are removed from the Time
Chart view.

The Time Chart view only supports traces that are opened in an editor. The use of an editor is
specified in the plug-in extension for that trace type, or is enabled by default for custom traces.

Analysis Views

For each of the different types of trace (PS, APM, and so on) collected, there is a set of views to
help in analyzing it. There are two types of views; tabular and graphical.

You can view the analysis of trace data both in live mode, when the data collection is running,
and in offline mode. In live mode, tabular view displays analysis for the entire trace duration,
whereas the graphical view displays analysis for the recent 20 seconds. In the offline mode,
graphical view displays the zoomed region whereas the tabular view displays the selection region
or zoomed region depending on whichever is the last user action. In live mode, to pause the
views and view the past data, us the icon present in the analysis views. When the views are
paused, the Histogram View can be used to zoom and analyze any portion of the data.

These analysis views display the data only when corresponding trace file is opened in the Events
Editor; otherwise they will be empty.

PS Performance Graphs

All the PS (Arm) metrics will be displayed using these graphs.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=119

PS Performance Counters

Tabular representation of the PS (Arm) metrics.

APM Performance Graphs

APM metrics are displayed using the graphs.

APM Performance Counters

APM metrics displayed in tabular format.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 120Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=120

FreeRTOS Analysis

FreeRTOS event trace displayed in different states.

Performance Session Manager

The Performance Session Manager view provides you with the capability to control the sessions.
You can start and stop a performance session from this view. Each time a session is started, a set
of trace files is created based on your configuration.

Whenever an application is debugged or performance analysis is launched, the view
automatically populates the entry for the active configuration.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 121Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=121

Configure Session

You can configure a session by choosing the list of modules for which the data has to be
collected. Each of the modules will be enabled based on the design information.

If you wish to configure the modules prior to starting performance analysis, use the Configure
Performance Analysis option on the hardware Project.

Configure APM

You can choose which APM slots to be monitored by selecting the Configure APM option on the
Configure Session dialog box.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 122Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=122

Configure MicroBlaze

You can choose the MicroBlaze instances for performance analysis use the option Configure
MicroBlaze in the Configure Session dialog box. By default, only instances from the first MDM
module will be selected.

Offline Mode

Viewing the live performance analysis is supported only for duration of 10 mins and stops
automatically after the elapsed time. When Offline Mode is selected, the performance analysis
runs indefinitely until you stop it manually from the view.

Modify ATG Configuration

You can modify the ATG traffic configuration using the Modify ATG Configuration option
available in the Performance Session Manager.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 123Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=123

System Performance Modeling

System Performance Modeling (SPM) offers system-level performance analysis for characterizing
and evaluating the performance of hardware and software systems. In particular, it enables
analysis of the critical partitioning trade-offs between the Arm® Cortex A9 processors and the
programmable fabric for a variety of different traffic scenarios. It provides graphical visualizations
of AXI transaction traces and system-level performance metrics such as throughput, latency,
utilization, and congestion.

SPM can be used in two ways:

• Using a predefined design provided with the Vitis software platform

• With the user design

In the current release, SPM is supported only for baremetal/standalone applications.

The following diagram shows the system performance modeling flow.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=124

Predefined Design Flow

The predefined flow provided with the Vitis software platform uses the fixed design and comes
with a fixed bitstream. In this design, there are five AXI Traffic Generators (ATGs), with one
connected to each of the four High Performance ports (HP0-3) and one connected to the
Accelerator Coherency Port (ACP). The ATGs are set up and controlled using one of the General
Purpose (GP) ports. In addition, an AXI Performance Monitor (APM) is included in order to
monitor the AXI traffic on the HP0-3 and ACP ports.

System Performance Modeling Using the Predefined Design

Creating the System Performance Modeling Project

1. Select File → New → Other → Xilinx → SPM Project... to start the System Performance
Modeling application.

2. Click Finish.

3. The SPM Launcher opens.

4. The following figure shows the Edit Configuration dialog box for a local connection. To start
the SPM with the default traffic configuration, click Debug.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 125Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=125

5. It first programs the FPGA and then starts the SPM.

Selecting an ATG Traffic Configuration

To select a traffic configuration:

1. In the Project Explorer, right-click the hardware platform and select Run As → Run
Configurations.

2. Under Performance Analysis, select Performance Analysis on <filename>.elf.

3. You can use the ATG Configuration tab to define multiple traffic configurations and select the
traffic to be used for the current run. The following figure shows the traffic that is defined in
the Default configuration.

4. The port location is taken from the Hardware handoff file. If no ATG was configured in the
design, the ATG Configuration tab is empty.

5. You can use the ATG Configuration dialog box to add and edit configurations.

6. To add a configuration to the list of configurations, click the + button.

7. To edit a configuration, select the Configuration: drop-down list to choose the configuration
that you want to edit.

8. For ease of defining an ATG configuration, you can create Configuration Templates. These
templates are saved for the user workspace and can be used across the Projects for ATG
traffic definitions. To create a template, do the following:

9. Click Configure Templates.

10. Click the + button to add a new user-defined configuration template.

11. The newly created template is assigned a Template ID with the pattern of "UserDef_*" by
default. You can change the ID and also define the rest of the fields.

12. You can use these defined templates to define an ATG configuration. To delete a
Configuration Template, select it and click the X button.

TIP: In an ATG configuration, to set a port so that it does not have any traffic, set the Template ID for that port
to None.

Configure FSBL Parameters

Changing the first stage bootloader (FSBL) configuration is only available for the fixed design
flow of the System Performance Modeling application.

To invoke the FSBL Configuration Change dialog box, right-click the configuration name and
select Configure FSBL Parameters.

Below are the details about the first stage bootloader (FSBL) parameters.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 126Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=126

Table 8: FSBL Parameters

Parameter Description Default Value

PS Clock Frequency
(MHz)

The clock frequency of the Zynq-7000 SoC PS (specified in MHz). 666.7 MHz

PL Clock Frequency
(MHz)

The clock frequency of the Zynq-7000 SoC PL (specified in MHz). 100.0 MHz.

DDR Clock Frequency
(MHz)

The clock frequency of the DDR memory (specified in MHz). 533.3 MHz

DDR Data Path Width The bit width used in the DDR memory data path. Possible
values are 16 and 32 bits.

32 bits

DDR Port 0 - Enable
HPR

This enables the usage of high priority reads on DDR port 0.
This port is used by the CPUs and the ACP via the L2 Cache.

Unchecked

DDR Port 1 - Enable
HPR

This enable the usage of high priority reads on DDR port 1. This
port is used by other masters via the central interconnect.

Unchecked

DDR Port 2 - Enable
HPR

This enables the usage of high priority reads on DDR port 2.
This port is used by HP2 and HP3.

Unchecked

DDR Port 3 - Enable
HPR

This enable the usage of high priority reads on DDR port 3. This
port is used by HP0 and HP1.

Unchecked

HPR/LPR Queue
Partitioning

Indicates the desired partitioning for high and low priority
reads in the queue. Note that the queue has a depth of 32 read
requests. There are four values provided in a drop-down menu.

HPR(0)/LPR(32)

LPR to Critical Priority
Level

The number of clocks that the LPR queue can be starved before
it goes critical. Unit: 32 DDR clock cycles. This value sets the
DDR LPR_reg register [1]. Valid values are between 0 and 2047.

2

HPR to Critical Priority
Level

The number of clocks that the HPR queue can be starved before
it goes critical. Unit: 32 DDR clock cycles. This value sets the
DDR HPR_reg register [1]. Valid values are between 0 and 2047.

15

Write to Critical Priority
Level

The number of clocks that the write queue can be starved
before it goes critical. Unit: 32 DDR clock cycles. This value sets
the DDR WR_reg register [1]. Valid values are between 0 and
2047.

2

For more information about the FSBL, refer to Zynq-7000 SoC Software Developers Guide
(UG821).

User-Defined Flow

Performance analysis can be done on any user-defined applications.

System Performance Modeling Using a User-Defined Flow

The Vitis software platform provides the capability to monitor a running target regardless of the
target operating system.

Note: If no ATG is configured in the Hardware, the ATG Configuration window will be empty. Make sure to
remove the Breakpoints by selecting Window → Show View → Breakpoints.

1. If your design is defined in the Vivado Design Suite, then it is recommended to create a
platform specification based on the design. To do performance analysis based on the
specification:

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 127Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=127

a. Build and export your bitstream using File → Export → Export Hardware in the Vivado
Design Suite.

b. In the Vitis™ software platform, select File → New → Platform Project and import the
generated file <your design>.hdf into the Vitis software platform.

c. Select Run → Run Configurations.

d. Select SPM Analysis and click the New button to create a performance analysis
configuration.

e. Select Standalone Application Debug from the Debug Type dropdown list.

f. Select the imported hardware platform specification from the Hardware platform
dropdown list.

g. Select the Reset entire system and Program FPGA check boxes.

h. Click Run to launch the Performance Analysis perspective.

2. For any reason, if you cannot create a hardware platform specification, or do not have one,
you can still do performance analysis in the Vitis software platform. To do performance
analysis in absence of the specification:

a. Select Run → Run Configurations.

b. Select Performance Analysis and click the New button to create a performance analysis
configuration.

c. Select Attach to running target from the Debug Type dropdown list.

d. Specify the PS clock frequency in the PS Processor Frequency(MHz) textbox.

e. If you have an APM in your design, select Enable APM Counters.

f. Click Edit to specify the hardware information of the APM, to be used for performance
analysis, in the APM Hardware Information dialog box.

1. Click the New icon to add a new row.

2. Specify a unique identifier in the APM Id column.

3. Specify the base address of the APM in the Base Address column.

4. Specify the frequency of the clock connected to s_axi_aclk in the Frequency(Hz)
column.

5. Specify the number of slots in the Slots Count column.

6. Click OK to save the details and close the APM Hardware Information dialog box.

g. Click Edit to select the APM ports or slots that should be enabled for performance
analysis, in the Configure APM dialog box.

h. Click OK to save the details and close the Configure APM dialog box.

i. Click Run to open the Performance Analysis perspective.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 128Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=128

Limitations

The Vitis software platform supports SPM only for baremetal/standalone applications.

Packaging the System/Utilities
Bootgen Utility
Xilinx® FPGAs and system-on-chip (SoC) devices typically have multiple hardware and software
binaries used to boot them to function as designed and expected. These binaries can include
FPGA bitstreams, firmware images, bootloaders, operating systems, and user-chosen applications
that can be loaded in both non-secure and secure methods.

Bootgen is a Xilinx tool that lets you stitch binary files together and generate device boot images.
Bootgen defines multiple properties, attributes and parameters that are input while creating boot
images for use in a Xilinx device.

For more information about the Bootgen utility, refer to the Bootgen User Guide (UG1283).

Program Flash
Program Flash is a Vitis software platform used to program the flash memories in the design.
Various types of flash types are supported for programming.

• For non Zynq devices – Parallel Flash (BPI) and Serial Flash (SPI) from various makes such as
Micron and Spansion.

• For Zynq devices – QSPI, NAND, and NOR. QSPI can used in different configurations such as
QSPI SINGLE, QSPI DUAL PARALLEL, and QSPI DUAL STACKED.

The options available on the Program Flash Memory dialog box are as follows:

• Hardware Platform: Select the hardware platform you plan to use.

• Connection: Select the connection to hardware server.

• Device: Select a device. Auto Detect selects the first device on the chain, by default.

• Image File: Select the file to write to the flash memory.

• Zynq devices:

○ Supported file formats for qspi flash types are BIN or MCS formats.

○ Supported file formats for nor and nand types are only BIN format.

• Non Zynq devices:

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 129Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=129

○ Supported types for flash parts in non Zynq devices are BIT, ELF, SREC, MCS, BIN.

• Offset: Specify the offset relative to the Flash Base Address, where the file should be
programmed.

Note: Offset is not required for MCS files.

• FSBL File: The FSBL .elf file is mandatory for the NOR flash types in Zynq devices.

Note: Not required for non Zynq devices.

• Flash Type: Select a flash type.

• Zynq devices:

○ qspi_single

○ qspi_dual_parallel

○ qspi_dual_stacked

○ nand_8

○ nand_16

○ nor

○ emmc

Note: emmc flash type is applicable for Zynq UltraScale+ MPSoC devices only.

• Non Zynq devices:

○ The flash type drop down list is populated based on the FPGA detected in the
connection. If the connection to hardware server does not exist, an error message
stating "Could not retrieve Flash Part information. Please check hardware server
connection" is displayed on the dialog box. Based on the device detected, the dialog
populates all the flash parts supported for the device.

Note: Appropriate part can be selected based on design. For Xilinx boards, the part name can found
from the respective boards’ user guide.

• Convert ELF to Bootable SREC format and program: The ELF file provided as the image file is
converted into SREC format and programmed. This is a typical use case in non zynq devices.
The SREC bootloader can be built and used to read the SREC converted ELF from flash, load it
into RAM and boot.

• Blank check after erase: The blank check is performed to verify if the erase operation was
properly done. The contents are read back and check if the region erased is blank.

• Verify after Flash: The verify operation is cross check the flash programming operation. The
flash contents are read back and cross checked against the programmed data.

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=130

Creating a Bootable Image and Program the Flash

Below is an example XSCT session that demonstrates creating two applications (FSBL and Hello
World). Further, create a bootable image using the applications along with bitstream and program
the image on to the flash.

Note: Assuming the board to be ZCU702. Hence -flash_type qspi_single is used as an option in
program_flash.

setws /tmp/wrk/workspace
createhw –name hw0 –hwspec /tmp/wrk/system.hdf
createapp -name fsbl -app {Zynq FSBL} -proc ps7_cortexa9_0 -hwproject hw0 -
os standalone
createapp -name hello -app {Hello World} -proc ps7_cortexa9_0 -hwproject
hw0 -os standalone
projects –build
exec bootgen -arch zynq -image output.bif -w -o BOOT.bin
exec program_flash -f /tmp/wrk/BOOT.bin -flash_type qspi_single -
blank_check -verify -cable \
type xilinx_tcf url tcp:localhost:3121

Chapter 8: Run, Debug, and Optimize

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=131

Chapter 9

Other Xilinx Utilities

Xilinx Software Command-Line Tool
Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable command-line
interface to the Vitis IDE. As with other Xilinx tools, the scripting language for XSCT is based on
Tools Command Language (Tcl). You can run XSCT commands interactively or script the
commands for automation. XSCT supports the following actions:

• Create hardware, domains/board support packages (BSPs), and application projects

• Manage repositories

• Set toolchain preferences

• Configure and build domains/BSPs and applications

• Download and run applications on hardware targets

• Create and flash boot images by running Bootgen and program_flash tools.

For more information about XSCT, refer to the Xilinx Software Command-Line Tool (XSCT) Reference
Guide (UG1208).

Program FPGA
Program the FPGA with the bitstream.

Chapter 9: Other Xilinx Utilities

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 132Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;d=ug1208-xsct-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=132

The following table lists the options available on the Program FPGA dialog box:

• Hardware Configuration: Specify the Bitstream and BMM files. These are provided by
Vivado® Design Suite when you export your hardware design to the Vitis software platform.

• Bitstream File: Specify the FPGA Bitstream.

• BMM File: Specify the BMM file.

• Software Configuration: Specify the program that is initialized at the reset start address for
each processor in the Block RAM.

• Processor: Name of the processor in the system.

• ELF file: Specify the ELF file to initialize.

• Program: Click this button to program the FPGA.

Chapter 9: Other Xilinx Utilities

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=133

Dump/Restore Data File
The Vitis software platform allows you to copy the contents of a binary file to the target memory,
or copy binary data from target memory to a file, through JTAG.

Launch Shell
Launch a command console window with Xilinx settings. This shell can be used for running
XSDB, XSCT commands.

Import
In the Vitis IDE, you can also import projects that have previously been exported from the Vitis
software platform.

1. Go to File → Import → Vitis project exported zip file.

2. Select the zip file exported from the Vitis software platform.

Chapter 9: Other Xilinx Utilities

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=134

Note: If projects with the same name exist in the current workspace, the project in the exported zip
cannot be imported.

Export
Projects managed in the Vitis IDE can be exported to that you can move them around easily.

1. Go to File → Export to open the Export Vitis Projects window.

Chapter 9: Other Xilinx Utilities

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=135

2. Select the system projects or platform projects you want to export.

3. Set the export archive file name and destination directory. Selecting the Include build folders
option includes build folders in the export zip file. This is generally not required because
these files can be generated at the destination.

Note: If any files are added to project by links, the referenced file will be added to the exported .zip file
so that the project can be imported without referencing.

Generating Device Tree
The Vitis™ IDE can generate device trees. To generate a device tree, follow these steps:

1. Select Xilinx → Repositories.

2. Click New.

3. Provide the device tree generator local path, which can be downloaded from GitHub.

4. Select Xilinx → Generate Device Tree to open the Device Tree Generator.

5. Provide the hardware specification file and the output directory (the output will be created
here).

Chapter 9: Other Xilinx Utilities

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 136Send Feedback

https://github.com/Xilinx/device-tree-xlnx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=136

You can change the settings for device tree blob (DTB) using the Modify Device Tree settings.
The device tree path displays after successful generation.

Chapter 9: Other Xilinx Utilities

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=137

Section III

Embedded Software Development
Flow in Vitis

Section III: Embedded Software Development Flow in Vitis

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=138

Chapter 11

Creating a Platform Project
A platform project is a customizable platform in the Vitis™ software platform. Platform projects
can be created by importing hardware configuration XSA files, which are exported from the
Vivado® Design Suite.

You can create a platform project by using the Platform Project wizard. To create a platform
project, follow these steps:

1. Launch the New Platform Project dialog box using any one of the following methods:

a. Go to File → New → Platform Project.

b. Click File → New → Other to open the New Project wizard. Then select Xilinx → Platform
Project, and click Next. The New Platform Project dialog box appears.

2. Provide a project name in the Project name field.

3. Click Next.

4. In the Platform Project dialog box, choose Create from hardware specification (XSA) if you
have the XSA exported from Vivado®. If you have not built the hardware yet, select Create
from existing platform and choose one of the pre-defined platforms from the list.

a. If you choose Create from hardware specification (XSA), use the following steps:

i. Provide the XSA.

ii. Select the appropriate operating system and processor to create the platform based
on your selection.

iii. Click Finish to create your platform project.

b. If you choose Create from existing platform, use the following steps:

i. Select a platform from the list of available platforms in the Load Platform Definition
dialog box and click Finish.

The platform project editor opens.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=139

5. Click to generate the platform.

When the platform is generated, the dialog box shows the status of platform generation.

6. Optional: To see the hardware specification, switch from the Main tab to the Hardware
Specification tab on the bottom left.

7. Optional: You can change the sources and settings by clicking Board Support Package → 
Modify BSP Settings in the platform details window.

Chapter 11: Creating a Platform Project

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=140

8. Click the platform.spr file to reopen the platform project.

Chapter 11: Creating a Platform Project

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=141

Chapter 12

Customizing a Pre-Built Platform
A pre-built platform is not editable when it is not in the workspace. To customize a pre-built
platform, use the following flow.

1. Launch the New Platform Project dialog box using any one of the following methods:

a. Go to File → New → Platform Project.

b. Click File → New → Other to open the New Project wizard. Then select Xilinx → Platform
Project, and click Next.

The New Platform Project dialog box appears.

2. Provide a project name in the Project name field.

Chapter 12: Customizing a Pre-Built Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=142

3. Click Next.

4. In the Platform Project dialog box, select Create from existing platform. You can add domains
to this platform, as described in Adding Domains to a Platform Project.

Chapter 12: Customizing a Pre-Built Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=143

Chapter 13

Adding Domains to a Platform
Project

A platform can contain multiple domains. Each domain contains the settings and source files for a
processor. The following steps detail how to add a domain the a platform with at least one
domain.

1. Double-click platform.spr to open platform settings. This platform might already have one
domain.

2. Add a domain by clicking the green plus icon in the Platform Settings window, or right-click
the platform name and select Add Domain.

3. Fill in the displayed fields and select the desired processor to target.

4. To make the changes take effect, build the domain by clicking the hammer icon on the
toolbar, or right-click Platform Project in the Explorer window and select Build Project.

Chapter 13: Adding Domains to a Platform Project

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=144

Chapter 14

Creating Applications from
Domains in a Platform

Application projects are the final containers for applications. The project contains or links to C/C
++ source files, executable output files, and associated utility files such as the Makefiles used to
build the project. Each application project produces one executable file called <project
name>.elf. You can configure the following items on an application project:

• C/C++ build settings

• Run and debug configurations

• Build configurations

You can create many different applications for a given platform. This allows you to develop
software for a given hardware within the same workspace.

To create a C or C++ standalone application project using the New Application Project wizard,
use the following steps:

1. Select File → New → Application Project to launch the New Application Project wizard.

2. Provide the project name.

3. Click Next to create the application from a custom platform.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=145

4. Optional: Add another custom platform by clicking Add Custom Platform.

Chapter 14: Creating Applications from Domains in a Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 146Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=146

5. Select the platform to see the available domains.

6. Click Next to continue. Select the domain in this platform for the application. If the domain
you expect is not available in this platform, customize the platform project as described in
Customizing a Pre-Built Platform.

Chapter 14: Creating Applications from Domains in a Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 147Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=147

7. Click Next to see all the available templates for the processor and OS combination.

The Vitis software platform provides sample applications listed in the Templates dialog box
that you can use to create your project. The Description box displays a brief description of
the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source, header files, and linker scripts.

8. Select the desired template.

If you want to create a blank project, select Empty Application. You can add C files to the
project after the project is created.

9. Click Finish to create the application project and platform.

Chapter 14: Creating Applications from Domains in a Platform

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=148

Chapter 15

Managing Multiple Applications in a
System Project

A system project can contain multiple applications that can run on the device simultaneously.
Two applications for the same processor cannot sit together in a system project.

For example, on a Zynq® UltraScale+™ MPSoC device, a Hello World standalone application on
A53_0 and a Hello World application on R5_0 can be held in one system project if they are
expected to run at the same time. A Hello World standalone application on A53 and a Hello
World application in Linux cannot be combined in one system project, because these applications
use the same A53 processors and cannot run simultaneously on them.

The following steps detail the flow to add two applications to one system project.

1. Create an application with one domain in the platform (see Creating Applications from
Domains in a Platform).

2. Create a new application: File → New → Application Project.

3. Give a name to this application in the New Application Project view.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=149

4. From the System Project dropdown menu, select an existing system project. It can be the one
created in step 1. Click Next.

5. Complete the flow detailed in Creating Applications from Domains in a Platform.

The following steps detail the flow to add an application to one system project.

1. Create an application with one domain in the platform (see Creating Applications from
Domains in a Platform).

2. Right-click the system project in Explorer, and select Add Application Project.

Chapter 15: Managing Multiple Applications in a System Project

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=150

3. Give a name to this application in the New Application Project view.

4. The system project name is automatically updated (no manual change required). Click Next.

5. Complete the flow detailed in Creating Applications from Domains in a Platform.

Chapter 15: Managing Multiple Applications in a System Project

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=151

Chapter 17

Switching FSBL Targeting Processor
The FSBL in platform is created for Cortex-A53, by default, on a Zynq UltraScale+ MPSoC device.
You can re-target it to Cortex-R5F when necessary.

1. Double click platform.spr.

2. Select psu_cortexa53_0 → zynqmp_fsbl.

3. Click Re-target to psu_cortexr5_0.

4. Build the platform.

Chapter 17: Switching FSBL Targeting Processor

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=152

Chapter 18

Creating Multiple Domains for a
Single Hardware

In the Vitis™ software platform, hardware (XSA) and domains are referred to as the platform. A
platform is a combination of hardware (XSA) and software (BSPs, boot components like FSBL,
etc.) components. BSP or OS are referred to as domains in the platform. Each domain can have
settings of one processor or a cluster of isomorphism processors, for example, Linux on 4x
Cortex™-A53. A platform can contain unlimited domains.

You can create an application using the platform project wizard. To create a platform project,
follow these steps:

1. Launch the New Platform Project dialog box using any one of the following methods:

a. Select File → New → Platform Project.

b. Click File → New → Other to open the New Project wizard. Then select Xilinx → Vitis
Platform Project, and click Next.

2. Provide a name for the platform you want to create.

3. Click Next.

4. Select Create from hardware specification (XSA) from the New Platform Project window if
you have the XSA exported from Vivado®.

5. Click Next.

6. Specify the XSA file to create the platform project.

7. Select the appropriate OS and processor.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=153

8. Click Finish to create your platform project.

The Vitis software platform creates the platform based on the selection. The platform project
editor opens. The domain contains boot components.

9. Click to add a new domain.

10. Click System Configuration to create multiple system configurations in the existing platform.

11. Fill the Name, Display Name, and Description fields.

12. Click OK.

13. Click to add a new domain to the existing system configuration.

14. Fill the Name and Display Name fields in the Domain dialog box.

15. Select an OS from the drop-down list.

16. Select a processor from the Processor drop-down list. This is an important step when there
are multiple processors in your design such as Zynq® devices.

Chapter 18: Creating Multiple Domains for a Single Hardware

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=154

17. Click OK.

18. Click to generate the platform.

Chapter 18: Creating Multiple Domains for a Single Hardware

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=155

Chapter 19

Changing a Referenced Domain
You can re-target an application project to a different platform. The Vitis™ software platform lists
all the applicable system configurations available in the re-targeted platform. You must select the
right domain from the available domains of a selected system configuration. To change the
referenced domain, follow these steps:

IMPORTANT! The new platform should have domain(s) matching the current domain.

1. Click the ellipses (…) beside the Domain field in the Application Project Settings to see the
available configurations in the platform.

2. Select the domain to re-target.

Chapter 19: Changing a Referenced Domain

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=156

Chapter 19: Changing a Referenced Domain

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=157

Chapter 20

Changing and Updating the
Hardware Specification

The Vitis™ software platform allows you to update a platform project with a new hardware by
updating the software components under the hood. If your Vivado® project and its exported XSA
have been updated, this workflow needs to be executed manually so that the Vitis software
platform can get the updated hardware specification. You can edit the settings after the software
platform adjusts the software components as per the new hardware.

To change the hardware specification file of the platform project, follow these steps:

1. Select Platform Project in the Project Explorer view.

2. Right-click Platform Project and select Update Hardware Specification.

3. Specify the source hardware specification file in the Update hardware specification for test
dialog box.

4. Click OK to see the hardware specification status.

Chapter 20: Changing and Updating the Hardware Specification

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=158

Chapter 21

Debugging the Application on
Hardware

The Vitis software platform debugger enables you to examine your code line by line. You can set
breakpoints or watchpoints to stop the processor, step through program execution, view the
program variables and stack, and view the contents of the memory in the system.

The customized Xilinx® system debugger is derived from open-source tools and is integrated
with the Vitis software platform.

To debug the application on hardware, follow these steps:

1. Right-click the application project and select Build Project to build an application.

2. Right-click on the application project and select Debug As → Launch on Hardware (Single
Application Debug).

3. When prompted to switch perspectives, click Yes to move to the Debug perspective.

Operations like step-in, step-into, and more can be done in the Debug perspective. You can
check the breakpoints view, registers view, variable view, memory window, and more in this
perspective.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=159

Chapter 22

Running and Debugging
Applications under a System Project
Together

Each application of a system project can run standalone. Applications in a system project can be
launched together as well. The Vitis software platform can download them one by one and
launch them one after another. In debug mode, all applications stop at main(). The following steps
detail how to run applications under a system project together.

1. Right-click System Project in Explorer, select Run as or Debug as, then select Launch on
Hardware.

2. Open the XSCT console to see the detailed commands and logs.

Chapter 22: Running and Debugging Applications under a System Project Together

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=160

Chapter 23

Creating a Bootable Image
When a system project is selected, by running build, the Vitis software platform builds all
applications in the system project and creates a bootable image according to a pre-defined BIF or
an auto-generated BIF.

You can create boot images using Bootgen. In the Vitis IDE, the Create Boot Image menu option
is used to create the boot image.

To create a bootable image, follow these steps:

1. Select the Application Project in the Project Explorer view.

2. Right-click the application and select Create Boot Image to open the Create Boot Image
window.

3. Specify the boot loader and the partitions.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=161

4. Click Create Image to create the image and generate the BOOT.bin in the
<Application_project_name>/_ide/bootimage folder.

Chapter 23: Creating a Bootable Image

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=162

Chapter 24

Flash Programming
Program Flash is a Vitis™ software platform tool used to program the flash memories in the
design. The types of flash supported by the Vitis software platform for programming are:

• For non-Zynq® family devices: Parallel Flash (BPI) and Serial Flash (SPI) from Micron and
Spansion.

• For Zynq family devices: Quad SPI, NAND, and NOR. QSPI can be used in different
configurations such as QSPI single, QSPI dual parallel, QSPI dual stacked.

To program the flash memories, follow these steps:

1. Connect to the board using the target connections icon

2. Select the application in which you created the boot image.

3. Select Xilinx → Program Flash.

4. Fill the required information.

5. Select the appropriate target connection.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=163

6. Select the flash type.

7. Click Flash to start the program flash operation. After the operation is complete and you can
see the status of the flash programming, check it in the Vitis software platform log.

Chapter 24: Flash Programming

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 164Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=164

Chapter 25

Generating Device Tree
The Vitis™ IDE can generate device trees. To generate a device tree, follow these steps:

1. Select Xilinx → Repositories.

2. Click New.

3. Provide the device tree generator local path, which can be downloaded from GitHub.

4. Select Xilinx → Generate Device Tree to open the Device Tree Generator.

5. Provide the hardware specification file and the output directory (the output will be created
here).

You can change the settings for device tree blob (DTB) using the Modify Device Tree settings.
The device tree path displays after successful generation.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 165Send Feedback

https://github.com/Xilinx/device-tree-xlnx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=165

Chapter 10

Overview
The Vitis™ integrated development environment (IDE) is designed to develop embedded
software applications for Xilinx® embedded processors. The Vitis unified software platform
works with hardware designs created with the Vivado® Design Suite and is based on the Eclipse
open source standard.

The Vitis software platform includes the following features:

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic makefile generation

• Error navigation

• Integrated environment for seamless debugging and profiling of embedded targets

• Source code version control

• System level performance analysis

• Focused special tools to configure FPGAs

• Bootable image creation

• Flash programming

• Scriptable command-line tool

Document Scope and Audience
The purpose of this content is to familiarize software application developers and system software
developers with the Vitis software platform by providing the following:

• Overview of the Vitis software platform and its features

• Software development in the Vitis software platform

Chapter 10: Overview

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=166

New Concepts in the Vitis Software Platform
In the Vitis software platform, two new concepts are introduced for better managing components
in the workspace: platform project and system project. In the SDK workspace, the hardware
specification, software board support package (BSP), and application all live at the top level.

Figure 3: SDK Structure

The SDK BSP concept is upgraded to a domain in the Vitis software platform. A domain can refer
to the settings and files of a standalone BSP, a Linux OS, a third party OS/BSP like FreeRTOS, or
a component like the device tree generator.

In the Vitis software platform, a platform project groups hardware and domains together. Boot
components like FSBL and PMUFW are automatically generated in platform projects. A system
project groups together applications that run simultaneously on the device.

Chapter 10: Overview

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=167

Figure 4: Vitis Software Platform Structure

Vitis Software Platform and SDK Comparison Table
The following table compares the key concepts and flows in the Vitis software platform covered
in this document with their equivalents in SDK, if applicable.

Table 9: Vitis Software Platform and SDK Comparison

Vitis Software Platform SDK
Creating a Platform Project Import hardware specification and create a BSP

Adding Domains to a Platform Project Create a BSP

Creating Applications from Domains in a Platform Create applications from BSP

Customizing a Pre-Built Platform There is no corresponding concept in SDK.

Managing Multiple Applications in a System Project There is no corresponding concept in SDK.

Chapter 10: Overview

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=168

Table 9: Vitis Software Platform and SDK Comparison (cont'd)

Vitis Software Platform SDK
Creating and Building Applications for XSA Exported from
the Vivado Design Suite

Create an application from HDF exported from Vivado
Design Suite

Creating Multiple Domains for a Single Hardware Create multiple BSPs for a single hardware configuration

Changing a Referenced Domain Change referenced BSP

Changing and Updating the Hardware Specification The concept is the same, but the details of the workflow
might have some minor changes.

Debugging the Application on Hardware The concept is the same, but the details of the workflow
might have some minor changes.

Running and Debugging Applications under a System
Project Together

There is no corresponding concept in SDK.

Creating a Bootable Image The concept is the same, but the details of the workflow
might have some minor changes.

Flash Programming The concept is the same, but the details of the workflow
might have some minor changes.

Generating Device Tree The concept is the same, but the details of the workflow
might have some minor changes.

Debugging an Application using the User-Modified/Custom
FSBL

The concept is the same, but the details of the workflow
might have some minor changes.

Modifying the Domain Sources (Driver and Library Code) The concept is the same, but the details of the workflow
might have some minor changes.

Chapter 10: Overview

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=169

Chapter 16

Creating and Building Applications
for XSA Exported from the Vivado
Design Suite

You can create a C or C++ standalone application project by using the New Application Project
wizard.

1. Select File → New → Application Project to launch the Vitis™ Application Project dialogue
box.

2. Provide a project name.

3. Click Next.

Chapter 16: Creating and Building Applications for XSA Exported from the Vivado
Design Suite

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=170

4. Click Create from Hardware to select the XSA.

5. Click the + icon, and then click Next to add the XSA to the list.

Chapter 16: Creating and Building Applications for XSA Exported from the Vivado
Design Suite

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=171

6. Select the processor from the CPU drop-down list.

Note: This is an important step when there are multiple processors in your design such as any Zynq®

devices.

7. Select standalone from the Operating system drop-down list.

Note: This selection alters what templates you view in the next screen and what supporting code is
provided in your project.

8. Select C or C++ as your preferred language.

9. Select Next to view all the templates available for the processor and OS combination.

The Vitis software platform provides useful sample applications listed in the Templates dialog
box that you can use to create your project. The Description dialog box displays a brief
description of the selected sample application. When you use a sample application for your
project, the Vitis software platform creates the required source, header files, and linker
scripts.

10. Select the desired template.

If you want to create a blank project, select Empty Application. You can add C files to the
project after the project is created.

11. Click Finish to create your application project and platform.

Chapter 16: Creating and Building Applications for XSA Exported from the Vivado
Design Suite

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 172Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=172

The application project is created and the appropriate platform is generated in the
background. The Project editor is as shown in the following figure.

12. Click Hardware Specification to see the hardware peripheral view.

13. Click Navigate to BSP Settings to view and change the domain settings.

Exporting the DSA/XSA files from the Vivado
Design Suite

Exporting the XSA for the Vitis Software Platform

You can export the XSA in the Vivado IDE by clicking File → Export → Hardware. Bitstream is
optional.

Chapter 16: Creating and Building Applications for XSA Exported from the Vivado
Design Suite

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=173

Chapter 26

Debugging an Application using the
User-Modified/Custom FSBL

Creating a Hello World Application
1. Select File → New → Application Project.

2. Provide a name for your project in the project name field.

3. Select the platform that you created and generate the project.

4. Click Next.

5. Provide the system configuration and software details and click Next.

6. Select a template to create your project. (Example: Hello World.)

7. Click Finish to build the application project.

Modifying the Source Code of the FSBL in
Platform

The source code of FSBL in platform can be modified in place. Building platform again compiles
the FSBL in platform. For Zynq UltraScale+ MPSoC, the FSBL source code is located in
<Platform>/zynqmp_fsbl and for Zynq-7000, the FSBL source code is located in
<Platform>/zynq_fsbl. After you modify the source code, build the platform again to
compile the FSBL in platform.

Modifying the BSP Settings of the FSBL in
Platform

To modify the BSP settings of the FSBL, perform the following steps.

Chapter 26: Debugging an Application using the User-Modified/Custom FSBL

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 174Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=174

1. Double-click platform.spr.

2. Select Board Support Package on the platform page that opens.

3. Click Modify BSP Settings. In the dialog box that opens, you can modify the options and click
OK to update the settings.

4. Select the platform in the Explorer view and build the platform using the icon.

Debugging the “Hello World” Application
using the Modified FSBL

1. Right-click the application project and select Debug As → Debug Configurations.

2. Double-click Launch on Hardware (Single Application Debug) to create a new debug
configuration.

3. Click the Target Setup tab.

4. Check the Use FSBL flow for initialization check-box.

5. Click Debug to switch the perspective.

6. Select Yes to open the debug perspective.

7. Browse to the modified FSBL .elf file path for FSBL File.

8. Click Debug to switch the perspective.

9. When prompted, select Yes to open the Debug perspective.

Chapter 26: Debugging an Application using the User-Modified/Custom FSBL

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 175Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=175

Chapter 27

Modifying the Domain Sources
(Driver and Library Code)

To add/modify the domain sources (driver and library code) using the Vitis™ software platform,
you must create your own repository or copy existing driver or library code to local and modify
based on them. The installed driver and library code are located at <Vitis_Install_Dir>/
data/embeddedsw directory. A driver or library code component includes source files in src
directory and metadata in data directory. You should increase the driver/library version number
manually in metadata .mld/.mdd files to prevent duplication with the built-in code version.
When you add repository paths to Xilinx Vitis Repositories, these domain resources can be used.

To add/modify the domain sources (driver and library code) using the Vitis™ software platform,
you must create your own repository with all the required files including the .mld/.mdd files and
the source files. In the .mld/.mdd file, bump-up the driver/library version number and add this
repository to the Vitis software platform.

The Vitis software platform automatically infers all the components contained within the
repository and makes them available for use in its environment. To make any modifications, you
must make the required changes in the repository. Building the application gives you the
modified changes.

Creating a Repository
A software repository is a directory where you can install third-party software components as
well as custom copies of drivers, libraries, and operating systems. When you add a software
repository, the Vitis™ software platform automatically infers all the components contained within
the repository and makes them available for use in its environment.

Your Vitis software platform workspace can point to multiple software repositories. The scope of
the software repository can be global (available across all workspaces) or local (available only to
the current workspace). Components found in any local software repositories added to a Vitis
software platform workspace take precedence over identical components, if any, found in the
global software repositories, which in turn take higher precedence over identical components
found in the Vitis software platform installation.

Chapter 27: Modifying the Domain Sources (Driver and Library Code)

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 176Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=176

A repository in the Vitis software platform requires a specific organization of the components.
Software components in your repository must belong to one of the following directories:

• drivers: Used to hold device drivers.

• sw_services: Used to hold libraries.

• bsp: Used to hold software platforms and board support packages.

• sw_apps: Used to hold software standalone applications.

• sw_apps_linux: Used to hold Linux applications.

Within each directory, sub-directories containing individual software components must be
present. The following diagram shows the repository structure.

Figure 5: Repository Structure

Adding the Repository
1. Select Xilinx → Repositories.

2. To add the repository you created in Creating a Repository, follow one of these two steps:

• To ensure that your repository driver/library repository is limited to the current
workspace, click New to add it under Local Repositories.

• To ensure that your repository driver/library repository is available across all workspaces,
click New to add it under Global Repositories.

3. Select Apply and Close to add the custom drivers/libraries from the repositories.

Chapter 27: Modifying the Domain Sources (Driver and Library Code)

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 177Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=177

Creating the Application Project
1. Select File → New → Application Project.

2. Provide a project name in the Project name field. Click Next to open the platform wizard.

3. Select an existing platform or select Create from XSA to see the list of all the available
hardware designs in installation.

4. Select one hardware design file and click OK.

A list of supported CPUs and operating systems is displayed.

5. Select cortexa53_0 from the CPU drop-down list if you want to debug the A53 application.

6. Select standalone from the Operating system drop-down list.

A list of supported application projects for this operating system and processor combination
is displayed.

7. Select any of the application templates from the list and click Finish.

Chapter 27: Modifying the Domain Sources (Driver and Library Code)

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=178

8. Select Overview → Drivers to see a list of available drivers/libraries for the IP. You can
modify/edit the driver options by clicking the drop-down icons.

9. Build the application project.

10. Debug the application by selecting Debug As → Launch on Hardware (Single Application
Debug).

Chapter 27: Modifying the Domain Sources (Driver and Library Code)

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=179

Section IV

Bootgen Tool

Section IV: Bootgen Tool

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=180

Chapter 28

Introduction
Xilinx® FPGAs and system-on-chip (SoC) devices typically have multiple hardware and software
binaries used to boot them to function as designed and expected. These binaries can include
FPGA bitstreams, firmware images, bootloaders, operating systems, and user-chosen applications
that can be loaded in both non-secure and secure methods.

Bootgen is a Xilinx tool that lets you stitch binary files together and generate device boot images.
Bootgen defines multiple properties, attributes and parameters that are input while creating boot
images for use in a Xilinx device.

The secure boot feature for Xilinx devices uses public and private key cryptographic algorithms.
Bootgen provides assignment of specific destination memory addresses and alignment
requirements for each partition. It also supports encryption and authentication, described in
Using Encryption and Using Authentication. More advanced authentication flows and key
management options are discussed in Using HSM Mode, where Bootgen can output intermediate
hash files that can be signed offline using private keys to sign the authentication certificates
included in the boot image. The program assembles a boot image by adding header blocks to a
list of partitions. Optionally, each partition can be encrypted and authenticated with Bootgen.
The output is a single file that can be directly programmed into the boot flash memory of the
system. Various input files can be generated by the tool to support authentication and encryption
as well. See BIF Syntax and Supported File Types for more information.

Bootgen comes with both a GUI interface and a command line option. The tool is integrated into
the software development toolkit, Vitis™ Integrated Development Environment (IDE), for
generating basic boot images using a GUI, but the majority of Bootgen options are command
line-driven. Command line options can be scripted. The Bootgen tool is driven by a boot image
format (BIF) configuration file, with a file extension of *.bif. Along with Xilinx SoC, Bootgen has
the ability to encrypt and authenticate partitions for Xilinx 7 series and later FPGAs, as described
in FPGA Support. In addition to the supported command and attributes that define the behavior
of a Boot Image, there are utilities that help you work with Bootgen. Bootgen code is now
available on Github.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=181

Installing Bootgen
You can use Bootgen in GUI mode for simple boot image creation, or in a command line mode for
more complex boot images. The command line mode commands can be scripted too. You can
install Bootgen from Vivado Design Suite Installer or standalone. Vitis is available for use when
you install the Vivado® Design Suite, or it is downloaded and installed individually. See the
Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) for all possible
installation options.

To install Bootgen from Vivado, go to the Xilinx Download Site, and select the Vivado self-
extracting installer. During Vivado installation, choose the option to install Vitis as well. Bootgen
is included along with Vitis. You can also install Bootgen from the Vitis Installer. The Vitis self-
extracting installer found on the Xilinx Download site. After you install Vitis with Bootgen, you
can start and use the tool from the Vitis GUI option that contains the most common actions for
rapid development and experimentation, or from the XSCT.

The command line option provides many more options for implementing a boot image. See the
Using Bootgen Interfaces to see the GUI and command line options:

• From the Vitis GUI: See Bootgen GUI Options.

• From the command line using the XSCT option. See the following: Using Bootgen Options on
the Command Line.

For more information about Vitis, see Vitis help.

Boot Time Security
Secure booting through latest authentication methods is supported to prevent unauthorized or
modified code from being run on Xilinx® devices, and to make sure only authorized programs
access the images for loading various encryption techniques.

For device-specific hardware security features, see the following documents:

• Zynq-7000 SoC Technical Reference Manual (UG585)

• Zynq UltraScale+ Device Technical Reference Manual (UG1085)

See Using Encryption and Using Authentication for more information about encrypting and
authenticating content when using Bootgen.

Chapter 28: Introduction

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 182Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.2;t=vivado+install+guide
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=182

The Bootgen hardware security monitor (HSM) mode increases key handling security because the
BIF attributes use public rather than private RSA keys. The HSM is a secure key/signature
generation device which generates private keys, encrypts partitions using the private key, and
provides the public part of the RSA key to Bootgen. The private keys do not leave the HSM. The
BIF for Bootgen HSM mode uses public keys and signatures generated by the HSM. See Using
HSM Mode for more information.

Chapter 28: Introduction

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=183

Chapter 29

Boot Image Layout
This section describes the format of the boot image for different architectures.

• For information about using Bootgen for Zynq-7000 devices, see Zynq-7000 SoC Boot and
Configuration.

• For information about using Bootgen for Zynq® UltraScale+™ MPSoC devices, see Zynq
UltraScale+ MPSoC Boot and Configuration.

• For information on how to use Bootgen for Xilinx FPGAs, see FPGA Support.

Building a boot image involves the following steps:

1. Create a BIF file.

2. Run the Bootgen executable to create a binary file.

Note: For the Quick Emulator (QEMU) you must convert the binary file to an image format
corresponding to the boot device.

Each device requires files in a specific format to generate a boot image for that device. The
following topics describe the required format of the Boot Header, Image Header, Partition
Header, Initialization, and Authentication Certificate Header for each device.

Zynq-7000 SoC Boot and Configuration
This section describes the boot and configuration sequence for Zynq®-7000 SoC. See the
Zynq-7000 SoC Technical Reference Manual (UG585) for more details on the available first stage
boot loader (FSBL) structures.

BootROM on Zynq-7000 SoC

The BootROM is the first software to run in the application processing unit (APU). BootROM
executes on the first Cortex™ processor, A9-0, while the second processor, Cortex, A9-1,
executes the wait for event (WFE) instruction. The main tasks of the BootROM are to configure
the system, copy the FSBL from the boot device to the on-chip memory (OCM), and then branch
the code execution to the OCM.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 184Send Feedback

https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=184

Optionally, you can execute the FSBL directly from a Quad-SPI or NOR device in a non-secure
environment. The master boot device holds one or more boot images. A boot image is made up
of the boot header and the first stage boot loader (FSBL). Additionally, a boot image can have
programmable logic (PL), a second stage boot loader (SSBL), and an embedded operating system
and applications; however, these are not accessed by the BootROM. The BootROM execution
flow is affected by the boot mode pin strap settings, the Boot Header, and what it discovers
about the system. The BootROM can execute in a secure environment with encrypted FSBL, or a
non-secure environment. The supported boot modes are:

• JTAG mode is primarily used for development and debug.

• NAND, parallel NOR, Serial NOR (Quad-SPI), and Secure Digital (SD) flash memories are used
for booting the device. The Zynq SoC Technical Reference Manual (UG585) provides the details
of these boot modes. See Zynq-7000 Boot and Configuration AR#52538 for answers to
common boot and configuration questions.

Zynq-7000 SoC Boot Image Layout
The following is a diagram of the components that can be included in a Zynq®-7000 SoC boot
image.

Figure 6: Boot Header

Boot Header

Register Initialization Table

Image Header Table

.

.

.

Header Authentication Certificate (Optional)

Partition 1 (FSBL)

Image Header 1 _ _ _

AC
(Optional)

Image Header 2 Image Header n

Partition Header 1 _ _ _Partition Header 2 Partition Header n

Partition 2 AC
(Optional)

Partition n AC
(Optional)

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 185Send Feedback

https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/answers/52538.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=185

Zynq-7000 SoC Boot Header
Bootgen attaches a boot header at the beginning of a boot image. The Boot Header table is a
structure that contains information related to booting the primary bootloader, such as the FSBL.
There is only one such structure in the entire boot image. This table is parsed by BootROM to get
determine where FSBL is stored in flash and where it needs to be loaded in OCM. Some
encryption and authentication related parameters are also stored in here. The additional Boot
image components are:

• Zynq-7000 SoC Register Initialization Table

• Zynq-7000 SoC Image Header Table

• Zynq-7000 SoC Partition Header

• Zynq-7000 SoC Image Header

• Zynq-7000 SoC Authentication Certificate

Additionally, the Boot Header contains a Zynq-7000 SoC Register Initialization Table. BootROM
uses the Boot Header to find the location and length of FSBL and other details to initialize the
system before handing off the control to FSBL.

The following table provides the address offsets, parameters, and descriptions for the
Zynq®-7000 SoC Boot Header.

Table 10: Zynq-7000 SoC Boot Header

Address Offset Parameter Description
0x00-0x1F Arm® Vector table Filled with dummy vector table by Bootgen (Arm Op code

0xEAFFFFFE, which is a branch-to-self infinite loop intended to
catch uninitialized vectors.

0x20 Width Detection Word This is required to identify the QSPI flash in single/dual stacked
or dual parallel mode. 0xAA995566 in little endian format.

0x24 Header Signature Contains 4 bytes ‘X’,’N’,’L’,’X’ in byte order, which is
0x584c4e58 in little endian format.

0x28 Key Source Location of encryption key within the device:

0x3A5C3C5A: Encryption key in BBRAM.
0xA5C3C5A3: Encryption key in eFUSE.
0x00000000: Not Encrypted.

0x2C Header Version 0x01010000

0x30 Source Offset Location of FSBL (bootloader) in this image file.

0x34 FSBL Image Length Length of the FSBL, after decryption.

0x38 FSBL Load Address (RAM) Destination RAM address to which to copy the FSBL.

0x3C FSBL Execution address (RAM) Entry vector for FSBL execution.

0x40 Total FSBL Length Total size of FSBL after encryption, including authentication
certificate (if any) and padding.

0x44 QSPI Configuration Word Hard coded to 0x00000001.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=186

Table 10: Zynq-7000 SoC Boot Header (cont'd)

Address Offset Parameter Description
0x48 Boot Header Checksum Sum of words from offset 0x20 to 0x44 inclusive. The words are

assumed to be little endian.

0x4c-0x97 User Defined Fields 76 bytes

0x98 Image Header Table Offset Pointer to Image Header Table (word offset).

0x9C Partition Header Table Offset Pointer to Partition Header Table (word offset).

Zynq-7000 SoC Register Initialization Table
The Register Initialization Table in Bootgen is a structure of 256 address-value pairs used to
initialize PS registers for MIO multiplexer and flash clocks. For more information, see About
Register Intialization Pairs and INT File Attributes.

Table 11: Zynq-7000 SoC Register Initialization Table

Address Offset Parameter Description
0xA0 to 0x89C Register Initialization Pairs:

<address>:<value>:
Address = 0xFFFFFFFF means
skip that register and ignore the
value.
All the unused register fields must
be set to Address=0xFFFFFFFF
and value = 0x0.

Zynq-7000 SoC Image Header Table
Bootgen creates a boot image by extracting data from ELF files, bitstream, data files, and so forth.
These files, from which the data is extracted, are referred to as images. Each image can have one
or more partitions. The Image Header table is a structure, containing information which is
common across all these images, and information like; the number of images, partitions present
in the boot image, and the pointer to the other header tables. The following table provides the
address offsets, parameters, and descriptions for the Zynq®-7000 SoC device.

Table 12: Zynq-7000 SoC Image Header Table

Address Offset Parameter Description
0x00 Version 0x01010000: Only fields available are 0x0, 0x4, 0x8, 0xC, and a

padding
0x01020000:0x10 field is added.

0x04 Count of Image Headers Indicates the number of image headers.

0x08 First Partition Header
Offset

Pointer to first partition header. (word offset)

0x0C First Image Header Offset Pointer to first image header. (word offset)

0x10 Header Authentication
Certificate Offset

Pointer to the authentication certificate header. (word offset)

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=187

Table 12: Zynq-7000 SoC Image Header Table (cont'd)

Address Offset Parameter Description
0x14 Reserved Defaults to 0xFFFFFFFF.

Zynq-7000 SoC Image Header
The Image Header is an array of structures containing information related to each image, such as
an ELF file, bitstream, data files, and so forth. Each image can have multiple partitions, for
example an ELF can have multiple loadable sections, each of which forms a partition in the boot
image. The table will also contain the information of number of partitions related to an image.
The following table provides the address offsets, parameters, and descriptions for the
Zynq®-7000 SoC device.

Table 13: Zynq-7000 SoC Image Header

Address Offset Parameter Description
0x00 Next Image Header. Link to next Image Header. 0 if last

Image Header (word offset).

0x04 Corresponding partition header. Link to first associated Partition Header
(word offset).

0x08 Reserved Always 0.

0x0C Partition Count Length Number of partitions associated with
this image.

0x10 to N Image Name Packed in big-endian order. To
reconstruct the string, unpack 4 bytes
at a time, reverse the order, and
concatenate. For example, the string
“FSBL10.ELF” is packed as 0x10:
‘L’,’B’,’S’,’F’,
0x14: ’E’,’.’,’0’,’1’, 0x18: ’
\0’,’\0’,’F’,’L’ .
The packed image name is a multiple
of 4 bytes.

N String Terminator 0x00000000

N+4 Reserved Defaults to 0xFFFFFFFF to 64 bytes
boundary.

Zynq-7000 SoC Partition Header
The Partition Header is an array of structures containing information related to each partition.
Each partition header table is parsed by the Boot Loader. The information such as the partition
size, address in flash, load address in RAM, encrypted/signed, and so forth, are part of this table.
There is one such structure for each partition including FSBL. The last structure in the table is
marked by all NULL values (except the checksum.) The following table shows the offsets, names,
and notes regarding the Zynq®-7000 SoC Partition Header.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 188Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=188

Note: An ELF file with three (3) loadable sections has one image header and three (3) partition header
tables.

Table 14: Zynq-7000 SoC Partition Header

Offset Name Notes
0x00 Encrypted Partition length Encrypted partition data length.

0x04 Unencrypted Partition length Unencrypted data length.

0x08 Total partition word length
(Includes Authentication
Certificate.) See Zynq-7000 SoC
Authentication Certificate

The total partition word length comprises the
encrypted information length with padding, the
expansion length, and the authentication length.

0x0C Destination load address. The RAM address into which this partition is to be
loaded.

0x10 Destination execution address. Entry point of this partition when executed.

0x14 Data word offset in Image Position of the partition data relative to the start
of the boot image

0x18 Attribute Bits See Zynq-7000 SoC Partition Attribute Bits

0x1C Section Count Number of sections in a single partition.

0x20 Checksum Word Offset Location of the corresponding checksum word in
the boot image.

0x24 Image Header Word Offset Location of the corresponding Image Header in
the boot image

0x28 Authentication Certification Word
Offset

Location of the corresponding Authentication
Certification in the boot image.

0x2C-0x38 Reserved Reserved

0x3C Header Checksum Sum of the previous words in the Partition
Header.

Zynq-7000 SoC Partition Attribute Bits

The following table describes the Partition Attribute bits of the partition header table for a
Zynq®-7000 SoC device.

Table 15: Zynq-7000 SoC Partition Attribute Bits

Bit Field Description Notes
31:18 Reserved Not used

17:16 Partition owner
0: FSBL
1: UBOOT
2 and 3: reserved

15 RSA signature present
0: No RSA authentication certificate
1: RSA authentication certificate

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=189

Table 15: Zynq-7000 SoC Partition Attribute Bits (cont'd)

Bit Field Description Notes
14:12 Checksum type

0: None
1: MD5
2-7: reserved

11:8 Reserved Not used

7:4 Destination device
0: None
1: PS
2: PL
3: INT
4-15: Reserved

3:2 Reserved Not used

1:0 Reserved Not used

Zynq-7000 SoC Authentication Certificate
The Authentication Certificate is a structure that contains all the information related to the
authentication of a partition. This structure has the public keys, all the signatures that BootROM/
FSBL needs to verify. There is an Authentication Header in each Authentication Certificate,
which gives information like the key sizes, algorithm used for signing, and so forth. The
Authentication Certificate is appended to the actual partition, for which authentication is
enabled. If authentication is enabled for any of the partitions, the header tables also needs
authentication. Header Table Authentication Certificate is appended at end of the header tables
content.

The Zynq®-7000 SoC uses an RSA-2048 authentication with a SHA-256 hashing algorithm,
which means the primary and secondary key sizes are 2048-bit. Because SHA-256 is used as the
secure hash algorithm, the FSBL, partition, and authentication certificates must be padded to a
512-bit boundary.

The format of the Authentication Certificate in a Zynq®-7000 SoC is as shown in the following
table.

Table 16: Zynq-7000 SoC Authentication Certificate

Authentication Certificate Bits Description
0x00 Authentication Header = 0x0101000. See Zynq-7000 SoC Authentication

Certificate Header.

0x04 Certificate size

0x08 UDF (56 bytes)

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=190

Table 16: Zynq-7000 SoC Authentication Certificate (cont'd)

Authentication Certificate Bits Description
0x40 PPK Mod (256 bytes)

0x140 Mod Ext (256 bytes)

0x240 Exponent

0x244 Pad (60 bytes)

0x280 SPK Mod (256 bytes)

0x380 Mod Ext (256 bytes)

0x480 Exponent (4 bytes)

0x484 Pad (60 bytes)

0x4C0 SPK Signature = RSA-2048 (PSK, Padding || SHA-256(SPK))

0x5C0 FSBL Partition Signature = RSA-2048 (SSK, SHA-256 (Boot Header || FSBL
partition.

0x5C0 Other Partition Signature = RSA-2048 (SSK, SHA-256 (Partition || Padding ||
Authentication Header || PPK || SPK || SPK Signature)

Zynq-7000 SoC Authentication Certificate Header

The following table describes the Zynq®-7000 SoC Authentication Certificate Header.

Table 17: Zynq-7000 SoC Authentication Certificate Header

Bit Offset Field Name Description
31:16 Reserved 0

15:14 Authentication Certificate Format 00: PKCS #1 v1.5

13:12 Authentication Certificate Version 00: Current AC

11 PPK Key Type 0: Hash Key

10:9 PPK Key Source 0: eFUSE

8 SPK Enable 1: SPK Enable

7:4 Public Strength 0:2048

3:2 Hash Algorithm 0: SHA256

Zynq-7000 SoC Boot Image Block Diagram
The following is a diagram of the components that can be included in a Zynq®-7000 SoC boot
image.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=191

Figure 7: Zynq-7000 SoC Boot Image Block Diagram

X21320-081718

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=192

Zynq UltraScale+ MPSoC Boot and
Configuration

Introduction

Zynq® UltraScale+™ MPSoC supports the ability to boot from different devices such as a QSPI
flash, an SD card, USB device firmware upgrade (DFU) host, and the NAND flash drive. This
chapter details the boot-up process using different booting devices in both secure and non-
secure modes. The boot-up process is managed and carried out by the Platform Management
Unit (PMU) and Configuration Security Unit (CSU).

During initial boot, the following steps occur:

• The PMU is brought out of reset by the power on reset (POR).

• The PMU executes code from PMU ROM.

• The PMU initializes the SYSMON and required PLLs for the boot, clears the low power and
full power domains, and releases the CSU reset.

After the PMU releases the CSU, CSU does the following:

• Checks to determine if authentication is required by the FSBL or the user application.

• Performs an authentication check and proceeds only if the authentication check passes. Then
checks the image for any encrypted partitions.

• If the CSU detects partitions that are encrypted, the CSU performs decryption and initializes
OCM, determines boot mode settings, performs the FSBL load and an optional PMU firmware
load.

• After execution of CSU ROM code, it hands off control to FSBL. FSBL uses PCAP interface to
program the PL with bitstream.

FSBL then takes the responsibility of the system. The Zynq UltraScale+ Device Technical Reference
Manual (UG1085) provides details on CSU and PMU. For specific information on CSU, see this
link to the "Configuration Security Unit" section of the Zynq UltraScale+ MPSoC: Software
Developers Guide (UG1137) .

Zynq UltraScale+ MPSoC Boot Image
The following figure shows the Zynq® UltraScale+™ MPSoC boot image.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 193Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf;xDeviceSecureBoot
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1137-zynq-ultrascale-mpsoc-swdev.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=193

Figure 8: Zynq UltraScale+ MPSoC Boot Image

Boot Header

Register Initialization Table

Image Header Table

.

.

.

Header Authentication Certificate (Optional)

Image
Header 1

_ _ _
Image

Header 2
Image Header

n

Partition
Header 1

_ _ _
Partition
Header 2

Partition
Header n

Partition n AC
(Optional)

Partition 2 AC
(Optional)

Partition 1 (FSBL) AC
(Optional)

PUF Helper Data (Optional)

PMU FW
(Optional)

X23449-102919

Zynq UltraScale+ MPSoC Boot Header
About the Boot Header

Bootgen attaches a boot header at the starting of any boot image. The Boot Header table is a
structure that contains information related to booting of primary bootloader, such as the FSBL.
There is only one such structure in entire boot image. This table is parsed by BootROM to get the
information of where FSBL is stored in flash and where it needs to be loaded in OCM. Some
encryption and authentication related parameters are also stored in here. The Boot image
components are:

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=194

• Zynq UltraScale+ MPSoC Boot Header, which also has the Zynq UltraScale+ MPSoC Boot
Header Attribute Bits.

• Zynq UltraScale+ MPSoC Register Initialization Table

• Zynq UltraScale+ MPSoC PUF Helper Data

• Zynq UltraScale+ MPSoC Image Header Table

• Zynq UltraScale+ MPSoC Image Header

• Zynq UltraScale+ MPSoC Authentication Certificates

• Zynq UltraScale+ MPSoC Partition Header

BootROM uses the Boot Header to find the location and length of FSBL and other details to
initialize the system before handing off the control to FSBL. The following table provides the
address offsets, parameters, and descriptions for the Zynq® UltraScale+™ MPSoC device.

Table 18: Zynq UltraScale+ MPSoC Device Boot Header

Address Offset Parameter Description
0x00-0x1F Arm® vector table XIP ELF vector table:

0xEAFFFFFE: for Cortex™-R5F and Cortex A53 (32-bit)
0x14000000: for Cortex A53 (64-bit)

0x20 Width Detection
Word

This field is used for QSPI width detection. 0xAA995566 in little endian
format.

0x24 Header Signature Contains 4 bytes ‘X’,’N’,’L’,’X’ in byte order, which is 0x584c4e58 in
little endian format.

0x28 Key Source
0x00000000 (Un-Encrypted)
0xA5C3C5A5 (Black key stored in eFUSE)
0xA5C3C5A7 (Obfuscated key stored in eFUSE)
0x3A5C3C5A (Red key stored in BBRAM)
0xA5C3C5A3 (eFUSE RED key stored in eFUSE)
0xA35C7CA5 (Obfuscated key stored in Boot Header)
0xA3A5C3C5 (USER key stored in Boot Header)
0xA35C7C53 (Black key stored in Boot Header)

0x2C FSBL Execution
address (RAM)

FSBL execution address in OCM or XIP base address.

0x30 Source Offset If no PMUFW, then it is the start offset of FSBL. If PMUFW, then start of
PMUFW.

0x34 PMU Image
Length

PMU FW original image length in bytes. (0-128KB).

If size > 0, PMUFW is prefixed to FSBL.
If size = 0, no PMUFW image.

0x38 Total PMU FW
Length

Total PMUFW image length in bytes.(PMUFW length + encryption
overhead)

0x3C FSBL Image
Length

Original FSBL image length in bytes. (0-250KB). If 0, XIP bootimage is
assumed.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=195

Table 18: Zynq UltraScale+ MPSoC Device Boot Header (cont'd)

Address Offset Parameter Description
0x40 Total FSBL Length FSBL image length + Encryption overhead of FSBL image + Auth. Cert., +

64byte alignment + hash size (Integrity check).

0x44 FSBL Image
Attributes

See Bit Attributes.

0x48 Boot Header
Checksum

Sum of words from offset 0x20 to 0x44 inclusive. The words are assumed to
be little endian.

0x4C-0x68 Obfuscated/Black
Key Storage

Stores the Obfuscated key or Black key.

0x6C Shutter Value 32-bit PUF_SHUT register value to configure PUF for shutter offset time and
shutter open time.

0x70 -0x94 User-Defined
Fields (UDF)

40 bytes.

0x98 Image Header
Table Offset

Pointer to Image Header Table. (word offset)

0x9C Partition Header
Table Offset

Pointer to Partition Header. (word offset)

0xA0-0xA8 Secure Header IV IV for secure header of bootloader partition.

0x0AC-0xB4 Obfuscated/Black
Key IV

IV for Obfuscated or Black key.

Zynq UltraScale+ MPSoC Boot Header Attribute Bits

Table 19: Zynq UltraScale+ MPSoC Boot Header Attribute Bits

Field Name Bit Offset Width Default Description
Reserved 31:16 16 0x0 Reserved. Must be 0.

BHDR RSA 15:14 2 0x0
0x3: RSA Authentication of
the boot image will be
done, excluding verification
of PPK hash and SPK ID.
All Others others : RSA
Authentication will be
decided based on eFuse
RSA bits.

Reserved 13:12 2 0x0 NA

CPU Select 11:10 2 0x0
0x0: R5 Single
0x1: A53 Single
0x2: R5 Dual
0x3: Reserved

Hashing Select 9:8 2 0x0
0x0, 0x1 : No Integrity check
0x3: SHA3 for BI integrity
check

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=196

Table 19: Zynq UltraScale+ MPSoC Boot Header Attribute Bits (cont'd)

Field Name Bit Offset Width Default Description
PUF-HD 7:6 2 0x0

0x3: PUF HD is part of boot
header.
All other: PUF HD is in
eFuse

Reserved 5:0 6 0x0 Reserved for future use. Must
be 0.

Zynq UltraScale+ MPSoC Register Initialization Table
The Register Initialization Table in Bootgen is a structure of 256 address-value pairs used to
initialize PS registers for MIO multiplexer and flash clocks. For more information, see About
Register Intialization Pairs and INT File Attributes.

Table 20: Zynq UltraScale+ MPSoC Register Initialization Table

Address Offset Parameter Description
0xB8 to 0x8B4 Register Initialization Pairs:

<address>:<value>:

(2048 bytes)

If the Address is set to
0xFFFFFFFF, that register is
skipped and the value is ignored.
All unused register fields must be
set to Address=0xFFFFFFFF and
value =0x0.

Zynq UltraScale+ MPSoC PUF Helper Data
The PUF uses helper data to re-create the original KEK value over the complete guaranteed
operating temperature and voltage range over the life of the part. The helper data consists of a
<syndrome_value>, an <aux_value>, and a <chash_value>. The helper data can either be
stored in eFUSEs or in the boot image. See puf_file for more information.Also, see this link to the
section on "PUF Helper Data" in Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Table 21: Zynq UltraScale+ MPSoC PUF Helper Data

Address Offset Parameter Description
0x8B8 to 0xEC0 PUF Helper Data (1544

bytes)
Valid only when Boot Header Offset 0x44 (bits 7:6) ==
0x3. If the PUF HD is not inserted then Boot Header
size = 2048 bytes. If the PUF Header Data is inserted,
then the Boot Header size = 3584 bytes. PUF HD size =
Total size = 1536 bytes of PUFHD + 4 bytes of CHASH +
2 bytes of AUX + 1 byte alignment = 1544 byte.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 197Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf;xPUFHelperData
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=197

Zynq UltraScale+ MPSoC Image Header Table
Bootgen creates a boot image by extracting data from ELF files, bitstream, data files, and so forth.
These files, from which the data is extracted, are referred to as images. Each image can have one
or more partitions. The Image Header table is a structure, containing information which is
common across all these images, and information like; the number of images, partitions present
in the boot image, and the pointer to the other header tables.

Table 22: Zynq UltraScale+ MPSoC Device Image Header Table

Address Offset Parameter Description
0x00 Version

0x01010000
0x01020000 - 0x10 field is added

0x04 Count of Image Header Indicates the number of image headers.

0x08 1st Partition Header Offset Pointer to first partition header. (word
offset)

0x0C 1st Image Offset Header Pointer to first image header. (word offset)

0x10 Header Authentication Certificate Pointer to header authentication
certificate. (word offset)

0x14 Secondary Boot Device Options are:

0 - Same boot device
1 – QSPI-32
2 – QSPI-24
3 – NAND
4 – SD0
4 – SD1
5 – SDLS
6 – MMC
7 – USB
8 – ETHERNET
9 - PCIE
10 – SATA

0x18- 0x38 Padding Reserved (0x0)

0x3C Checksum A sum of all the previous words in the
image header.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=198

Zynq UltraScale+ MPSoC Image Header
About Image Headers

The Image Header is an array of structures containing information related to each image, such as
an ELF file, bitstream, data files, and so forth. Each image can have multiple partitions, for
example an ELF can have multiple loadable sections, each of which form a partition in the boot
image. The table will also contain the information of number of partitions related to an image.
The following table provides the address offsets, parameters, and descriptions for the Zynq®

UltraScale+™ MPSoC.

Table 23: Zynq UltraScale+ MPSoC Device Image Header

Address Offset Parameter Description
0x00 Next image header offset Link to next Image Header. 0 if last Image Header.

(word offset)

0x04 Corresponding partition header Link to first associated Partition Header. (word offset)

0x08 Reserved Always 0.

0x0C Partition Count Value of the actual partition count.

0x10 - N Image Name Packed in big-endian order. To reconstruct the string,
unpack 4 bytes at a time, reverse the order, and
concatenated. For example, the string “FSBL10.ELF”
is packed as 0x10: ‘L’,’B’,’S’,’F’,
0x14: ’E’,’.’,’0’,’1’, 0x18: ’\0’,’
\0’,’F’,’L’ The packed image name is a multiple
of 4 bytes.

varies String Terminator 0x00000

varies Padding Defaults to 0xFFFFFFF to 64 bytes boundary.

Zynq UltraScale+ MPSoC Partition Header
About the Partition Header

The Partition Header is an array of structures containing information related to each partition.
Each partition header table is parsed by the Boot Loader. The information such as the partition
size, address in flash, load address in RAM, encrypted/signed, and so forth, are part of this table.
There is one such structure for each partition including FSBL. The last structure in the table is
marked by all NULL values (except the checksum.) The following table shows the offsets, names,
and notes regarding the Zynq® UltraScale+™ MPSoC.

Table 24: Zynq UltraScale+ MPSoC Device Partition Header

Offset Name Notes
0x0 Encrypted Partition Data Word

Length
Encrypted partition data length.

0x04 Un-encrypted Data Word Length Unencrypted data length.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 199Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=199

Table 24: Zynq UltraScale+ MPSoC Device Partition Header (cont'd)

Offset Name Notes
0x08 Total Partition Word Length

(Includes Authentication
Certificate. See Authentication
Certificate.

The total encrypted + padding + expansion +authentication
length.

0x0C Next Partition Header Offset LO Location of next partition header (word offset).

0x10 Destination Execution Address The lower 32-bits of executable address of this partition after
loading.

0x14 Destination Execution Address HI The higher 32-bits of executable address of this partition after
loading.

0x18 Destination Load Address LO The lower 32-bits of RAM address into which this partition is to
be loaded.

0x1C Destination Load Address HI The higher 32-bits of RAM address into which this partition is
to be loaded.

0x20 Actual Partition Word Offset The position of the partition data relative to the start of the
boot image. (word offset)

0x24 Attributes See Zynq UltraScale+ MPSoC Partition Attribute Bits

0x28 Section Count The number of sections associated with this partition.

0x2C Checksum Word Offset The location of the checksum table in the boot image. (word
offset)

0x30 Image Header Word Offset The location of the corresponding image header in the boot
image. (word offset)

0x34 Partition Number/ID Partition ID.

0x3C Header Checksum A sum of the previous words in the Partition Header.

Zynq UltraScale+ MPSoC Partition Attribute Bits

The following table describes the Partition Attribute bits on the partition header table for the
Zynq® UltraScale+™ MPSoC.

Table 25: Zynq® UltraScale+™ MPSoC Device Partition Attribute Bits

Bit Offset Field Name Description
31:24 Reserved

23 Vector Location Location of exception vector.

0: LOVEC (default)
1: HIVEC

22:20 Reserved

19 Early Handoff Handoff immediately after loading:

0: No Early Handoff
1: Early Handoff Enabled

18 Endianness
0: Little Endian
1: Big Endian

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 200Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=200

Table 25: Zynq® UltraScale+™ MPSoC Device Partition Attribute Bits (cont'd)

Bit Offset Field Name Description
17:16 Partition Owner

0: FSBL
1: U-Boot
2 and 3: Reserved

15 RSA Authentication Certificate
present 0: No RSA Authentication Certificate

1: RSA Authentication Certificate

14:12 Checksum Type
0: None
1-2: Reserved
3: SHA3
4-7: Reserved

11:8 Destination CPU
0: None
1: A53-0
2: A53-1
3: A53-2
4: A53-3
5: R5-0
6: R5 -1
7 R5-lockstep
8: PMU
9-15: Reserved

7 Encryption Present
0: Not Encrypted
1: Encrypted

6:4 Destination Device
0: None
1: PS
2: PL
3-15: Reserved

3 A5X Exec State
0: AARCH64 (default)
1: AARCH32

2:1 Exception Level
0: EL0
1: EL1
2: EL2
3: EL3

0 Trustzone
0: Non-secure
1: Secure

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=201

Zynq UltraScale+ MPSoC Authentication Certificates
The Authentication Certificate is a structure that contains all the information related to the
authentication of a partition. This structure has the public keys and the signatures that
BootROM/FSBL needs to verify. There is an Authentication Header in each Authentication
Certificate, which gives information like the key sizes, algorithm used for signing, and so forth.
The Authentication Certificate is appended to the actual partition, for which authentication is
enabled. If authentication is enabled for any of the partitions, the header tables also needs
authentication. The Header Table Authentication Certificate is appended at end of the content to
the header tables.

The Zynq® UltraScale+™ MPSoC uses RSA-4096 authentication, which means the primary and
secondary key sizes are 4096-bit. The following table provides the format of the Authentication
Certificate for the Zynq UltraScale+ MPSoC device.

Table 26: Zynq UltraScale+ MPSoC Device Authentication Certificates

Authentication Certificate
0x00 Authentication Header = 0x0101000. See Zynq UltraScale+ MPSoC Authentication

Certification Header.

0x04 SPK ID

0x08 UDF (56 bytes)

0x40 PPK Mod (512)

0x240 Mod Ext (512)

0x440 Exponent (4 bytes)

0x444 Pad (60 bytes)

0x480 SPK Mod (512 bytes)

0x680 Mod Ext (512 bytes)

0x880 Exponent (4 bytes)

0x884 Pad (60 bytes)

0x8C0 SPK Signature = RSA-4096 (PSK, Padding || SHA-384 (SPK + Authentication
Header + SPK-ID))

0xAC0 Boot Header Signature = RSA-4096 (SSK, Padding || SHA-384 (Boot Header))

0xCC0 Partition Signature = RSA-4096 (SSK, Padding || SHA-384 (Partition || Padding
|| Authentication Header || UDF || PPK || SPK || SPK Signature))

Note: FSBL Signature is calculated as follows:

FSBL Signature = RSA-4096 (SSK, Padding || SHA-384 (PMUFW || FSBL ||
Padding || Authentication Header || UDF || PPK || SPK || SPK Signature)

Zynq UltraScale+ MPSoC Authentication Certification Header

The following table describes the Authentication Header bit fields for the Zynq® UltraScale+™
MPSoC device.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 202Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=202

Table 27: Authentication Header Bit Fields

Bit Field Description Notes
31:20 Reserved 0

19:18 SPK/User eFuse Select
01: SPK eFuse
10: User eFuse

17:16 PPK Key Select
0: PPK0
1: PPK1

15:14 Authentication Certificate
Format

00: PKCS #1 v1.5

13:12 Authentication Certificate
Version

00: Current AC

11 PPK Key Type 0: Hash Key

10:9 PPK Key Source 0: eFUSE

8 SPK Enable 1: SPK Enable

7:4 Public Strength
0 : 2048b
1 : 4096
2:3 : Reserved

3:2 Hash Algorithm
1: SHA3/384
2:3 Reserved

1:0 Public Algorithm
0: Reserved
1: RSA
2: Reserved
3: Reserved

Zynq UltraScale+ MPSoC Secure Header
When you choose to encrypt a partition, Bootgen appends the secure header to that partition.
The secure header, contains the key/iv used to encrypt the actual partition. This header in-turn is
encrypted using the device key and iv. The Zynq UltraScale+ MPSoC secure header is shown in
the following table.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=203

Figure 9: Zynq UltraScale+ MPSoC Secure Header

AES

Partition#0 (FSBL) Partition#1 Partition#2

Contents Contents Contents

Secure Header Key0 IV0 - IV1 Key0 IV0+0x01 Key1 IV1 Key0 IV0+0x02 Key1 IV1

Block #0 Key0 IV1 - - Key1 IV1 - - Key1 IV1 - -

AES with Key rolling

Partition#0 (FSBL) Partition#1 Partition#2

Contents Contents Contents

Secure Header Key0 IV0 - IV1 Key0 IV0+0x01 Key1 IV1 Key0 IV0+0x02 Key1 IV1

Block #0 Key0 IV1 Key 2 IV2 Key1 IV1 Key2 IV2 Key1 IV1 Key2 IV2

Block #1 Key2 IV2 Key 3 IV3 Key2 IV2 Key 3 IV3 Key2 IV2 Key 3 IV3

Block #2 Key3 IV3 Key 4 IV4 Key3 IV3 Key 4 IV4 Key3 IV3 Key 4 IV4

… … … … … … … … … … … … …

Encrypted
Using

Encrypted
Using

Encrypted
Using

Encrypted
Using

Encrypted
Using

Encrypted
Using

Zynq UltraScale+ MPSoC Boot Image Block Diagram
The following is a diagram of the components that can be included in a Zynq® UltraScale+™
MPSoC boot image.

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=204

Figure 10: Zynq UltraScale+ MPSoC Device Boot Image Block Diagram

Boot Header 0x000-0xEC0

Image Header Table
Image Headers (IH1-Ihn)

Partition Header 1

Partition Header n
Header AC

BootLoader
(FSBL and PMUFW (opt))

BootLoader AC

Partition 1

Partition 1 AC

Partition(n)

Partition(n) AC

BootLoader AC

Partition 1 AC

Partition n AC

AC Header
SPK IDHeader

SPKHeader

SPK Signature
BH Signature

Partition Signature

Header AC

User Defined Field
PPK

AC Header
SPK IDBootLoader

SPKBootLoader

SPK Signature
BH Signature

Partition Signature

User Defined Field
PPK

AC Header
SPK IDPartition1

SPKPartition1

SPK Signature
BH Signature

Partition Signature

User Defined Field
PPK

AC Header
SPK IDPartition(n)

SPKPartition(n)

SPK Signature
BH Signature

Partition Signature

User Defined Field
PPK

X#####-122118X18916-081518

Chapter 29: Boot Image Layout

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=205

Chapter 30

Creating Boot Images

Boot Image Format (BIF)
The Xilinx® boot image layout has multiple files, file types, and supporting headers to parse those
files by boot loaders. Bootgen defines multiple attributes for generating the boot images and
interprets and generates the boot images, based on what is passed in the files. Because there are
multiple commands and attributes available, Bootgen defines a boot image format (BIF) to
contain those inputs. A BIF comprises of the following:

• Configuration attributes to create secure/non-secure boot images

• An FSBL

• One or more Partition Images

Along with properties and attributes, Bootgen takes multiple commands to define the behavior
while it is creating the boot images. For example, to create a boot image for a qualified FPGA
device, a Zynq®-7000 SoC device, or a Zynq® UltraScale+™ MPSoC device, you should provide
the appropriate arch command option to Bootgen. The following appendices list and describe the
available options to direct Bootgen behavior.

• Use Cases and Examples

• BIF Attribute Reference

• Command Reference

The format of the boot image conforms to a hybrid mix of hardware and software requirements.
The boot image Header is required by the bootROM loader which loads a single partition,
typically the first stage boot loader (FSBL). The remainder of the boot image is loaded and
processed by the FSBL. Bootgen generates a boot image by combining a list of partitions. These
partitions can be:

• First Stage Boot Loader (FSBL)

• Secondary Stage Boot Loader (SSBL) like U-Boot

• Bitstream

• Linux

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=206

• Software applications to run on processors

• User Data

• Bootgen generated boot image

BIF Syntax and Supported File Types
The BIF file specifies each component of the boot image, in order of boot, and allows optional
attributes to be applied to each image component. In some cases, an image component can be
mapped to more than one partition if the image component is not contiguous in memory. BIF file
syntax takes the following form:

<image_name>:
{
 // common attributes
 [attribute1] <argument1>

 // partition attributes
 [attribute2, attribute3=<argument>] <elf>
 [attribute2, attribute3=<argument>, attibute4=<argument] <bit>
 [attribute3] <elf>
 <bin>
}

• The <image_name> and the {...} grouping brackets the files that are to be made into partitions
in the ROM image.

• One or more data files are listed in the {...} brackets.

• Supported file types are: ELF, BIT, RBT, INT, or BIN files.

• Each partition data files can have an optional set of attributes preceding the data file name
with the syntax [attribute, attribute=<argument>].

• Attributes apply some quality to the data file.

• Multiple attributes can be listed separated with a ',' as a separator. The order of multiple
attributes is not important. Some attributes are one keyword, some are keyword equates.

• You can also add a filepath to the file name if the file is not in the current directory. How you
list the files is free form; either all on one line (separated by any white space, and at least one
space), or on separate lines.

• White space is ignored, and can be added for readability.

• You can use C-style block comments of /*...*/, or C++ line comments of //.

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=207

The following example is of a BIF with additional white space and new lines for improved
readability:

<image_name>:
{
 /* common attributes */
 [attribute1] <argument1>

 /* bootloader */
 [attribute2,
 attribute3,
 attribute4=<argument>
] <elf>

 /* pl bitstream */
 [
 attribute2,
 attribute3,
 attribute4=<argument>,
 attibute=<argument>
] <bit>

 /* another elf partition */
 [
 attribute3
] <elf>

 /* bin partition */
 <bin>
}

Bootgen Supported Files

The following table lists the Bootgen supported files.

Table 28: Bootgen Supported Files

Extension Description Notes
.bin Binary Raw binary file.
.bit/.rbt Bitstream Strips the BIT file header.
.dtb Binary Raw binary file.
image.gz Binary Raw binary file.
.elf Executable Linked File (ELF) Symbols and headers removed.

.int Register initialization file

.nky AES key

.pk1/.pub/.pem RSA key

.sig Signature files Signature files generated by bootgen
or HSM.

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=208

Attributes
The following table lists the Bootgen attributes. Each attribute is linked to a longer description in
the left column with a short description in the right column. The architecture name indicates
what Xilinx® device uses that attribute:

• zynq: Zynq-7000 SoC device

• zynqmp: Zynq® UltraScale+™ MPSoC device

• fpga: Any 7 series and above devices

Table 29: Bootgen Attributes and Description

Option/Attribute Description Used By
aeskeyfile <aes_key_filepath> The path to the AES keyfile. The keyfile contains the AES key

used to encrypt the partitions. The contents of the key file
needs to written to eFUSE or BBRAM. If the key file is not
present in the path specified, a new key is generated by
bootgen, which is used for encryption. For example: If
encryption is selected for bitstream in the BIF file, the
output is an encrypted bitstream.

All

aarch32_mode To specify the binary file that is to be executed in 32-bit
mode.

zynqmp

alignment <byte> Sets the byte alignment. The partition will be padded to be
aligned to a multiple of this value. This attribute cannot be
used with offset.

zynq
zynqmp

auth_params <options> Extra options for authentication:

ppk_select: 0=1, 1=2 of two PPKs supported.
spk_id: 32-bit ID to differentiate SPKs.
spk_select: To differentiate spk and user efuses. Default
will be spk-efuse.
header_auth: To authenticate headers when no partition
is authenticated.

zynqmp

authentication <option> Specifies the partition to be authenticated.

Authentication for Zynq is done using RSA-2048.
Authentication for Zynq UltraScale+ MPSoCs is done
using RSA-4096.

The arguments are:

none: Partition not signed.
ecdsa: partition signed using ECDSA
rsa: Partition signed using RSA algorithm.

All

bh_keyfile <filename> 256-bit obfuscated key or black key to be stored in the Boot
Header. This is only valid when
[keysrc_encryption]=bh_gry_key or
[keysrc_encryption]=bh_blk_key.

zynqmp

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=209

Table 29: Bootgen Attributes and Description (cont'd)

Option/Attribute Description Used By
bh_key_iv <filename> Initialization vector used when decrypting the obfuscated

key or a black key. zynqmp

bhsignature <filename> Imports Boot Header signature into authentication
certificate. This can be used if you do not want to share the
secret key PSK. You can create a signature and provide it to
Bootgen. The file format is bootheader.sha384.sig

zynqmp

big_endian To specify the binary file is in big endian format zynqmp

blocks <block sizes> Specify block sizes for key-rolling feature in Encrytion. Each
module is encrypted using its own unique key. The initial
key is stored at the key source on the device, while keys for
each successive blocks are encrypted (wrapped) in the
previous module.

zynqmp

boot_device <options> Specifies the secondary boot device. Indicates the device on
which the partition is present. Options are:

qspi32
qspi24
nand
sd0
sd1
sd-ls
sdls
mmc
usb
ethernet
pcie
sata

zynqmp

bootimage <filename.bin> Specifies that the listed input file is a boot image that was
created by Bootgen. zynq

zynqmp

bootloader <partition> Specifies the partition is a bootloader (FSBL). This attribute
is specified along with other partition BIF attributes. zynq

zynqmp

bootvector <vector_values> Specifies the vector table for execute in place (XIP).
zynqmp

checksum <options> Specifies that the partition needs to be checksummed. This
option is not supported along with more secure features
like authentication and encryption. Checksum algorithms
are:

md5: for Zynq®-7000 SoC devices.
For Zynq® UltraScale+™ MPSoC, options are none:No
checksum operation.
sha3: sha3 checksum.

Note:

Zynq devices do not support checksum for boot loaders.
Zynq UltraScale+ MPSoC devices do support checksum
operation for bootloaders.

zynq
zynqmp

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=210

Table 29: Bootgen Attributes and Description (cont'd)

Option/Attribute Description Used By
destination_cpu <device_core> Specifies the core on which the partition needs to be

executed.

a53-0
a53-1
a53-2
a53-3
r5-0
r5-1
r5-lockstep
pmu

zynqmp

destination_device <device_type> This specifies if the partition is targeted for PS or PL. The
options are:

ps: the partition is targeted for PS (default).
pl: the partition is targeted for PL, for bitstreams.

zynqmp

early_handoff This flag ensures that the handoff to applications that are
critical immediately after the partition is loaded; otherwise,
all the partitions are loaded sequentially first, and then the
handoff also happens in a sequential fashion.

zynqmp

encryption <option> Specifies the partition to be encrypted. Encryption
algorithms are: zynq uses AES-CBC, and zynqmp uses AES-
GCM.
The partition options are:

none: Partition not encrypted.
aes: Partition encrypted using AES algorithm.

All

exception_level<options> Exception level for which the core should be configured.
Options are:

el-0
el-1
el-2
el-3

zynqmp

familykey Specifies the family key.
zynqmp
fpga

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=211

Table 29: Bootgen Attributes and Description (cont'd)

Option/Attribute Description Used By
fsbl_config Specifies the sub-attributes used to configure the

bootimage. Those sub-attributes are:

bh_auth_enable: RSA authentication of the boot image
is done excluding the verification of PPK hash and SPK
ID.
auth_only: boot image is only RSA signed. FSBL should
not be decrypted.
opt_key: Operational key is used for block-0 decryption.
Secure Header has the opt key.
pufhd_bh: PUF helper data is stored in Boot Header.
(Default is efuse).
PUF helper data file is passed to Bootgen using the
[puf_file] option.
puf4kmode: PUF is tuned to use in 4k bit configuration.
(Default is 12k bit).
shutter = <value>32 bit PUF_SHUT register value to
configure PUF for shutter offset time and shutter open
time.

zynqmp

headersignature<signature_file> Imports the header signature into an Authentication
Certificate. This can be used in case the user does not want
to share the secret key, The user can create a signature and
provide it to Bootgen.

zynq
zynqmp

hivec Specifies the location of exception vector table as hivec (Hi-
Vector). The default value is lovec (Low-Vector). This is
applicable with A53 (32 bit) and R5 cores only.

hivec: exception vector table at 0xFFFF0000.
lovec: exception vector table at 0x00000000.

zynqmp

init <filename> Register initialization block at the end of the Bootloader,
built by parsing the init (.int) file specification. A maximum
of 256 address-value init pairs are allowed. The init files
have a specific format.

zynq
zynqmp

keysrc_encryption Specifies the Key source for encryption. The keys are:

efuse_gry_key: Grey (Obfuscated) Key stored in
eFUSE. See Gray/Obfuscated Keys
bh_gry_key: Grey (Obfuscated) Key stored in boot
header.
bh_blk_key: Black Key stored in boot header. See
Black/PUF Keys
efuse_blk_key : Black Key stored in eFUSE.
kup_key: User Key.
efuse_red_key: Red key stored in eFUSE. See Rolling
Keys
bbram_red_key: Red key stored in BBRAM.

zynq
zynqmp

load <partition_address> Sets the load address for the partition in memory.
zynq
zynqmp

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=212

Table 29: Bootgen Attributes and Description (cont'd)

Option/Attribute Description Used By
offset <offset_address> Sets the absolute offset of the partition in the boot image.

zynq
zynqmp

partition_owner <option> Owner of the partition which is responsible to load the
partition. Options are:

fsbl: Partition is loaded by FSBL
uboot: Partition is loaded by U-Boot.

zynq
zynqmp

pid <ID> Specifies the Partition ID. PID can be a 32-bit value (0 to
0xFFFFFFFF). zynqmp

pmufw_image <image_name> PMU firmware image to be loaded by BootROM, before
loading the FSBL. zynqmp

ppkfile <key filename> Primary Public Key (PPK). Used to authenticate partitions in
the boot image.
See Using Authentication for more information.

zynq
zynqmp

presign <sig_filename> Partition signature (.sig) file.
All

pskfile <key filename> Primary Secret Key (PSK). Used to authenticate partitions in
the boot image.
See the Using Authentication for more information.

zynq
zynqmp

puf_file <filename> PUF helper data file. PUF is used with black key as
encryption key source. PUF helper data is of 1544 bytes.1536
bytes of PUF HD + 4 bytes of HASH + 3 bytes of AUX + 1 byte
alignment.

zynqmp

reserve Reserves the memory, which is padded after the partition.
zynq
zynqmp

spkfile <filename> Keys used to authenticate partitions in the boot image. See
Using Authenticationfor more information. SPK - Secondary
Public Key

All

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=213

Table 29: Bootgen Attributes and Description (cont'd)

Option/Attribute Description Used By
split <options> Splits the image into parts, based on the mode. Split options

are:

slaveboot: Supported for zynqmp only. Splits as follows:
Boot Header + Bootloader
Image and Partition Headers
Rest of the partitions

normal: Supported for both zynq and zynqmp. Splits as
follows:
Bootheader + Image Headers + Partition Headers +
Bootloader
Partiton1
Partition2 and so on

Along with the split mode, output format can also be
specified as bin or mcs.

Note: The option split mode normal is same as the
command line option split. This command line option is
deprecated.

zynq
zynqmp

spk_select <SPK_ID> Specify an SPK ID in user eFUSE.
zynqmp

spksignature <signature_file> Imports the SPK signature into an Authentication Certificate.
See Using AuthenticationThis can be used in case the user
does not want to share the secret key PSK, The user can
create a signature and provide it to Bootgen.

zynq
zynqmp

sskfile <key filename> Secondary Secret Key (SSK) key authenticates partitions in
the Boot Image. The primary keys authenticate the
secondary keys; the secondary keys authenticate the
partitions.

All

startup=<address> Sets the entry address for the partition, after it is loaded.
This is ignored for partitions that do not execute. zynq

zynqmp

trustzone= <option> The trustzone options are:

secure
nonsecure

zynqmp

udf_bh <data_file> Imports a file of data to be copied to the user defined field
(UDF) of the Boot Header. The UDF is provided through a
text file in the form of a hex string. Total number of bytes in
UDF are: zynq = 76 bytes; zynqmp= 40 bytes.

zynq
zynqmp

udf_data <data_file> Imports a file containing up to 56 bytes of data into user
defined field (UDF) of the Authentication Certificate. zynq

zynqmp

xip_mode Indicates eXecute In Place (XIP) for FSBL to be executed
directly from QSPI flash. zynq

Chapter 30: Creating Boot Images

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=214

Chapter 31

Using Bootgen Interfaces
Bootgen has both a GUI and a command line option. The GUI option is available in the Vitis IDE
as a wizard. The functionality in this GUI is limited to the most standard functions when creating
a boot image. The bootgen command line; however, is a full-featured set of commands that lets
you create a complex boot image for your system.

Bootgen GUI Options
The Create Boot Image wizard offers a limited number of Bootgen options to generate a boot
image.

To create a boot image using the GUI, do the following:

1. Select the application project in the Project Navigator or C/C++ Projects view and right-click
Create Boot Image. Alternatively, click Xilinx → Create Boot Image.

The Create Boot Image dialog box opens, with default values pre-selected from the context
of the selected C project.

Note the following:

• When you run Create Boot Image the first time for an application, the dialog box is pre-
populated with paths to the FSBL ELF file, and the bitstream for the selected hardware (if
it exists in hardware project), and then the selected application ELF file.

• If a boot image was run previously for the application, and a BIF file exists, the dialog box
is pre-populated with the values from the /bif folder.

• You can now create a boot image for Zynq®-7000 SoC or Zynq® UltraScale+™ MPSoC
architectures.

IMPORTANT! The data you enter for the boot image should be a maximum of 76 bytes with an offset of 0x4c
(for Zynq-7000 SoC) and 40 bytes and an offset of 0x70 (for Zynq UltraScale+ MPSoC). This is a hard limitation
based on the Zynq architecture.

2. Populate the Create boot image dialog box with the following information:

a. From the Architecture drop-down, select the required architecture.

b. Select either Create a BIF file or Import an existing BIF file.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 215Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=215

c. From the Basic tab, specify the Output BIF file path.

d. If applicable, specify the UDF data: See udf_data for more information about this option.

e. Specify the Output path:

3. In the Boot image partitions, click the Add button to add additional partition images.

4. Create offset, alignment, and allocation values for partitions in the boot image, if applicable.

The output file path is set to the /bif folder under the selected application project by
default.

5. From the Security tab, you can specify the attributes to create a secure image. This security
can be applied to individual partitions as required.

a. To enable Authentication for a partition, check the Use Authentication option, then
specify the PPK, SPK, PSK, and SSK values. See the Authentication topic for more
information.

b. To enable Encryption for a partition, select the Encryption tab, and check the Use
Encryption option. See Using Encryption for more information.

6. Create or import a BIF file boot image one partition at a time, starting from the bootloader.
The partitions list displays the summary of the partitions in the BIF file. It shows the file path,
encryption settings, and authentication settings. Use this area to add, delete, modify, and
reorder the partitions. You can also set values for enabling encryption, authentication, and
checksum, and specifying some other partition related values like Load, Alignment, and
Offset.

Using Bootgen on the Command Line
When you specify Bootgen options on the command line you have many more options than
those provided in the GUI. In the standard install of the Vitis software platform, the XSCT (Xilinx
Software Command-Line Tool) is available for use as an interactive command line environment, or
to use for creating scripting. In the XSCT, you can run Bootgen commands. XSCT accesses the
Bootgen executable, which is a separate tool. This bootgen executable can be installed stand-
alone as described in Installing Bootgen. This is the same tool as is called from the XSCT, so any
scripts developed here or in the XSCT will work in the other tool.

The Xilinx Software Command-Line Tools (XSCT) Reference Guide (UG1208) describes the tool. See
the XSCT Use Cases chapter for an example of using Bootgen commands in XSCT.

Chapter 31: Using Bootgen Interfaces

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 216Send Feedback

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=;d=ug1208-xsct-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=216

Commands and Descriptions
The following table lists the Bootgen command options. Each option is linked to a longer
description in the left column with a short description in the right column. The architecture name
indicates what Xilinx® device uses that command:

• zynq: Zynq®-7000 SoC device

• zynqmp: Zynq® UltraScale+™ MPSoC device

• fpga: Any 7 series and above devices

Table 30: Bootgen Command and Descriptions

Commands Description and Options Used by
arch <type> Xilinx® device architecture: Options:

zynq (default)
zynqmp
fpga

All

bif_help Prints out the BIF help summary.
All

dual_qspi_mode <configuration> Generates two output files for dual QSPI
configurations:

parallel
stacked <size>

zynq
zynqmp

efuseppkbits <PPK_filename> Generates a PPK hash for eFUSE.
zynq
zynqmp

encrypt <options> AES Key storage in device. Options are:

bbram (default)
efuse

zynq
fpga

encryption_dump Generates encryption log file, aes_log.txt.
zynqmp

fill <hex_byte> Specifies the fill byte to use for padding.
zynq
zynqmp

generate_hashes Output SHA2/SHA3 hash files with padding in
PKCS#1v1.5 format. zynq

zynqmp

generate_keys <key_type> Generate the authentication keys. Options are:

pem
rsa
obfuscatedkey

zynq
zynqmp

Chapter 31: Using Bootgen Interfaces

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=217

Table 30: Bootgen Command and Descriptions (cont'd)

Commands Description and Options Used by
h, help Prints out help summary.

All

image <filename(.bif)> Provides a boot image format (.bif) file name.
All

log<level_type> Generates a log file at the current working directory
with following message types:

error
warning (default)
info
debug
trace

All

nonbooting Create an intermediate boot image.
zynq
zynqmp

o <filename> Specifies the output file. The format of the file is
determined by the filename extension. Valid
extensions are:

.bin (default)

.mcs

All

p <partname> Specify the part name used in generating the
encryption key. All

padimageheader <option> Pads the image headers to force alignment of
following partitions. Options are:

0
1 (default)

zynq
zynqmp

process_bitstream <option> Specifies that the bitstream is processed and outputs
as .bin or .mcs.

For example, if encryption is selected for
bitstream in BIF file, the output is an encrypted
bitstream.

zynq
zynqmp

read <options> Used to read boot headers, image headers, and
partition headers based on the options.

bh: To read boot header from bootimage in
human readable form
iht: To read image header table from bootimage
ih: To read image headers from bootimage.
pht: To read partition headers from bootimage
ac: To read authentication certificates from
bootimage

zynq
zynqmp

Chapter 31: Using Bootgen Interfaces

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=218

Table 30: Bootgen Command and Descriptions (cont'd)

Commands Description and Options Used by
split <options> Splits the boot image into partitions and outputs the

files as .bin or .mcs.

• Bootheader + Image Headers + Partition Headers
+ Fsbl.elf

• Partition1.bit

• Partition2.elf

zynq
zynqmp

spksignature <filename> Generates an SPK signature file.
zynq
zynqmp

verify This option is used for verifying authentication of a
boot image. All the authentication certificates in a
boot image will be verified against the available
partitions.

zynq
zynqmp

verify_kdf This option is used to validate the Counter Mode KDF
used in bootgen for generation AES keys.

zynqmp

w <option> Specifies whether to overwrite the output files:

on(default)
off

Note: The -w without an option is interpreted as –w
on.

All

zynqmpes1 Generates a boot image for ES1 (1.0). The default
padding scheme is ES2 (2.0). zynqmp

Chapter 31: Using Bootgen Interfaces

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=219

Chapter 32

Boot Time Security
Xilinx® supports secure booting on all devices using latest authentication methods to prevent
unathorized or modified code from being run on Xilinx devices. Xilinx supports various
encryption techniques to make sure only authorized programs access the images. For hardware
security features by device, see the following sections.

Secure and Non-Secure Modes in Zynq-7000 SoC Devices

For security reasons, CPU 0 is always the first device out of reset among all master modules
within the PS. CPU 1 is held in an WFE state. While the BootROM is running, the JTAG is always
disabled, regardless of the reset type, to ensure security. After the BootROM runs, JTAG is
enabled if the boot mode is non-secure.

The BootROM code is also responsible for loading the FSBL/User code. When the BootROM
releases control to stage 1, the user software assumes full control of the entire system. The only
way to execute the BootROM again is by generating one of the system resets. The FSBL/User
code size, encrypted and unencrypted, is limited to 192 KB. This limit does not apply with the
non-secure execute-in-place option.

The PS boot source is selected using the BOOT_MODE strapping pins (indicated by a weak pull-up
or pull-down resistor), which are sampled once during power-on reset (POR). The sampled values
are stored in the slcr.BOOT_MODE register.

The BootROM supports encrypted/authenticated, and unencrypted images referred to as secure
boot and non-secure boot, respectively. The BootROM supports execution of the stage 1 image
directly from NOR or Quad-SPI when using the execute-in-place (xip_mode) option, but only for
non-secure boot images. Execute-in-place is possible only for NOR and Quad-SPI boot modes.

• In secure boot, the CPU, running the BootROM code decrypts and authenticates the user PS
image on the boot device, stores it in the OCM, and then branches to it.

• In non-secure boot, the CPU, running the BootROM code disables all secure boot features
including the AES unit within the PL before branching to the user image in the OCM memory
or the flash device (if execute-in-place (XIP) is used).

Any subsequent boot stages for either the PS or the PL are the responsibility of you, the
developer, and are under your control. The BootROM code is not accessible to you. Following a
stage 1 secure boot, you can proceed with either secure or non-secure subsequent boot stages.
Following a non-secure first stage boot, only non-secure subsequent boot stages are possible.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 220Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=220

Zynq UltraScale+ MPSoC Device Security

In a Zynq® UltraScale+™ MPSoC device, the secure boot is accomplished by using the hardware
root of trust boot mechanism, which also provides a way to encrypt all of the boot or
configuration files. This architecture provides the required confidentiality, integrity, and
authentication to host the most secure of applications.

See this link in the Zynq UltraScale+ Device Technical Reference Manual (UG1085) for more
information.

Using Encryption
Secure booting, which validates the images on devices before they are allowed to execute, has
become a mandatory feature for most electronic devices being deployed in the field. For
encryption, Xilinx supports an advanced encryption standard (AES) algorithm AES encryption.

AES provides symmetric key cryptography (one key definition for both encryption and
decryption). The same steps are performed to complete both encryption and decryption in
reverse order.

AES is an iterated symmetric block cipher, which means that it does the following:

• Works by repeating the same defined steps multiple times

• Uses a secret key encryption algorithm

• Operates on a fixed number of bytes

Encryption Process
Bootgen can encrypt the boot image partitions based on the user-provided encryption
commands and attributes in the BIF file. AES is a symmetric key encryption technique; it uses the
same key for encryption and decryption. The key used to encrypt a boot image should be
available on the device for the decryption process while the device is booting with that boot
image. Generally, the key is stored either in eFUSE or BBRAM, and the source of the key can be
selected during boot image creation through BIF attributes, as shown in the following figure.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 221Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf;a=xSecurity
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=221

Figure 11: Encryption Process Diagram

Key

AES
Encryption

eFUSE

BBRAM

Partition Encrypted Partition

OR

X21274-102919

Decryption Process
For SoC devices, the BootROM and the FSBL decrypt partitions during the booting cycle. The
BootROM reads FSBL from flash, decrypts, loads, and hands off the control. After FSBL start
executing, it reads the remaining partitions, decrypts, and loads them. The AES key needed to
decrypt the partitions can be retrieved from either eFUSE or BBRAM. The key source field of the
Boot Header table in the boot image is read to know the source of the encryption key. Each
encrypted partition is decrypted using a AES hardware engine.

Figure 12: Decryption Process Diagram

Key

AES
Decryption

eFUSE

BBRAM

Partition Decrypted Partition

OR

X21274-102919

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 222Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=222

Encrypting Zynq-7000 Device Partitions
Zynq®-7000 SoC devices use the embedded, Progammable Logic (PL), hash-based message
authentication code (HMAC) and an advanced encryption standard (AES) module with a cipher
block chaining (CBC) mode.

Example BIF File

To create a boot image with encrypted partitions, the AES key file is specified in the BIF using the
aeskeyfile attribute. Specify an encryption=aes attribute for each image file listed in the BIF
file to be encrypted. The example BIF file (secure.bif) is shown below:

image:
{
 [aeskeyfile] secretkey.nky
 [keysrc_encryption] efuse
 [bootloader, encryption=aes] fsbl.elf
 [encryption=aes] uboot.elf
}

From the command line, use the following command to generate a boot image with encrypted
fsbl.elf and uboot.elf.

bootgen -arch zynq -image secure.bif -w -o BOOT.bin

Key Generation

Bootgen can generate AES-CBC keys. Bootgen uses the AES key file specified in the BIF for
encrypting the partitions. If the key file is empty or non-existent, Bootgen generates the keys in
the file specified in the BIF file. If the key file is not specified in the BIF, and encryption is
requested for any of the partitions, then Bootgen generates a key file with the name of the BIF
file with extension .nky in the same directory as of BIF. The following is a sample key file.

Figure 13: Sample Key File

Encrypting Zynq MPSoC Device Partitions
The Zynq® UltraScale+™ MPSoC device uses the AES-GCM core, which has a 32-bit, word-based
data interface with support for a 256-bit key. The AES-GCM mode supports encryption and
decryption, multiple key sources, and built-in message integrity check.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=223

Operational Key

A good key management practice includes minimizing the use of secret or private keys. This can
be accomplished using the operational key option enabled in Bootgen.

Bootgen creates an encrypted, secure header that contains the operational key (opt_key),
which is user-specified, and the initialization vector (IV) needed for the first block of the
configuration file when this feature is enabled. The result is that the AES key stored on the
device, in either the BBRAM or eFUSEs, is used for only 384 bits, which significantly limits its
exposure to side channel attacks. The attribute opt_key is used to specify operational key
usage. See fsbl_config for more information about the opt_key value that is an argument to the
fsbl_config attribute. The following is an example of using the opt_key attribute.

image:
{
 [fsbl_config] opt_key
 [keysrc_encryption] bbram_red_key

 [bootloader,
 destination_cpu = a53-0,
 encryption = aes,
 aeskeyfile = aes_p1.nky]fsbl.elf

 [destination_cpu = a53-3,
 encryption = aes,
 aeskeyfile = aes_p2.nky]hello.elf

}

The operation key is given in the AES key (.nky) file with name Key Opt as shown in the
following example.

Figure 14: Operational Key

Bootgen generates the encryption key file. The operational key opt_key is then generated in
the .nky file, if opt_key has been enabled in the BIF file, as shown in the previous example.

For another example of using the operational key, refer to Using Op Key to Protect the Device
Key in a Development Environment.

For more details about this feature, see the Key Management section of the "Security" chapter in
the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 224Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf;a=xKeyManagement
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=224

Rolling Keys

The AES-GCM also supports the rolling keys feature, where the entire encrypted image is
represented in terms of smaller AES encrypted blocks/modules. Each module is encrypted using
its own unique key. The initial key is stored at the key source on the device, while keys for each
successive module are encrypted (wrapped) in the previous module. The boot images with rolling
keys can be generated using Bootgen. The BIF attribute blocks is used to specify the pattern to
create multiple smaller blocks for encryption.

image:
{
 [keysrc_encryption] bbram_red_key

 [
 bootloader,
 destination_cpu = a53-0,
 encryption = aes,
 aeskeyfile = aes_p1.nky,
 blocks = 1024(2);2048;4096(2);8192(2);4096;2048;1024
] fsbl.elf

 [
 destination_cpu = a53-3,
 encryption = aes,
 aeskeyfile = aes_p2.nky,
 blocks = 4096(1);1024
] hello.elf
}

Note:

• Number of keys in the key file should always be equal to the number of blocks to be encrypted.

○ If the number of keys are less than the number of blocks to be encrypted, Bootgen returns an error.

○ If the number of keys are more than the number of blocks to be encrypted, Bootgen ignores the
extra keys.

• If you want to specify multiple Key/IV Pairs, you should specify no. of blocks + 1 pairs

○ The extra Key/IV pair is to encrypt the secure header.

Gray/Obfuscated Keys

The user key is encrypted with the family key, which is embedded in the metal layers of the
device. This family key is the same for all devices in the Zynq® UltraScale+™ MPSoC. The result is
referred to as the obfuscated key.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=225

The obfuscated key can reside in either the Authenticated Boot Header or or in eFUSEs.

image:
{
 [keysrc_encryption] efuse_gry_key
 [bh_key_iv] bhiv.txt
 [
 bootloader,
 destination_cpu = a53-0,
 encryption = aes,
 aeskeyfile = aes_p1.nky
] fsbl.elf
 [
 destination_cpu = r5-0,
 encryption = aes,
 aeskeyfile = aes_p2.nky
] hello.elf
}

Bootgen does the following while creating an image:

1. Places the IV from bhiv.txt in the field BH IV in Boot Header.

2. Places the IV 0 from aes.nky in the field "Secure Header IV" in Boot Header.

3. Encrypts the partition, with Key0 and IV0 from aes.nky.

Another example of using the gray/family key is found in Use Cases and Examples.

For more details about this feature, refer to the Zynq UltraScale+ Device Technical Reference
Manual (UG1085).

Key Generation

Bootgen has the capability of generating AES-GCM keys. It uses the NIST-approved Counter
Mode KDF, with CMAC as the pseudo random function. Bootgen takes seed as input in case the
user wants to derive multiple keys from seed due to key rolling. If a seed is specified, the keys are
derived using the seed. If seeds are not specified, keys are derived based on Key0. If an empty
key file is specified, Bootgen generates a seed with time based randomization (not KDF), which in
turn is the input for KDF to generate other the Key/IV pairs.

Note:

• If one encryption file is specified and others are generated, Bootgen can make sure to use the same
Key0/IV0 pair for the generated keys as in the encryption file for first partition.

• If an encryption file is generated for the first partition and other encryption file with Key0/IV0 is
specified for a later partition, then Bootgen exits and returns the error that an incorrect Key0/IV0 pair
was used.

Key Generation

A sample key file is shown below.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 226Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=226

Figure 15: Sample Key File

Obfuscated Key Generation

Bootgen can generate the Obfuscated key by encrypting the red key with the family key and a
user-provided IV. The family key is delivered by the Xilinx® Security Group. For more information,
see familykey. To generate an obfuscated key, Bootgen takes the following inputs from the BIF
file.

obf_key:
{
 [aeskeyfile] aes.nky
 [familykey] familyKey.cfg
 [bh_key_iv] bhiv.txt
}

The command to generate the Obfuscated key is:

bootgen -arch zynqmp -image all.bif -generate_keys obfuscatedkey

Black/PUF Keys

The black key storage solution uses a cryptographically strong key encryption key (KEK), which is
generated from a PUF, to encrypt the user key. The resulting black key can then be stored either
in the eFUSE or as a part of the authenticated boot header.

image:
{
 [puf_file] pufdata.txt
 [bh_key_iv] black_iv.txt
 [bh_keyfile] black_key.txt
 [fsbl_config] puf4kmode, shutter=0x0100005E, pufhd_bh
 [keysrc_encryption] bh_blk_key

 [
 bootloader,
 destination_cpu = a53-0,
 encryption = aes,
 aeskeyfile = aes_p1.nky
] fsbl.elf

 [

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=227

 destination_cpu = r5-0,
 encryption = aes,
 aeskeyfile = aes_p2.nky
] hello.elf
}

For another example of using the black key, see Use Cases and Examples.

Multiple Encryption Key Files

Earlier versions of Bootgen supported creating the boot image by encrypting multiple partitions
with a single encryption key. The same key is used over and over again for every partition. This is
a security weakness and not recommended. Each key should be used only once in the flow.

Bootgen supports separate encryption keys for each partition. In case of multiple key files,
ensure that each encryption key file uses the same Key0 (device key), IV0, and Operational Key.
Bootgen does not allow creating boot images if these are different in each encryption key file.
You must specify multiple encryption key files, one for each of partition in the image. The
partitions are encrypted using the key that is specified for the partition.

Note: You can have unique key files for each of the partition created due to multiple loadable sections by
having key file names appended with ".1", ".2"...".n" so on in the same directory of the key file
meant for that partition.

The following snippet shows a sample encryption key file:

all:
{
 [keysrc_encryption] bbram_red_key
 // FSBL (Partition-0)
 [
 bootloader,
 destination_cpu = a53-0,
 encryption = aes,
 aeskeyfile = key_p0.nky

]fsbla53.elf

 // application (Partition-1)
 [
 destination_cpu = a53-0,
 encryption = aes,
 aeskeyfile = key_p1.nky

]hello.elf
}

• The partition fsbla53.elf is encrypted using the keys from key_p0.nky file.

• Assuming hello.elf has three partitions because it has three loadable sections, then
partition hello.elf.0 is encrypted using keys from the test2.nky file.

• Partition hello.elf.1 is then encrypted using keys from test2.1.nky.

• Partition hello.elf.2 is encrypted using keys from test2.2.nky.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=228

Using Authentication
AES encryption is a self-authenticating algorithm with a symmetric key, meaning that the key to
encrypt is the same as the one to decrypt. This key must be protected as it is secret (hence
storage to internal key space). There is an alternative form of authentication in the form of RSA
(Rivest-Shamir-Adleman). RSA is an asymmetric algorithm, meaning that the key to verify is not
the same key used to sign. A pair of keys are needed for authentication.

• Signing is done using Secret Key/ Private Key

• Verification is done using a Public Key

This public key does not need to be protected, and does not need special secure storage. This
form of authentication can be used with encryption to provide both authenticity and
confidentiality. RSA can be used with either encrypted or unencrypted partitions.

RSA not only has the advantage of using a public key, it also has the advantage of authenticating
prior to decryption. The hash of the RSA Public key must be stored in the eFUSE. Xilinx® SoC
devices support authenticating the partition data before it is sent to the AES decryption engine.
This method can be used to help prevent attacks on the decryption engine itself by ensuring that
the partition data is authentic before performing any decryption.

In Xilinx SoCs, two pairs of public and secret keys are used - primary and secondary. The function
of the primary public/secret key pair is to authenticate the secondary public/secret key pair. The
function of the secondary key is to sign/verify partitions.

The first letter of the acronyms used to describe the keys is either P for primary or S for
secondary. The second letter of the acronym used to describe the keys is either P for public or S
for secret. There are four possible keys:

• PPK = Primary Public Key

• PSK = Primary Secret Key

• SPK = Secondary Public Key

• SSK = Secondary Secret Key

Bootgen can create a authentication certificate in two ways:

• Supply the PSK and SSK. The SPK signature is calculated on-the-fly using these two inputs.

• Supply the PPK and SSK and the SPK signature as inputs. This is used in cases where the PSK
is not known.

The primary key is hashed and stored in the eFUSE. This hash is compared against the hash of
the primary key stored in the boot image by the FSBL. This hash can be written to the PS eFUSE
memory using standalone driver provided along with Vitis.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 229Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=229

The following is an example BIF file:

image:
{
 [pskfile]primarykey.pem
 [sskfile]secondarykey.pem
 [bootloader,authentication=rsa] fsbl.elf
 [authentication=rsa]uboot.elf
}

For device-specific Authentication information, see the following:

• Zynq-7000 Authentication Certificates

• Zynq UltraScale+ MPSoC Authentication Certificates

Signing
The following figure shows RSA signing of partitions. From a secure facility, Bootgen signs
partitions using the Secret key. The signing process is described in the following steps:

1. PPK and SPK are stored in the Authentication Certificate (AC).

2. SPK is signed using PSK to get SPK signature; also stored as part of the AC.

3. Partition is signed using SSK to get Partition signature, populated in the AC.

4. The AC is appended to each partition that is opted for authentication.

5. PPK is hashed and stored in eFUSE.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 230Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=230

Figure 16: RSA Partition Signature

Hash

eFUSE

Hash + RSA

Hash + RSA

Pr
im

ar
y

Ke
ys PPK

PSK

Se
co

nd
ar

y
Ke

ys SPK

SSK

Partition

Authentication Header

PPK

SPK

SPK
Signature

Partition
Signature

Partition
Authentication

Certificate

Partition

Authentication
Certificate

Partition Headers

Boot Header

Secret Key

Secret Key

X21278-080618

The following table shows the options for Authentication.

Table 31: Supported File Formats for Authentication Keys

Key Name Description Supported File
Format

PPK Primary Public Key This key is used to authenticate a partition.
It should always be specified when
authenticating a partition.

*.txt
*.pem
*.pub
*.pk1

PSK Primary Secret Key This key is used to authenticate a partition.
It should always be specified when
authenticating a partition.

*.txt
*.pem
*.pk1

SPK Secondary Public Key This key, when specified, is used to authenticate
a partition.

*.txt
*.pem
*.pub
*.pk1

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=231

Table 31: Supported File Formats for Authentication Keys (cont'd)

Key Name Description Supported File
Format

SSK Secondary Secret Key This key, when specified, is used to authenticate
a partition.

*.txt
*.pem
*.pk1

Verifying
In the device, the BootROM verifies the FSBL, and either the FSBL or U-Boot verifies the
subsequent partitions using the Public key.

1. Verify PPK - This step establishes the authenticity of primary key, which is used to
authenticate secondary key.

a. PPK is read from AC in boot image

b. Generate PPK hash

c. Hashed PPK is compared with the PPK hash retrieved from eFUSE

d. If same, then primary key is trusted, else secure boot fail

2. Verify secondary keys: This step establishes the authenticity of secondary key, which is used
to authenticate the partitions.

a. SPK is read from AC in boot image

b. Generate SPK hashed

c. Get the SPK hash, by verifying the SPK signature stored in AC, using PSK

d. Compare hashes from step (b) and step (c)

e. If same, then secondary key is trusted, else secure boot fail.

3. Verify partitions - This step establishes the authenticity of partition which is being booted.

a. Partition is read from the boot image.

b. Generate hash of the partition.

c. Get the partition hash, by verifying the Partition signature stored in AC, using SSK.

d. Compare the hashes from step (b) and step (c)

e. If same, then partition is trusted, else secure boot fail

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=232

Figure 17: Verification Flow Diagram

Hash

eFUSE

Hash + RSA

Hash + RSA

Pr
im

ar
y

Ke
ys PPK

PSK

Se
co

nd
ar

y
Ke

ys SPK

SSK

Partition

Authentication Header

PPK

SPK

SPK
Signature

Partition
Signature

Partition
Authentication

Certificate

Partition

Authentication
Certificate

Partition Headers

Boot Header

Secret Key

Secret Key

X21278-080618

Bootgen can create a authentication certificate in two ways:

• Supply the PSK and SSK. The SPK signature is calculated on-the-fly using these two inputs.

• Supply the PPK and SSK and the SPK signature as inputs. This is used in cases where the PSK
is not known.

Zynq UltraScale+ MPSoC Authentication Support
The Zynq® UltraScale+™ MPSoC device uses RSA-4096 authentication, which means the
primary and secondary key sizes are 4096-bit.

NIST SHA-3 Support
Note: For SHA-3 Authentication, always use Keccak SHA-3 to calculate hash on boot header, PPK hash
and boot image. NIST-SHA3 is used for all other partitions which are not loaded by ROM.

The generated signature uses the Keccak-SHA3 or NIST-SHA3 based on following table:

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=233

Table 32: Authentication Signatures

Which Authentication
Certificate (AC)? Signature SHA Algorithm and SPK

eFUSE
Secret Key used for

Signature Generation
Header AC (loader by
FSBL/FW)

SPK Signature If SPKID eFUSEs, then
Keecak; If User eFUSE, then
NIST

PSK

BH Signature Always Keecak SSKheader

Header Signature Always Nist SSKheader

BootLoader AC (loaded by
ROM)

SPK Signature Always Keecak; Always SPKID
eFUSE for SPK

PSK

BH Signature Always Keecak SSKBootloader

Header Signature Always Keecak SSKBootloader

Partition AC (loaded by FSBL
FW)

SPK Signature If SPKID eFUSEs then Keecak;
If User eFUSE then NIST

PSK

BH Signature Always Keecak SSKPartition

Header Signature Always NIST SSKPartition

Examples

Example 1: BIF file for authenticating the partition with single set of key files:

image:
{
 [fsbl_config] bh_auth_enable
 [auth_params] ppk_select=0; spk_id=0x00000000
 [pskfile] primary_4096.pem
 [sskfile] secondary_4096.pem
 [pmufw_image] pmufw.elf
 [bootloader, authentication=rsa, destination_cpu=a53-0] fsbl.elf
 [authenication=rsa, destination_cpu=r5-0] hello.elf
}

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=234

Example 2: BIF file for authenticating the partitions with separate secondary key for each
partition:

image:
{
 [auth_params] ppk_select=1
 [pskfile] primary_4096.pem
 [sskfile] secondary_4096.pem

 // FSBL (Partition-0)
 [
 bootloader,
 destination_cpu = a53-0,
 authentication = rsa,
 spk_id = 0x01,
 sskfile = secondary_p1.pem
] fsbla53.elf

 // ATF (Partition-1)
 [
 destination_cpu = a53-0,
 authentication = rsa,
 exception_level = el-3,
 trustzone = secure,
 spk_id = 0x01,
 sskfile = secondary_p2.pem
] bl31.elf

 // UBOOT (Partition-2)
 [
 destination_cpu = a53-0,
 authentication = rsa,
 exception_level = el-2,
 spk_id = 0x01,
 sskfile = secondary_p3.pem
] u-boot.elf
}

Bitstream Authentication Using External Memory

The authentication of a bitstream is different from other partitions. The FSBL can be wholly
contained within the OCM, and therefore authenticated and decrypted inside of the device. For
the bitstream, the size of the file is so large that it cannot be wholly contained inside the device
and external memory must be used. The use of external memory creates a challenge to maintain
security because an adversary may have access to this external memory. When bitstream is
requested for authentication, Bootgen divides the whole bitstream into 8MB blocks and has an
authentication certificate for each block. If a bitstream is not in multiples of 8MB, the last block
contains the remaining bitstream data. When authentication and encryption are both enabled,
encryption is first done on the bitstream, then Bootgen divides the encrypted data into blocks
and places an authentication certificate for each block.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=235

Figure 18: Bitstream Authentication Using External Memory

User eFUSE Support with Enhanced RSA Key Revocation

Enhanced RSA Key Revocation Support

The RSA key provides the ability to revoke the secondary keys of one partition without revoking
the secondary keys for all partitions.

Note: The primary key should be the same across all partitions.

This is achieved by using USER_FUSE0 to USER_FUSE7 eFUSEs with the BIF parameter
spk_select.

Note: You can revoke up to 256 keys, if all are not required for their usage.

The following BIF file sample shows enhanced user fuse revocation. Image header and FSBL uses
different SSKs for authentication (ssk1.pem and ssk2.pem respectively) with the following BIF
input.

the_ROM_image:
{
 [auth_params]ppk_select = 0
 [pskfile]psk.pem
 [sskfile]ssk1.pem
 [
 bootloader,
 authentication = rsa,
 spk_select = spk-efuse,
 spk_id = 0x8,
 sskfile = ssk2.pem
] zynqmp_fsbl.elf
 [
 destination_cpu = a53-0,
 authentication = rsa,
 spk_select = user-efuse,
 spk_id = 0x200,
 sskfile = ssk3.pem

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=236

] application.elf
 [
 destination_cpu = a53-0,
 authentication = rsa,
 spk_select = spk-efuse,
 spk_id = 0x8,
 sskfile = ssk4.pem
] application2.elf
}

• spk_select = spk-efuse indicates that spk_id eFUSE will be used for that partition.

• spk_select = user-efuse indicates that user eFUSE will be used for that partition.

Partitions loaded by CSU ROM will always use spk_efuse.

Note: The spk_id eFUSE specifies which key is valid. Hence, the ROM checks the entire field of spk_id
eFUSE against the SPK ID to make sure its a bit for bit match.

The user eFUSE specifies which key ID is NOT valid (has been revoked). Therefore, the firmware
(non-ROM) checks to see if a given user eFUSE that represents the SPK ID has been
programmed.

Key Generation

Bootgen has the capability of generating RSA keys. Alternatively, you can create keys using
external tools such as OpenSSL. Bootgen creates the keys in the paths specified in the BIF file.

The figure shows the sample RSA private key file.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 237Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=237

Figure 19: Sample RSA Private Key File

BIF Example

A sample BIF file, generate_pem.bif:

generate_pem:
{
 [pskfile] psk0.pem
 [sskfile] ssk0.pem
}

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=238

Command

The command to generate keys is, as follows:

bootgen -generate_keys pem -arch zynqmp -image generate_pem.bif

PPK Hash for eFUSE

Bootgen generates the PPK hash for storing in eFUSE for PPK to be trusted. This step is required
only for RSA Authentication with eFUSE mode, and can be skipped for RSA Boot Header
Authentication for the Zynq® UltraScale+™ MPSoC device. The value from efuseppksha.txt
can be programmed to eFUSE for RSA authentication with the eFUSE mode.

For more information about BBRAM and eFUSE programming, see Programming BBRAM and
eFUSEs (XAPP1319).

BIF File Example

The following is a sample BIF file, generate_hash_ppk.bif.

generate_hash_ppk:
{
 [pskfile] psk0.pem
 [sskfile] ssk0.pem
 [bootloader, destination_cpu=a53-0, authentication=rsa] fsbl_a53.elf
}

Command

The command to generate PPK hash for eFUSE programming is:

bootgen –image generate_hash_ppk.bif –arch zynqmp –w –o /
test.bin –efuseppkbits efuseppksha.txt

Using HSM Mode
In current cryptography, all the algorithms are public, so it becomes critical to protect the
private/secret key. The hardware security module (HSM) is a dedicated crypto-processing device
that is specifically designed for the protection of the crypto key lifecycle, and increases key
handling security, because only public keys are passed to the Bootgen and not the private/secure
keys. A Standard mode is also available; this mode does not require passing keys.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 239Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1319-zynq-usp-prog-nvm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=239

In some organizations, an Infosec staff is responsible for the production release of a secure
embedded product. The Infosec staff might use a HSM for digital signatures and a separate
secure server for encryption. The HSM and secure server typically reside in a secure area. The
HSM is a secure key/signature generation device which generates private keys, signs the
partitions using the private key, and provides the public part of the RSA key to Bootgen. The
private keys reside in the HSM only.

Bootgen in HSM mode uses only RSA public keys and the signatures that were created by the
HSM to generate the boot image. The HSM accepts hash values of partitions generated by
Bootgen and returns a signature block, based on the hash and the secret RSA key.

In contrast to the HSM mode, Bootgen in its Standard mode uses AES encryption keys and the
RSA Secret keys provided through the BIF file, to encrypt and authenticate the partitions in the
image, respectively. The output is a single boot image, which is encrypted and authenticated. For
authentication, the user has to provide both sets of public and private/secret keys. The private/
secret keys are used by the Bootgen to sign the partitions and create signatures. These
signatures along with the public keys are embedded into the final boot image.

For more information about the HSM mode for FPGAs, see the HSM Mode for FPGAs.

Using Advanced Key Management Options

The public keys associated with the private keys are ppk.pub and spk.pub. The HSM accepts
hash values of partitions generated by Bootgen and returns a signature block, based on the hash
and the secret key.

Creating a Boot Image Using HSM Mode: PSK is not
Shared
The following figure shows a Stage 0 to Stage 2 Boot stack that uses the HSM mode. It reduces
the number of steps by distributing the SSK.

This figure uses the Zynq® UltraScale+™ MPSoC device to illustrate the stages.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=240

Figure 20: Generic 3-stage boot image

HSM Mode

St
ag

e-
1 PSK hash

Generate SPK
signature

SPK hash
SPK
signature

BOOTGEN

St
ag

e-
0

Generate SPK
Hash

SPK SPK hash

BOOTGEN

St
ag

e-
2

Generate Boot
Image

PPK and SSK
Final Boot

Image

PSK

FSBL
partitions

NKY Key

SPK signature

X21359-082818

Boot Process

Creating a boot image using HSM mode is similar to creating a boot image using a Standard flow
with following BIF file.

all:
{
 [auth_params] ppk_select=1;spk_id=0x12345678
 [keysrc_encryption]bbram_red_key
 [pskfile]primary.pem
 [sskfile]secondary.pem
 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes.nky,
 authentication=rsa
]fsbl.elf
 [destination_cpu=a53-0,authentication=rsa]hello_a53_0_64.elf
}

Stage 0: Create a boot image using HSM Mode

A trusted individual creates the SPK signature using the Primary Secret Key. The SPK Signature is
on the Authentication Certificate Header, SPK, and SPKID. Generate a hash for SPK. The
following is the snippet from the BIF file.

stage 0:
{
 [auth_params] ppk_select=1;spk_id=0x12345678
 [spkfile]keys/secondary.pub
}

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 241Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=241

The following is the Bootgen command:

bootgen -arch zynqmp -image stage0.bif -generate_hashes

The output of this command is: secondary.pub.sha384.

Stage 1: Distribute the SPK Signature

The trusted individual distributes the SPK Signature to the development teams.

openssl rsautl -raw -sign -inkey keys/primary0.pem -in secondary.pub.sha384
> secondary.pub.sha384.sig

The output of this command is: secondary.pub.sha384.sig

Stage 2: Encrypt using AES in FSBL

The development teams use Bootgen to create as many boot images as needed. The
development teams use:

• The SPK Signature from the Trusted Individual.

• The Secondary Secret Key (SSK), SPK, and SPKID

Stage2:
{
 [keysrc_encryption]bbram_red_key
 [auth_params] ppk_select=1;spk_id=0x12345678
 [ppkfile]keys/primary.pub
 [sskfile]keys/secondary0.pem
 [spksignature]secondary.pub.sha384.sig
 [bootloader,destination_cpu=a53-0, encryption=aes, aeskeyfile=aes0.nky,
authentication=rsa] fsbl.elf
 [destination_cpu=a53-0, authentication=rsa] hello_a53_0_64.elf
}

The Bootgen command is:

bootgen -arch zynqmp -image stage2.bif -o final.bin

Creating a Zynq-7000 SoC Device Boot Image using
HSM Mode
The following figure provides a diagram of an HSM mode boot image for a Zynq®-7000 SoC
device. The steps to create this boot image are immediately after the diagram.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=242

Figure 21: Stage 0 to 8 Boot Process

Stage-2b

BOOTGEN

St
ag

e-
7a

PPK & SPK
FSBL with
auth certificateencrypted

FSBL

SPK sign

BOOTGEN

St
ag

e-
7a

PPK & SPK
FSBL with
auth certificateencrypted

FSBL

SPK sign

HSM

St
ag

e-
1 PSK hash

Generate SPK
signature

SPK hash
SPK
signature

nky key

HSM

St
ag

e-
4a

Generate
FSBL Signature

FSBL hash FSBL
Signature

BOOTGEN

St
ag

e-
5a

PPK & SPK

FSBL Signatureencrypted
FSBL

SPK signature

BOOTGEN

St
ag

e-
0

Generate SPK
Hash

SPK SPK hash

BOOTGEN

St
ag

e-
6

Generate
header Table

hash

Header
Table hash

HSM

St
ag

e-
7

Generate
Header Table

signature
Header

Table hash

Header
Table
Signature

St
ag

e-
8 Generate

bootmage

final
bootimage

Header Table
Signature

PSK

Generate FSBL
hashe

PPK & SPK
FSBL hashencrypted

FSBL

SPK signature

Stage-3b

Generate FSBL
Hash

Stage-4b

Stage-5b

Partions with
Authenticated

Certificates

St
ag

e-
3a

BOOTGEN

St
ag

e-
2a

Encrypt FSBL
FSBL

nky Key

encrypted
FSBL

BOOTGEN

Stage- 3a

SSK

FSBL signature

Insert
FSBL Signature

SSK

BOOTGEN

St
ag

e-
8 Generate Boot

Image
Final Boot
Image

Partions with
Authenticated

Certificates

Header Table Signature

X21416-090518

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 243Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=243

The process to create a boot image using HSM mode for a Zynq®-7000 SoC device is similar to
that of a boot image created using a standard flow with the following BIF file. These examples,
where needed, use the OpenSSL program to generate hash files.

all:
{
 [aeskeyfile]my_efuse.nky
 [pskfile]primary.pem
 [sskfile]secondary.pem
 [bootloader,encryption=aes,authentication=rsa] zynq_fsbl_0.elf
 [authentication=rsa]system.bit
}

Stage 0: Generate a hash for SPK

This stage generates the hash of the SPK key.

stage0:
{
 [ppkfile] primary.pub
 [spkfile] secondary.pub
}

The following is the Bootgen command.

bootgen -image stage0.bif –w -generate_hashes

Stage 1: Sign the SPK Hash

This stage creates the signatures by signing the SPK hash

xil_rsa_sign.exe -gensig -sk primary.pem -data secondary.pub.sha256 -out
secondary.pub.sha256.sig

Or by using the following OpenSSL program.

#Swap the bytes in SPK hash
objcopy -I binary -O binary --reverse-bytes=256 secondary.pub.sha256

#Generate SPK signature using OpenSSL
openssl rsautl -raw -sign -inkey primary.pem -in secondary.pub.sha256 >
secondary.pub.sha256.sig

#Swap the bytes in SPK signature
objcopy -I binary -O binary --reverse-bytes=256 secondary.pub.sha256.sig

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 244Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=244

Stage 2: Encrypt using AES

This stage encrypts the partition. The stage2.bif is as follows.

stage2:
{
 [aeskeyfile] my_efuse.nky
 [bootloader, encryption=aes] zynq_fsbl_0.elf
}

The Bootgen command is as follows.

bootgen -image stage2.bif -w -o fsbl_e.bin -encrypt efuse

The output is the encrypted file fsbl_e.bin.

Stage 3: Generate Partition Hashes

This stage generates the hashes of different partitions.

Stage3a: Generate the FSBL Hash
The BIF file is as follows:

stage3a:
{
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature] secondary.pub.sha256.sig
 [bootimage, authentication=rsa] fsbl_e.bin
}

The Bootgen command is as follows.

bootgen -image stage3a.bif -w -generate_hashes

The output is the hash file zynq_fsbl_0.elf.0.sha256.
Stage 3b: Generate the bitstream hash
The stage3b BIF file is as follows:

stage3b:
{
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature] secondary.pub.sha256.sig
 [authentication=rsa] system.bit
}

The Bootgen command is as follows.

bootgen -image stage3b.bif -w -generate_hashes

The output is the hash file system.bit.0.sha256.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=245

Stage 4: Sign the Hashes

This stage creates signatures from the partition hash files created.

Stage 4a: Sign the FSBL partition hash

xil_rsa_sign.exe -gensig -sk secondary.pem -data zynq_fsbl_0.elf.0.sha256 -
out zynq_fsbl_0.elf.0.sha256.sig

Or by using the following OpenSSL program.

#Swap the bytes in FSBL hash
objcopy -I binary -O binary --reverse-bytes=256 zynq_fsbl_0.elf.0.sha256

#Generate FSBL signature using OpenSSL
openssl rsautl -raw -sign -inkey secondary.pem -in zynq_fsbl_0.elf.0.sha256
> zynq_fsbl_0.elf.0.sha256.sig

#Swap the bytes in FSBL signature
objcopy -I binary -O binary --reverse-bytes=256 zynq_fsbl_0.elf.0.sha256.sig

The output is the signature file zynq_fsbl_0.elf.0.sha256.sig.
Stage 4b: Sign the bitstream hash

xil_rsa_sign.exe -gensig -sk secondary.pem -data system.bit.0.sha256 -out
system.bit.0.sha256.sig

Or by using the following OpenSSL program.

#Swap the bytes in bitstream hash
objcopy -I binary -O binary --reverse-bytes=256 system.bit.0.sha256

#Generate bitstream signature using OpenSSL
openssl rsautl -raw -sign -inkey secondary.pem -in system.bit.0.sha256 >
system.bit.0.sha256.sig

#Swap the bytes in bitstream signature
objcopy -I binary -O binary --reverse-bytes=256 system.bit.0.sha256.sig

The output is the signature file system.bit.0.sha256.sig.

Stage 5: Insert Partition Signatures

Insert partition signatures created above are changed into authentication certificates.

Stage 5a: Insert the FSBL signature
The stage5a.bif BIF is as follows.

stage5a:
{
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature] secondary.pub.sha256.sig
 [bootimage, authentication=rsa, presign=zynq_fsbl_0.elf.0.sha256.sig]
fsbl_e.bin
}

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=246

The Bootgen command is as follows.

bootgen -image stage5a.bif -w -o fsbl_e_ac.bin -efuseppkbits
efuseppkbits.txt -nonbooting

The authenticated output files are fsbl_e_ac.bin and efuseppkbits.txt.
Stage 5b: Insert the bitstream signature
The stage5b.bif is as follows.

stage5b:
{
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature] secondary.pub.sha256.sig
 [authentication=rsa, presign=system.bit.0.sha256.sig] system.bit
}

The Bootgen command is as follows.

bootgen -image stage5b.bif -o system_e_ac.bin –nonbooting

The authenticated output file is system_e_ac.bin.

Stage 6: Generate Header Table Hash

This stage generates the hash for the header tables.

The stage6.bif is as follows.

stage6:
{
 [bootimage] fsbl_e_ac.bin
 [bootimage] system_e_ac.bin
}

The Bootgen command is as follows.

bootgen -image stage6.bif -generate_hashes

The output hash file is ImageHeaderTable.sha256.

Stage 7: Generate Header Table Signature

This stage generates the header table signature.

xil_rsa_sign.exe -gensig -sk secondary.pem -data ImageHeaderTable.sha256 -
out ImageHeaderTable.sha256.sig

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 247Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=247

Or by using the following OpenSSL program:

#Swap the bytes in header table hash
objcopy -I binary -O binary --reverse-bytes=256 ImageHeaderTable.sha256

#Generate header table signature using OpenSSL
openssl rsautl -raw -sign -inkey secondary.pem -in ImageHeaderTable.sha256
> ImageHeaderTable.sha256.sig

#Swap the bytes in header table signature
objcopy -I binary -O binary --reverse-bytes=256 ImageHeaderTable.sha256.sig

The output is the signature file ImageHeaderTable.sha256.sig.

Stage 8: Combine Partitions, Insert Header Table Signature

The stage8.bif is as follows:

stage8:
{
 [headersignature] ImageHeaderTable.sha256.sig
 [bootimage] fsbl_e_ac.bin
 [bootimage] system_e_ac.bin
}

The Bootgen command is as follows:

bootgen -image stage8.bif -w -o final.bin

The output is the bootimage file final.bin.

Creating a Zynq UltraScale+ MPSoC Device Boot
Image using HSM Mode
The following figure provides a diagram of an HSM mode boot image.

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 248Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=248

Figure 22: 0 to 10 Stage Boot Process

X21547-102919

BH hash

BOOTGEN

St
ag

e-
7a

Encrypt
FSBL

PPK &
SPK FSBL with

auth
certificate

encrypted
FSBL

SPK sign
BOOTGEN

St
ag

e-
7a

Encrypt
FSBL

PPK &
SPK

encrypted
FSBL

SPK sign

BOOTGEN

Generate
SPK
Hash

FSBL
nky key

BOOTGEN

Stage-2b

Generate
SPK
Hash

FSBL
nky key

HSM

St
ag

e-
1

Generate
SPK

signature
SPK hash SPK

signature

BOOTGEN

St
ag

e-
2a

Encrypt
FSBL

FSBL
encrypted
FSBLnky key

BOOTGEN

St
ag

e-
3 Generate

BH
hash

PPK & SPK BH hash

Encrypted FSBL

HSM

St
ag

e-
4

Generate
BH

signature

BH hash
BH
signature

BOOTGEN

St
ag

e-
5 Generate

partition
hashes

PPK & SPK
partition
hashesencrypted

partitions

SPK signature BH signature

HSM

St
ag

e-
6

Generate
partition

signaturespartition
hashes

partition
signatures

BOOTGEN

St
ag

e-
7a

PPK & SPK

FSBL with
authentication
certificate

encrypted
FSBL

SPK signature BH signature*BOOTGEN

St
ag

e-
0

Generate
SPK
Hash

PPK & SPK SPK hash

BOOTGEN

St
ag

e-
8

Generate
Header

Table hash

Partitions with
Authenticated

Certificate

Header Table
hash

HSM

St
ag

e-
9

Generate
header
Table

signature

Header
Table hash

Header
Table
signature

BOOTGEN

St
ag

e-
10

Generate
bootmage

Partitions with
Authenticated

Certificate

final
bootimage

header Table signatureSPK
Signature

Insert FSBL
Signature

Stage-7b
Stage-7c

Stage-2c

SSK

SSK

SSK

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=249

To create a boot image using HSM mode for a Zynq® UltraScale+™ MPSoC device, it would be
similar to a boot image created using a standard flow with the following BIF file. These examples,
where needed, use the OpenSSL program to generate hash files.

all:
{
 [fsbl_config] bh_auth_enable
 [keysrc_encryption] bbram_red_key
 [pskfile] primary0.pem
 [sskfile] secondary0.pem

 [
 bootloader,
 destination_cpu=a53-0,
 encryption=aes,
 aeskeyfile=aes0.nky,
 authentication=rsa
] fsbl.elf

 [
 destination_device=pl,
 encryption=aes,
 aeskeyfile=aes1.nky,
 authentication=rsa
] system.bit

 [
 destination_cpu=a53-0,
 authentication=rsa,
 exception_level=el-3,
 trustzone=secure
] bl31.elf

 [
 destination_cpu=a53-0,
 authentication=rsa,
 exception_level=el-2
] u-boot.elf
}

Stage 0: Generate a hash for SPK

The following is the snippet from the BIF file.

stage0:
{
 [ppkfile]primary.pub
 [spkfile]secondary.pub
}

The following is the Bootgen command:

bootgen -arch zynqmp -image stage0.bif -generate_hashes -w on -log error

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=250

Stage 1: Sign the SPK Hash (encrypt the partitions)

The following is a code snippet using OpenSSL to generate the SPK hash:

openssl rsautl -raw -sign -inkey primary0.pem -in secondary.pub.sha384 >
secondary.pub.sha384.sig

The output of this command is secondary.pub.sha384.sig.

Stage 2a: Encrypt the FSBL

Encrypt the FSBL using the following snippet in the BIF file.

Stage 2a:
{
 [keysrc_encryption] bbram_red_key

 [
 bootloader,destination_cpu=a53-0,
 encryption=aes,
 aeskeyfile=aes0.nky
] fsbl.elf
}

The bootgen command is:

bootgen -arch zynqmp -image stage2a.bif -o fsbl_e.bin -w on -log error

Stage 2b: Encrypt Bitstream

Generate the following BIF file entry:

stage2b:
{
 [
 encryption=aes,
 aeskeyfile=aes1.nky,
 destination_device=pl,
 pid=1
] system.bit
}

The Bootgen command is:

bootgen -arch zynqmp -image stage2b.bif -o system_e.bin -w on -log error

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 251Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=251

Stage 3: Generate Boot Header Hash

Generate the boot header hash using the following BIF file:

stage3:
{
 [fsbl_config] bh_auth_enable
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature]secondary.pub.sha384.sig
 [bootimage,authentication=rsa]fsbl_e.bin
}

The Bootgen command is:

bootgen -arch zynqmp -image stage3.bif -generate_hashes -w on -log error

Stage 4: Sign Boot Header Hash

Generate the boot header hash with the following OpenSSL command:

openssl rsautl -raw -sign -inkey secondary0.pem -in bootheader.sha384 >
bootheader.sha384.sig

Stage 5: Get Partition Hashes

Get partition hashes using the following command in a BIF file:

stage5:
{
 [ppkfile]primary.pub
 [spkfile]secondary.pub
 [spksignature]secondary.pub.sha384.sig
 [bhsignature]bootheader.sha384.sig
 [bootimage,authentication=rsa]fsbl_e.bin
 [bootimage,authentication=rsa]system_e.bin

 [
 destination_cpu=a53-0,
 authentication=rsa,
 exception_level=el-3,
 trustzone=secure
] bl31.elf

 [
 destination_cpu=a53-0,
 authentication=rsa,
 exception_level=el-2
] u-boot.elf
}

The Bootgen command is:

bootgen -arch zynqmp -image stage5.bif -generate_hashes -w on -log error

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=252

Multiple hashes will be generated for a bitstream partition. For more details, see Bitstream
Authentication Using External Memory.

The Boot Header hash is also generated from in this stage 5; which is different from the one
generated in stage3, because the parameter bh_auth_enable is not used in stage5. This can
be added in stage5 if needed, but does not have a significant impact because the Boot Header
hash generated using stage3 is signed in stage4 and this signature will only be used in the HSM
mode flow.

Stage 6: Sign Partition Hashes

Create the following files using OpenSSL:

openssl rsautl -raw -sign -inkey secondary0.pem -in fsbl.elf.0.sha384 >
fsbl.elf.0.sha384.sig
openssl rsautl -raw -sign -inkey secondary0.pem -in system.bit.0.sha384 >
system.bit.0.sha384.sig
openssl rsautl -raw -sign -inkey secondary0.pem -in system.bit.1.sha384 >
system.bit.1.sha384.sig
openssl rsautl -raw -sign -inkey secondary0.pem -in system.bit.2.sha384 >
system.bit.2.sha384.sig
openssl rsautl -raw -sign -inkey secondary0.pem -in system.bit.3.sha384 >
system.bit.3.sha384.sig
openssl rsautl -raw -sign -inkey secondary0.pem -in u-boot.elf.0.sha384 > u-
boot.elf.0.sha384.sig
openssl rsautl -raw -sign -inkey secondary0.pem -in bl31.elf.0.sha384 >
bl31.elf.0.sha384.sig
openssl rsautl -raw -sign -inkey secondary0.pem -in bl31.elf.1.sha384 >
bl31.elf.1.sha384.sig

Stage 7: Insert Partition Signatures into Authentication Certificate

Stage 7a: Insert the FSBL signature by adding this code to a BIF file:

Stage7a:
{
 [fsbl_config] bh_auth_enable
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature]secondary.pub.sha384.sig
 [bhsignature]bootheader.sha384.sig
 [bootimage,authentication=rsa,presign=fsbl.elf.0.sha384.sig]fsbl_e.bin
}

The Bootgen command is as follows:

bootgen -arch zynqmp -image stage7a.bif -o fsbl_e_ac.bin -efuseppkbits
efuseppkbits.txt -nonbooting -w on -log error

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=253

Stage 7b: Insert the bitstream signature by adding the following to the BIF file:

stage7b:
{
 [ppkfile]primary.pub
 [spkfile]secondary.pub
 [spksignature]secondary.pub.sha384.sig
 [bhsignature]bootheader.sha384.sig
 [
 bootimage,
 authentication=rsa,
 presign=system.bit.0.sha384.sig
] system_e.bin
}

The Bootgen command is:

bootgen -arch zynqmp -image stage7b.bif -o system_e_ac.bin -nonbooting -w
on -log error

Stage 7c: Insert the U-Boot signature by adding the following to the BIF file:

stage7c:
{
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature]secondary.pub.sha384.sig
 [bhsignature]bootheader.sha384.sig
 [
 destination_cpu=a53-0,
 authentication=rsa,
 exception_level=el-2,
 presign=u-boot.elf.0.sha384.sig
] u-boot.elf
}

The Bootgen command is:

bootgen -arch zynqmp -image stage7c.bif -o u-boot_ac.bin -nonbooting -w on -
log error

Stage 7d: Insert the ATF signature by entering the following into a BIF file:

stage7d:
{
 [ppkfile] primary.pub
 [spkfile] secondary.pub
 [spksignature]secondary.pub.sha384.sig
 [bhsignature]bootheader.sha384.sig
 [
 destination_cpu=a53-0,
 authentication=rsa,
 exception_level=el-3,
 trustzone=secure,
 presign=bl31.elf.0.sha384.sig
] bl31.elf
}

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 254Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=254

The Bootgen command is:

bootgen -arch zynqmp -image stage7d.bif -o bl31_ac.bin -nonbooting -w on -
log error

Stage 8: Combine Partitions, Get Header Table Hash

Enter the following in a BIF file:

stage8:
{
 [bootimage]fsbl_e_ac.bin
 [bootimage]system_e_ac.bin
 [bootimage]bl31_ac.bin
 [bootimage]u-boot_ac.bin
}

The Bootgen command is:

bootgen -arch zynqmp -image stage8.bif -generate_hashes -o stage8.bin -w on
-log error

Stage 9: Sign Header Table Hash

Generate the following files using OpenSSL:

openssl rsautl -raw -sign -inkey secondary0.pem -in ImageHeaderTable.sha384
> ImageHeaderTable.sha384.sig

Stage 10: Combine Partitions, Insert Header Table Signature

Enter the following in a BIF file:

stage10:
{
 [headersignature]ImageHeaderTable.sha384.sig
 [bootimage]fsbl_e_ac.bin
 [bootimage]system_e_ac.bin
 [bootimage]bl31_ac.bin
 [bootimage]u-boot_ac.bin
}

The Bootgen command is:

bootgen -arch zynqmp -image stage10.bif -o final.bin -w on -log error

Chapter 32: Boot Time Security

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=255

Chapter 33

FPGA Support
As described in the Boot Time Security, FPGA-only devices also need to maintain security while
deploying them in the field. Xilinx® tools provide embedded IP modules to achieve the
Encryption and Authentication, is part of programming logic. Bootgen extends the secure image
creation (Encrypted and/or Authenticated) support for FPGA family devices from 7 series and
beyond. This chapter details some of the examples of how Bootgen can be used to encrypt and
authenticate a bitstream. Bootgen support for FPGAs is available in the standalone Bootgen
install.

Note: Only bitstreams from 7 series devices and beyond are supported.

Encryption and Authentication
Xilinx® FPGAs use the embedded, PL-based, hash-based message authentication code (HMAC)
and an advanced encryption standard (AES) module with a cipher block chaining (CBC) mode.

Encryption Example

To create an encrypted bitstream, the AES key file is specified in the BIF using the attribute
aeskeyfile. The attribute encryption=aes should be specified against the bitstream listed
in the BIF file that needs to be encrypted.

bootgen -arch fpga -image secure.bif -w -o securetop.bit

The BIF file looks like the following:

the_ROM_image:
{
 [aeskeyfile] encrypt.nky
 [encryption=aes] top.bit
}

Authentication Example

A Bootgen command to authenticate an FPGA bitstream is as follows:

bootgen -arch fpga -image all.bif -o rsa.bit -w on -log error

Chapter 33: FPGA Support

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=256

The BIF file is as follows:

the_ROM_image:
{
 [sskfile] rsaPrivKeyInfo.pem
 [authentication=rsa] plain.bit
}

Family or Obfuscated Key

To support obfuscated key encryption, you must register with Xilinx support and request the
family key file for the target device family. The path to where this file is stored must be passed as
a bif option before attempting obfuscated encryption. Contact secure.solutions@xilinx.com to
obtain the Family Key.

image:
{
 [aeskeyfile] key_file.nky
 [familykey] familyKey.cfg
 [encryption=aes] top.bit
}

A sample aeskey file is shown in the following image.

Figure 23: AES Key Sample

HSM Mode
For production, FPGAs use the HSM mode, and can also be used in Standard mode.

Standard Mode

Standard mode generates a bitstream which has the authentication signature embedded. In this
mode, the secret keys are supposed to be available to the user for generating the authenticated
bitstream. Run Bootgen as follows:

bootgen -arch fpga -image all.bif -o rsa_ref.bit -w on -log error

Chapter 33: FPGA Support

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=257

The following steps listed below describe how to generate an authenticated bitstream in HSM
mode, where the secret keys are maintained by secure team and not available with the user. The
following figure shows the HSM mode flow:

Figure 24: HSM Mode Flow

Stage-2

HSM
Generate
Signature

Bitstream Hash
& SSK

Stage-0

Bootgen
Authenticate with

dummy key
dummy.bit

Dummy Key and
Bitstream

Bitstream Signature

Stage-3

Bootgen
Update

Signature
Authenticated Bitstream

Bitstream
& SPK

Stage-1

Bootgen

Generate Hashes
dummy.bit Hash

X21279-081618

Stage 0: Authenticate with dummy key

This is a one time task for a given bit stream. For stage 0, Bootgen generates the stage0.bif
file.

the_ROM_image:
{
 [sskfile] dummykey.pem
 [authentication=rsa] plain.bit
}

Note: The authenticated bitstream has a header, an actual bitstream, a signature and a footer. This
dummy.bit is created to get a bitstream in the format of authenticated bitstream, with a dummy
signature. Now, when the dummy bit file is given to Bootgen, it calculates the signature and inserts at the
offset to give an authenticated bitstream.

Stage 1: Generate hashes

bootgen -arch fpga
 -image stage1.bif -generate_hashes -log error

Chapter 33: FPGA Support

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=258

Stage1.bif is as follows:

the_ROM_image:
{
 [authentication=rsa] dummy.bit
}

Stage 2: Sign the Hash HSM, here OpenSSL is used for Demonstration

openssl rsautl -sign
 -inkey rsaPrivKeyInfo.pem -in dummy.sha384 > dummy.sha384.sig

Stage 3: Update the RSA certificate with Actual Signature

The Stage3.bif is as follows:

bootgen -arch fpga -image stage3.bif -w -o rsa_rel.bit -log error

the_ROM_image:
{
 [spkfile] rsaPubKeyInfo.pem
 [authentication=rsa, presign=dummy.sha384.sig]dummy.bit
}

Note: The public key digest, which must be burnt into eFUSEs, can be found in the generated
rsaPubKeyInfo.pem.nky file in Stage3 of HSM mode.

Chapter 33: FPGA Support

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 259Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=259

Chapter 34

Use Cases and Examples
The following are typical use cases and examples for Bootgen. Some use cases are more complex
and require explicit instruction. These typical use cases and examples have more definition when
you reference the Attributes .

Zynq MPSoC Use Cases
Simple Application Boot on Different Cores
The following example shows how to create a boot image with applications running on different
cores. The pmu_fw.elf is loaded by BootROM. The fsbl_a53.elf is the bootloader and
loaded on to A53-0 core. The app_a53.elf is executed by A53-1 core, and app_r5.elf by
r5-0 core.

the_ROM_image:
{
 [pmufw_image] pmu_fw.elf
 [bootloader, destination_cpu=a53-0] fsbl_a53.elf
 [destination_cpu=a53-1] app_a53.elf
 [destination_cpu=r5-0] app_r5.elf
}

PMUFW Load by BootROM
This example shows how to create a boot image with pmu_fw.elf loaded by BootROM.

the_ROM_image:
{
 [pmufw_image] pmu_fw.elf
 [bootloader, destination_cpu=a53-0] fsbl_a53.elf
 [destination_cpu=r5-0] app_r5.elf
}

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=260

PMUFW Load by FSBL
This example shows how to create a boot image with pmu_fw.elf loaded by FSBL.

the_ROM_image:
{
 [bootloader, destination_cpu=a53-0] fsbl_a53.elf
 [destination_cpu=pmu] pmu_fw.elf
 [destination_cpu=r5-0] app_r5.elf
}

Note: Bootgen uses the options provided to [bootloader] for [pmufw_image] as well. The
[pmufw_image] does not take any extra parameters.

Booting Linux

This example shows how to boot Linux on a Zynq® UltraScale+™ MPSoC device
(arch=zynqmp).

• The fsbl_a53.elf is the bootloader and runs on a53-0.

• The pmu_fw.elf is loaded by FSBL.

• Thebl31.elf is the Arm® Trusted Firmware (ATF), which runs at el-3.

• The U-Boot program, uboot, runs at el-2 on a53-0.

• The Linux image, image.ub, is placed at offset 0x1E40000 and loaded at 0x10000000.

the_ROM_image:
{
 [bootloader, destination_cpu = a53-0]fsbl_a53.elf
 [destination_cpu=pmu]pmu_fw.elf
 [destination_cpu=a53-0, exception_level=el-3, trustzone]bl31.elf
 [destination_cpu=a53-0, exception_level=el-2] u-boot.elf
 [offset=0x1E40000, load=0X10000000, destination_cpu=a53-0]image.ub
}

Encryption Flow: BBRAM Red Key

This example shows how to create a boot image with the encryption enabled for FSBL and the
application with the Red key stored in BBRAM:

the_ROM_image:
{
 [keysrc_encryption] bbram_red_key
 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes0.nky,

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 261Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=261

 destination_cpu=a53-0
] ZynqMP_Fsbl.elf
 [destination_cpu=a53-0, encryption=aes,
aeskeyfile=aes1.nky]App_A53_0.elf
}

Encryption Flow: Red Key Stored in eFUSE
This example shows how to create a boot image with encryption enabled for FSBL and
application with the RED key stored in eFUSE.

the_ROM_image:
{
 [keysrc_encryption] efuse_red_key

 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes0.nky,
 destination_cpu=a53-0
] ZynqMP_Fsbl.elf

 [
 destination_cpu = a53-0,
 encryption=aes,
 aeskeyfile=aes1.nky
] App_A53_0.elf
}

Encryption Flow: Black Key Stored in eFUSE
This example shows how to create a boot image with the encryption enabled for FSBL and an
application with the efuse_blk_key stored in eFUSE. Authentication is also enabled for FSBL.

the_ROM_image:
{
 [fsbl_config] puf4kmode, shutter=0x01000010
 [auth_params] ppk_select=0; spk_id=0x584C4E58
 [pskfile] primary_4096.pem
 [sskfile] secondary_4096.pem
 [keysrc_encryption] efuse_blk_key
 [bh_key_iv] bhkeyiv.txt
 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes0.nky,
 authentication=rsa
] fsbl.elf
}

Note: Boot image authentication is compulsory for using black key encryption.

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 262Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=262

Encryption Flow: Black Key Stored in Boot Header
This example shows how to create a boot image with encryption enabled for FSBL and the
application with the bh_blk_key stored in the Boot Header. Authentication is also enabled for
FSBL.

the_ROM_image:
{
 [pskfile] PSK.pem
 [sskfile] SSK.pem
 [fsbl_config] shutter=0x0100005E
 [auth_params] ppk_select=0
 [bh_keyfile] blackkey.txt
 [bh_key_iv] black_key_iv.txt
 [puf_file]helperdata4k.txt
 [keysrc_encryption] bh_blk_key
 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes0.nky,
 authentication=rsa,
 destination_cpu=a53-0
] ZynqMP_Fsbl.elf

 [
 destination_cpu = a53-0,
 encryption=aes,
 aeskeyfile=aes1.nky
] App_A53_0.elf
}

Note: Boot image Authentication is required when using black key Encryption.

Encryption Flow: Gray Key Stored in eFUSE
This example shows how to create a boot image with encryption enabled for FSBL and the
application with the efuse_gry_key stored in eFUSE.

the_ROM_image:
{
 [keysrc_encryption] efuse_gry_key
 [bh_key_iv] bh_key_iv.txt

 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes0.nky,
 destination_cpu=a53-0
] ZynqMP_Fsbl.elf

 [
 destination_cpu=a53-0,
 encryption=aes,
 aeskeyfile=aes1.nky
] App_A53_0.elf
}

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 263Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=263

Encryption Flow: Gray Key stored in Boot Header
This example shows how to create a boot image with encryption enabled for FSBL and the
application with the bh_gry_key stored in the Boot Header.

the_ROM_image:
{
 [keysrc_encryption] bh_gry_key
 [bh_keyfile] bhkey.txt
 [bh_key_iv] bh_key_iv.txt

 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes0.nky,
 destination_cpu=a53-0
] ZynqMP_Fsbl.elf

 [
 destination_cpu=a53-0,
 encryption=aes,
 aeskeyfile=aes1.nky
] App_A53_0.elf
}

Operational Key
This example shows how to create a boot image with encryption enabled for FSBL and the
application with the gray key stored in the Boot Header. This example shows how to create a
boot image with encryption enabled for FSBL and application with the red key stored in eFUSE.

the_ROM_image:
{
 [fsbl_config] opt_key
 [keysrc_encryption] efuse_red_key

 [
 bootloader,
 encryption=aes,
 aeskeyfile=aes0.nky,
 destination_cpu=a53-0
] ZynqMP_Fsbl.elf

 [
 destination_cpu=a53-0,
 encryption=aes,
 aeskeyfile=aes1.nky
] App_A53_0.elf
}

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=264

Using Op Key to Protect the Device Key in a
Development Environment
The following steps provide a solution in a scenario where two development teams, Team-A
(secure team), which manages the secret red key and Team-B, (Not so secure team), work
collaboratively to build an encrypted image without sharing the secret red key. Team-A manages
the secret red key. Team-B builds encrypted images for development and test. However, it does
not have access to the secret red key.

Team-A encrypts the boot loader with the device key (using the Op_key option) - delivers the
encrypted bootloader to Team-B. Team-B encrypts all the other partitions using the Op_key.

Team-B takes the encrypted partitions that they created, and the encrypted boot loader they
received from the Team-A and uses bootgen to stitch everything together into a single boot.bin.

The following procedures describe the steps to build an image:

Procedure-1

In the initial step, Team-A encrypts the boot loader with the device Key using the opt_key
option, delivers the encrypted boot loader to Team-B. Now, Team-B can create the complete
image at a go with all the partitions and the encrypted boot loader using Operational Key as
Device Key.

1. Encrypt Bootloader with device key:

bootgen -arch zynqmp -image stage1.bif -o fsbl_e.bin -w on -log error

Example stage1.bif:

stage1:
{
 [fsbl_config] opt_key
 [keysrc_encryption] bbram_red_key
 [
 bootloader,
 destination_cpu=a53-0,
 encryption=aes,aeskeyfile=aes.nky
] fsbl.elf
}

Example aes.nky for stage1:

Device xc7z020clg484;
Key 0 AD00C023E238AC9039EA984D49AA8C819456A98C124AE890ACEF002100128932;
IV 0 F7F8FDE08674A28DC6ED8E37;
Key Opt 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;

2. Attach the encrypted bootloader and rest of the partitions with Operational Key as device
Key, to form a complete image:

bootgen -arch zynqmp -image stage2a.bif -o final.bin -w on -log error

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=265

Example of stage2.bif:

stage2:
{
 [bootimage]fsbl_e.bin

 [
 destination_cpu=a53-0,
 encryption=aes,
 aeskeyfile=aes-opt.nky
] hello.elf

 [
 destination_cpu=a53-1,
 encryption=aes,
 aeskeyfile=aes-opt1.nky
] hello1.elf
}

Example aes-opt.nky for stage2:

Device xc7z020clg484;
Key 0 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;
IV 0 F7F8FDE08674A28DC6ED8E37;

Procedure-2: In the initial step, Team-A encrypts the boot loader with the device Key using the
opt_key option, delivers the encrypted boot loader to Team-B. Now, Team-B can create
encrypted images for each partition independently, using the Operational Key as Device Key.
Finally, Team-B can use bootgen to stitch all the encrypted partitions and the encrypted boot
loader, to get the complete image.

1. Encrypt Bootloader with device key:

bootgen -arch zynqmp -image stage1.bif -o fsbl_e.bin -w on -log error

Example stage1.bif:

stage1:
{
 [fsbl_config] opt_key
 [keysrc_encryption] bbram_red_key

 [
 bootloader,
 destination_cpu=a53-0,
 encryption=aes,aeskeyfile=aes.nky
] fsbl.elf
}

Example aes.nky for stage1:

Device xc7z020clg484;
Key 0 AD00C023E238AC9039EA984D49AA8C819456A98C124AE890ACEF002100128932;
IV 0 F7F8FDE08674A28DC6ED8E37;
Key Opt 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F

2. Encrypt the rest of the partitions with Operational Key as device key:

bootgen -arch zynqmp -image stage2a.bif -o hello_e.bin -w on -log error

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=266

Example of stage2a.bif:

stage2a:
{
 [
 destination_cpu=a53-0,
 encryption=aes,
 aeskeyfile=aes-opt.nky
] hello.elf
}
bootgen -arch zynqmp -image stage2b.bif -o hello1_e.bin -w on -log error

Example of stage2b.bif:

stage2b:
{
 [aeskeyfile] aes-opt.nky
 [
 destination_cpu=a53-1,
 encryption=aes,
 aeskeyfile=aes-opt.nky
] hello1.elf
}

Example of aes-opt.nky for stage2a and stage2b:

Device xc7z020clg484;
Key 0 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;
IV 0 F7F8FDE08674A28DC6ED8E37;

3. Use Bootgen to stitch the above example to form a complete image:

Use bootgen to stitch the above, to form a complete image.

Example of stage3.bif:

stage3:
{
 [bootimage]fsbl_e.bin
 [bootimage]hello_e.bin
 [bootimage]hello1_e.bin
}

Note: opt_key of aes.nky is same as Key 0 in aes-opt.nky and IV 0 must be same in both nky files.

Single Partition Image
This features provides support for authentication and/or decryption of single partition (non-
bitstream) image created by Bootgen at U-Boot prompt.

Note: This feature does not support images with multiple partitions.

u-boot command for loading secure images

zynqmp secure <srcaddr> <len> [key_addr]

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=267

This command verifies secure images of $len bytes\ long at address $src. Optional key_addr can
be specified if user key needs to be used for decryption.

Only Authentication Use Case

To use only authentication at U-Boot, create the authenticated image using bif as shown in the
following example.

1. Create a single partition image that is authenticated at U-Boot.

Note: If you provide an elf file, it should not contain multiple loadable sections. If your elf file
contains multiple loadable sections, you should convert the input to the .bin format and provide
the .bin as input in bif. An example bif is as follows:

the_ROM_image:
{
 [pskfile]rsa4096_private1.pem
 [sskfile]rsa4096_private2.pem
 [auth_params] ppk_select=1;spk_id=0x12345678
 [authentication = rsa]Data.bin
}

2. When the image is generated, download the authenticated image to the DDR.

3. Execute the U-Boot command to authenticate the secure image as shown in the following
example.

ZynqMP> zynqmp secure 100000 2d000
Verified image at 0x102800

4. U-Boot returns the start address of the actual partition after successful authentication. U-
Boot prints and error code in the event of a failure. If RSA_EN eFUSE is programmed, image
authentication is mandatory. Boot header authentication is not supported when eFUSE RSA
enabled.

Only Encryption Use Case

In case the image is only encrypted, there is no support for device key. When authentication is
not enabled, only KUP key decryption is supported.

Authentication Flow
This example shows how to create a boot image with authentication enabled for FSBL and
application with Boot Header authentication enabled to bypass the PPK hash verification:

the_ROM_image:
{
 [fsbl_config] bh_auth_enable
 [auth_params] ppk_select=0; spk_id=0x00000000
 [pskfile] PSK.pem
 [sskfile] SSK.pem

 [

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 268Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=268

 bootloader,
 authentication=rsa,
 destination_cpu=a53-0
] ZynqMP_Fsbl.elf

 [destination_cpu=a53-0, encryption=aes] App_A53_0.elf
}

BIF File with SHA-3 eFUSE RSA Authentication and
PPK0
This example shows how to create a boot image with authentication enabled for FSBL and the
application with boot header authentication enabled to bypass the PPK hash verification:

the_ROM_image:
{
 [auth_params] ppk_select=0; spk_id=0x00000000
 [pskfile] PSK.pem
 [sskfile] SSK.pem

 [
 bootloader,
 authentication=rsa,
 destination_cpu=a53-0
] ZynqMP_Fsbl.elf

 [destination_cpu=a53-0, authentication=aes] App_A53_0.elf
}

XIP
This example shows how to create a boot image that executes in place for a zynqmp (Zynq®

UltraScale+™ MPSoC:

the_ROM_image:
{
 [
 bootloader,
 destination_cpu=a53-0,
 xip_mode
] mpsoc_qspi_xip.elf
}

See xip_mode for more information about the command.

Chapter 34: Use Cases and Examples

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=269

Chapter 35

BIF Attribute Reference

aarch32_mode
Syntax

[aarch32_mode] <partition>

Description

To specify the binary file is to be executed in 32-bit mode.

Note: Bootgen automatically detects the execution mode of the processors from the .elf files. This is
valid only for binary files.

Arguments

Specified partition.

Example

the_ROM_image:
{
 [bootloader, destination_cpu=a53-0] zynqmp_fsbl.elf
 [destination_cpu=a53-0, aarch32_mode] hello.bin
 [destination_cpu=r5-0] hello_world.elf
}

aeskeyfile
Syntax

[aeskeyfile = <keyfile name>] <partition>
[aeskeyfile] <key filename>

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 270Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=270

Description

The path to the AES keyfile. The keyfile contains the AES key used to encrypt the partitions. The
contents of the key file must be written to eFUSE or BBRAM. If the key file is not present in the
path specified, a new key is generated by Bootgen, which is used for encryption.

Note: For Zynq® UltraScale+™ MPSoC only: Multiple key files need to be specified in the BIF file. Key0, IV0
and Key Opt should be the same across all nky files that will be used. For cases where multiple partitions
are generated for an ELF file, each partition can be encrypted using keys from a unique key file. Refer to
the following examples.

Arguments

Specified file name.

Return Value

None

Zynq-7000 SoC Example

The partitions fsbl.elf and hello.elf are encrypted using keys in test.nky.

all:
{
 [keysrc_encryption] bbram_red_key
 [aeskeyfile] test.nky
 [bootloader, encryption=aes] fsbl.elf
 [encryption=aes] hello.elf
}

Sample key (.nky) file - test.nky

Device xc7z020clg484;
 Key 0 8177B12032A7DEEE35D0F71A7FC399027BF....D608C58;
 Key StartCBC 952FD2DF1DA543C46CDDE4F811506228;
 Key HMAC 123177B12032A7DEEE35D0F71A7FC3990BF....127BD89;

Zynq UltraScale+ MPSoC Example

Example 1:

The partition fsbl.elf is encrypted with keys in test.nky, hello.elf using keys in
test1.nky and app.elf using keys in test2.nky. Sample BIF - test_multipl.bif.

all:
{
 [keysrc_encryption] bbram_red_key
 [bootloader,encryption=aes,aeskeyfile=test.nky] fsbl.elf
 [encryption=aes,aeskeyfile=test1.nky] hello.elf
 [encryption=aes,aeskeyfile=test2.nky] app.elf
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 271Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=271

Example 2:

Consider Bootgen creates three partitions for hello.elf, called hello.elf.0,
hello.elf.1, and hello.elf.2. Sample BIF - test_mulitple.bif

all:
{
 [keysrc_encryption] bbram_red_key
 [bootloader,encryption=aes,aeskeyfile=test.nky] fsbl.elf
 [encryption=aes,aeskeyfile=test1.nky] hello.elf
}

Additional information:

• The partition fsbl.elf is encrypted with keys in test.nky. All hello.elf partitions are
encrypted using keys in test1.nky.

• You can have unique key files for each hello partition by having key files named
test1.1.nky and test1.2.nky in the same path as test1.nky.

• hello.elf.0 uses test1.nky

• hello.elf.1 uses test1.1.nky

• hello.elf.2 uses test1.2.nky

• If any of the key files (test1.1.nky or test1.2.nky) is not present, Bootgen generates
the key file.

alignment
Syntax

[alignment= <value>] <partition>

Sets the byte alignment. The partition will be padded to be aligned to a multiple of this value.
This attribute cannot be used with offset.

Arguments

Number of bytes to be aligned.

Example

all:
{
 [bootloader]fsbl.elf
 [alignment=64] u-boot.elf
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=272

auth_params
• Syntax:

[auth_params] ppk_select=<0|1>; spk_id <32-bit spk id>;/
 spk_select=<spk-efuse/user-efuse>; auth_header

Description

Authentication parameters specify additional configuration such as which PPK, SPK to use for
authentication of the partitions in the boot image. Arguments for this bif parameter are:

• ppk_select: Selects which PPK to use. Options are 0 (default) or 1.

• spk_id: Specifies which SPK can be used or revoked. See User eFUSE Support with Enhanced
RSA Key Revocation. The default value is 0x00.

• spk_select : To differentiate spk and user efuses. Options are spk-efuse (default) and
user_efuse.

• header_auth : To authenticate headers when no partition is authenticated.

Note:

1. ppk_select is unique for each image.

2. Each partition can have its own spk_select and spk_id.

3. spk-efuse id is unique across the image, but user-efuse id can vary between partitions.

4. spk_select/spk_id outside the partition scope will be used for headers and any other partition that
does not have these specifications as partition attributes.

Example

Sample BIF 1 - test.bif

all:
{
 [auth_params]ppk_select=0;spk_id=0x12345678
 [pskfile] primary.pem
 [sskfile]secondary.pem
 [bootloader, authentication=rsa]fsbl.elf
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=273

Sample BIF 2 - test.bif

all:
{
 [auth_params] ppk_select=0;spk_select=user-efuse;spk_id=0x22
 [pskfile] primary.pem
 [sskfile] secondary.pem
 [bootloader, authentication = rsa]
fsbl.elf
}

Sample BIF 3 - test.bif

all:
{
 [auth_params] ppk_select=1; spk_select= user-efuse; spk_id=0x22;
header_auth
 [pskfile] primary.pem
 [sskfile] secondary.pem
 [destination_cpu=a53-0] test.elf
}

Sample BIF 4 - test.bif

all:
{
 [auth_params] ppk_select=1;spk_select=user-efuse;spk_id=0x22
 [pskfile] primary.pem
 [sskfile] secondary0.pem

 /* FSBL - Partition-0) */
 [
 bootloader,
 destination_cpu = a53-0,
 authentication = rsa,
 spk_id = 0x12345678,
 spk_select = spk-efuse,
 sskfile = secondary1.pem
] fsbla53.elf

 /* Partition-1 */
 [
 destination_cpu = a53-1,
 authentication = rsa,
 spk_id = 0x24,
 spk_select = user-efuse,
 sskfile = secondary2.pem
] hello.elf
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=274

authentication
Syntax

[authentication=<option>] <partition>

Description

This specifies the partition to be authenticated.

Arguments

• none: Partition not authenticated. This is the default value.

• rsa: Partition authenticated using RSA algorithm.

Example

Sample BIF - test.bif
all:
{
 [ppkfile] ppk.txt
 [spkfile] spk.txt
 [bootloader,authentication=rsa] fsbl.elf
 [authentication=rsa] hello.elf
}

big_endian
Syntax

[big_endian] <partition>

Description

To specify the binary file is in big endian format.

Note: Bootgen automatically detects the endianness of .elf files. This is valid only for binary files.

Arguments

Specified partition.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=275

Example

the_ROM_image:
{
 [bootloader, destination_cpu=a53-0] zynqmp_fsbl.elf
 [destination_cpu=a53-0, big_endian] hello.bin
 [destination_cpu=r5-0] hello_world.elf
}

bh_keyfile
Syntax

[bh_keyfile] <key file path>

Description

256-bit obfuscated key or black key to be stored in boot header. This is only valid when the
encryption key source is either grey key or black key.

Arguments

Path to the obfuscated key or black key, based on which source is selected.

Example

Sample BIF - test.bif
all:
{
 [keysrc_encryption] bh_gry_key
 [bh_keyfile] obfuscated_key.txt
 [bh_key_iv] obfuscated_iv.txt
 [bootloader, encryption=aes, aeskeyfile=encr.nky,
destination_cpu=a53-0]fsbl.elf
}

bh_key_iv
Syntax

[bh_key_iv] <iv file path>

Description

Initialization vector used when decrypting the obfuscated key or black key.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=276

Arguments

Path to file.

Example

Sample BIF - test.bif
all:
{
 [keysrc_encryption] bh_gry_key
 [bh_keyfile] obfuscated_key.txt
 [bh_key_iv] obfuscated_iv.txt
 [bootloader, encryption=aes, aeskeyfile=encr.nky,
destination_cpu=a53-0]fsbl.elf
}

bhsignature
Syntax

[bhsignature] <signature-file>

Description

Imports Boot Header signature into authentication certificate. This can be used if you do not
want to share the secret key PSK. You can create a signature and provide it to Bootgen.

Example

all:
{
 [ppkfile] ppk.txt
 [spkfile] spk.txt
 [spksignature] spk.txt.sha384.sig
 [bhsignature] bootheader.sha384.sig
 [bootloader,authentication=rsa] fsbl.elf
}

blocks
Syntax

[blocks = <size><num>;<size><num>;...;<size><*>] <partition>

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=277

Description

Specify block sizes for key-rolling feature in encrytion. Each module is encrypted using its own
unique key. The initial key is stored at the key source on the device, while keys for each
successive module are encrypted (wrapped) in the previous module.

Arguments

The <size> mentioned is taken in Bytes. If the size is specified as X(*), then all the remaining
blocks will be of the size 'X'.

Example

Sample BIF - test.bif
all:
{
 [keysrc_encryption] bbram_red_key
 [bootloader,encryption=aes, aeskeyfile=encr.nky,
 destination_cpu=a53-0,blocks=4096(2);1024;2048(2);4096(*)]
 fsbl.elf
}

Note: In the above example, the first two blocks are of 4096 bytes, the second block is of 1024 bytes, and
the next two blocks are of 2048 bytes. The rest of the blocks are of 4096 bytes.

boot_device
Syntax

[boot_device] <options>

Description

Specifies the secondary boot device. Indicates the device on which the partition is present.

Arguments

Options are:

• qspi32

• qspi24

• nand

• sd0

• sd1

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=278

• sd-ls

• mmc

• usb

• ethernet

• pcie

• sata

Example

all:
{
 [boot_device]sd0
 [bootloader,destination_cpu=a53-0]fsbl.elf
}

bootimage
Syntax

[bootimage] <image created by bootgen>

Description

This specifies that the following file specification is a bootimage that was created by Bootgen,
being reused as input.

Arguments

Specified file name.

Example

all:
{
 [bootimage]fsbl.bin
 [bootimage]system.bin
}

In the above example, the fsbl.bin and system.bin are images generated using Bootgen.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=279

Example fsbl.bin generation

image:
{
 [pskfile] primary.pem
 [sskfile] secondary.pem
 [bootloader, authentication=rsa, aeskeyfile=encr_key.nky,
encryption=aes] fsbl.elf
 }

Command: bootgen -image fsbl.bif -o fsbl.bin -encrypt efuse

Example system.bin generation

image:
{
 [pskfile] primary.pem
 [sskfile] secondary.pem
 [authentication=rsa] system.bit
}

Command: bootgen -image system.bif -o system.bin

bootloader
Syntax

[bootloader] <partition>

Description

Identifies an ELF file as the FSBL.

• Only ELF files can have this attribute.

• Only one file can be designated as the bootloader.

• The program header of this ELF file must have only one LOAD section with filesz >0 , and this
section must be executable (x flag must be set).

Arguments

Specified file name.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=280

Example

all:
{
 [bootloader] fsbl.elf
 hello.elf
}

bootvectors
Syntax

[bootvectors] <values>

Description

This attribute specifies the vector table for eXecute in Place (XIP).

Example

all:
{

[bootvectors]0x14000000,0x14000000,0x14000000,0x14000000,0x14000000,0x140000
00,0x14000000,0x14000000
 [bootloader,destination_cpu=a53-0]fsbl.elf
}

checksum
Syntax

[checksum = <options>] <partition>

Description

This specifies the partition needs to be checksummed. This is not supported along with more
secure features like authentication and encryption.

Arguments

• none: No checksum operation.

• MD5: MD5 checksum operation for Zynq®-7000 SoC devices. In these devices, checksum
operations are not supported for bootloaders.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=281

• SHA3: Checksum operation for Zynq® UltraScale+™ MPSoC devices.

destination_cpu
Syntax

[destination_cpu <options>] <partition>

Description

Specifies which core will execute the partition. The following example specifies that FSBL will be
executed on A53-0 core and application on R5-0 core.

Note:

• FSBL can only run on either A53-0 or R5-0.

• PMU loaded by FSBL: [destination_cpu=pmu] pmu.elf In this flow, BootROM loads FSBL first,
and then FSBL loads the PMU firmware.

• PMU loaded by BootROM: [pmufw_image] pmu.elf. In this flow, BootROM loads PMU first and
then the FSBL so PMU does the power management tasks, before the FSBL comes up.

Arguments

• a53-0 (default)

• a53-1

• a53-2

• a53-3

• r5-0

• r5-1

• r5-lockstep

• pmu

Example

all:
{
 [bootloader,destination_cpu=a53-0]fsbl.elf
 [destination_cpu=r5-0] app.elf
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=282

destination_device
Syntax

[destination_device <options>] <partition>

Description

Specifies whether the partition is targeted for PS or PL.

Arguments

• ps: The partition is targeted for PS. This is the default value.

• pl: The partition is targeted for PL, for bitstreams.

Example

all:
{
 [bootloader,destination_cpu=a53-0]fsbl.elf
 [destination_device=pl]system.bit
 [destination_cpu=r5-1]app.elf
}

early_handoff
Syntax

[early_handoff] <partition>

Description

This flag ensures that the handoff to applications that are critical immediately after the partition
is loaded; otherwise, all the partitions are loaded sequentially and handoff also happens in a
sequential fashion.

Note: In the following scenario, the FSBL loads app1, then app2, and immediately hands off the control to
app2 before app1.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=283

Example

all:
{
 [bootloader, destination_cpu=a53_0]fsbl.el
 [destination_cpu=r5-0]app1.elf
 [destination_cpu=r5-1,early_handoff]app2.elf
}

encryption
Syntax

[encryption = <options>] <partition>

Description

This specifies the partition needs to be encrypted. Encryption Algorithms are:

Arguments

• none: Partition not encrypted. This is the default value.

• aes: Partition encrypted using AES algorithm.

Example

all:
{
 [aeskeyfile]test.nky
 [bootloader,encryption=aes] fsbl.elf
 hello.elf
}

exception_level
Syntax

[exception_level=<options>] <partition>

Description

Exception level for which the core should be configured.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=284

Arguments

• el-0

• el-1

• el-2

• el-3 (default)

Example

all:
{
 [bootloader, destination_cpu=a53-0]fsbl.elf
 [destination_cpu=a53-0, exception_level=el-3] bl31.elf
 [destination_cpu=a53-0, exception_level=el-2] u-boot.elf
}

familykey
Syntax

[familykey] <key file path>

Description

Specify Family Key. To obtain family key, contact a Xilinx® representative at
secure.solutions@xilinx.com.

Arguments

Path to file.

Example

all:
{
 [aeskeyfile] encr.nky
 [bh_key_iv] bh_iv.txt
 [familykey] familykey.cfg
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=285

fsbl_config
Syntax

[fsbl_config <options>] <partition>

Description

This option specifies the parameters used to configure the boot image. FSBL, which should run
on A53 in 64-bit mode in Boot Header authentication mode.

Arguments

• bh_auth_enable: Boot Header Authentication Enable: RSA authentication of the bootimage
will be done excluding the verification of PPK hash and SPK ID.

• auth_only: Boot image is only RSA signed. FSBL should not be decrypted.

• opt_key: Optional key is used for block-0 decryption. Secure Header has the opt key.

• pufhd_bh: PUF helper data is stored in Boot Header. (Default is efuse)/ PUF helper data file
is passed to bootgen using the [puf_file] option.

• puf4kmode: PUF is tuned to use in 4k bit configuration. (Default is 12k bit). shutter =
<value> 32 bit PUF_SHUT register value to configure PUF for shutter offset time and shutter
open time.

Example

all:
{
 [fsbl_config] bh_auth_enable
 [pskfile] primary.pem
 [sskfile]secondary.pem
 [bootloader,destination_cpu=a53-0,authentication=rsa] fsbl.elf
}

headersignature
Syntax

[headersignature] <signature file>

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=286

Description

Imports the Header signature into the Authentication Certificate. This can be used in case the
user does not want to share the secret key, The user can create a signature and provide it to
Bootgen.

Arguments

<signature_file>

Example

all:
{
 [ppkfile] ppk.txt
 [spkfile] spk.txt
 [headersignature] headers.sha256.sig
 [spksignature] spk.txt.sha256.sig
 [bootloader, authentication=rsa] fsbl.elf
}

hivec
Syntax

[hivec] <partition>

Description

To specify the location of Exception Vector Table as hivec. This is applicable with a53 (32 bit)
and r5 cores only.

• hivec: exception vector table at 0xFFFF0000.

• lovec: exception vector table at 0x00000000. This is the default value.

Arguments

None

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=287

Example

A sample BIF file is shown below :

all:
{
 [bootloader, destination_cpu=a53_0]fsbl.elf
 [destination_cpu=r5-0,hivec]app1.elf
}

init
Syntax

[init] <filename>

Description

Register initialization block at the end of the bootloader, built by parsing the .int file
specification. Maximum of 256 address-value init pairs are allowed. The .int files have a
specific format.

Example

A sample BIF file is shown below:

all:
{
 [init] test.int
}

keysrc_encryption
Syntax

[keysrc_encryption] <options> <partition>

Description

This specifies the Key source for encryption.

Arguments

• bbram_red_key: RED key stored in BBRAM

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=288

• efuse_red_key: RED key stored in efuse

• efuse_gry_key: Grey (Obfuscated) Key stored in eFUSE.

• bh_gry_key : Grey (Obfuscated) Key stored in boot header.

• bh_blk_key: Black Key stored in boot header.

• efuse_blk_key : Black Key stored in eFUSE.

• kup_key: User Key.

Example

all:
{
 [keysrc_encryption]efuse_gry_key
 [bootloader,encryption=aes, aeskeyfile=encr.nky,
destination_cpu=a53-0]fsbl.elf
}

FSBL is encrypted using the key encr.nky, which is stored in the efuse for decryption purpose.

load
Syntax

[load=<value>] <partition>

Description

Sets the load address for the partition in memory.

Example

 all:
{
 [bootloader] fsbl.elf
 u-boot.elf
 [load=0x3000000, offset=0x500000] uImage.bin
 [load=0x2A00000, offset=0xa00000] devicetree.dtb
 [load=0x2000000, offset=0xc00000] uramdisk.image.gz
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 289Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=289

offset
Syntax

[offset=<value>] <partition>

Description

Sets the absolute offset of the partition in the boot image.

Arguments

Specified value and partition.

Example

all:
{
 [bootloader] fsbl.elf u-boot.elf
 [load=0x3000000, offset=0x500000]uImage.bin
 [load=0x2A00000, offset=0xa00000] devicetree.dtb
 [load=0x2000000, offset=0xc00000] uramdisk.image.gz
}

partition_owner
Syntax

[partition_owner = <options>] <partition>

Description

Owner of the partition which is responsible to load the partition.

Arguments

• fsbl (default)

• u-boot

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=290

Example

all:
{
 [bootloader]fsbl.elf
 [partition_owner=uboot] hello.elf
}

pid
Syntax

 [pid = <id_no>] <partition>

Description

This specifies the partition id. The default value is 0.

Example

all:
{
 [encryption=aes, aeskeyfile=test.nky, pid=1] hello.elf
}

pmufw_image
Syntax

[pmufw_image] <PMU ELF file>

Description

PMU Firmware image to be loaded by BootROM, before loading the FSBL. The options for the
pmufw_image are inline with the bootloader partition. Bootgen does not consider any extra
attributes given along with the pmufw_image option.

Arguments

Filename

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=291

Example

the_ROM_image:
{
 [pmufw_image] pmu_fw.elf
 [bootloader, destination_cpu=a53-0] fsbl_a53.elf
 [destination_cpu=a53-1] app_a53.elf
 [destination_cpu=r5-0] app_r5.elf
}

ppkfile
Syntax

[ppkfile] <key filename>

Description

The Primary Public Key (PPK) key is used to authenticate partitions in the boot image.

See Using Authentication.

Arguments

Specified file name.

Note: The secret key file contains the public key component of the key. You need not specify the public key
(PPK) when the secret key (PSK) is mentioned.

Example

all:
{
 [ppkfile] primarykey.pub
 [pskfile] primarykey.pem
 [spkfile] secondarykey.pem
 [sskfile] secondarykey.pem
 [bootloader, authentication=rsa] fsbl.elf
 [authentication=rsa] hello.elf
}

presign
Syntax

[presign = <signature_file>] <partition>

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=292

Description

Imports partition signature into partition authentication certificate. Use this if you do not want to
share the secret key (SSK). You can create a signature and provide it to Bootgen.

• <signature_file>: Specifies the signature file.

• <partition> :Lists the partition to which to apply to the signature_file.

Example

all:
{
 [ppkfile] ppk.txt
 [spkfile] spk.txt
 [headsignature] headers.sha256.sig
 [spksignature] spk.txt.sha256.sig
 [bootloader, authentication=rsa, presign=fsbl.sig]fsbl.elf
}

pskfile
Syntax

[pskfile] <key filename>

Description

This Primary Secret Key (PSK) is used to authenticate partitions in the boot image. For more
information, see Using Authentication.

Arguments

Specified file name.

Note: The secret key file contains the public key component of the key. You need not specify the public key
(PPK) when the secret key (PSK) is mentioned.

Example

all:
{
 [pskfile]primarykey.pem
 [sskfile]secondarykey.pem
 [bootloader,authentication=rsa]fsbl.elf
 [authentication=rsa] hello.elf
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=293

puf_file
Syntax

[puf_file] <puf data file>

Description

PUF helper data file.

• PUF is used with black key as encryption key source.

• PUF helper data is of 1544 bytes.

• 1536 bytes of PUF HD + 4 bytes of CHASH + 3 bytes of AUX + 1 byte alignment.

See Black/PUF Keys for more information.

Example

all:
{
 [fsbl_config]pufhd_bh
 [puf_file] pufhelperdata.txt
 [bh_keyfile] black_key.txt
 [bh_key_iv] bhkeyiv.txt
 [bootloader,destination_cpu=a53-0,encryption=aes]
 fsbl.elf
}

reserve
Syntax

[reserve=<value>] <partition>

Description

Reserves the memory and padded after the partition. The value specified for reserving the
memory is in bytes.

Arguments

Specified partition

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 294Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=294

Example

all:
{
 [bootloader]fsbl.elf
 [reserve=0x1000]test.bin
}

split
Syntax

[split] mode = <mode-options>, fmt=<format>

Description

Splits the image into parts based on mode. Slaveboot mode splits as follows:

• Boot Header + Bootloader

• Image and Partition Headers

• Rest of the partitions

Normal mode splits as follows:

• Bootheader + Image Headers + Partition Headers + Bootloader

• Partiton1

• Partition2 and so on

Slaveboot is supported only for ZynqMP, normal is supported for both Zynq and ZynqMP. Along
with the split mode, output format can also be specified as bin or mcs.

Options

The available options for argument mode are:

• slaveboot

• normal

• bin

• mcs

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 295Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=295

Example

all:
{
 [split]mode=slaveboot,fmt=bin
 [bootloader,destination_cpu=a53-0]fsbl.elf
 [destination_device=pl]system.bit
 [destination_cpu=r5-1]app.elf
}

Note: The option split mode normal is same as the command line option split. This command line option is
schedule to be deprecated.

spkfile
Syntax

[spkfile] <key filename>

Description

The Secondary Public Key (SPK) is used to authenticate partitions in the boot image. For more
information, see Using Authentication.

Arguments

Specified file name.

Example

all:
{
 [pskfile] primarykey.pem
 [spkfile] secondarykey.pem
 [sskfile] secondarykey.pem
 [bootloader, authentication=rsa] fsbl.elf
 [authentication=rsa] hello.elf
}

Note: The secret key file contains the public key component of the key. You need not specify public key
(SPK) when the secret key (SSK) is mentioned.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=296

spksignature
Code Example

[spksignature] <Signature file>

Description

Imports SPK signature into the Authentication Certificate. This can be when the user does not
want to share the secret key PSK, the user can create a signature and provide it to Bootgen.

Arguments

Specified file name.

Example

all:
{
 [ppkfile] ppk.txt
 [spkfile] spk.txt
 [headersignature]headers.sha256.sig
 [spksignature] spk.txt.sha256.sig
 [bootloader, authentication=rsa] fsbl.elf
}

spk_select
Syntax

[spk_select = <options>]
or
[auth_params] spk_select = <options>

Description

Options are:

• spk-efuse: Indicates that spk_id eFUSE is used for that partition. This is the default value.

• user-efuse: Indicates that user eFUSE is used for that partition.

Partitions loaded by CSU ROM will always use spk_efuse.

Note: The spk_id eFUSE specifies which key is valid. Hence, the ROM checks the entire field of spk_id
eFUSE against the SPK ID to make sure its a bit for bit match.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=297

The user eFUSE specifies which key ID is not valid (has been revoked). Hence, the firmware (non-
ROM) checks to see if a given user eFUSE that represents the SPK ID has been programmed.
spk_select = user-efuse indicates that user eFUSE will be used for that partition.

Example

the_ROM_image:
{
 [auth_params]ppk_select = 0
 [pskfile]psk.pem
 [sskfile]ssk1.pem

 [
 bootloader,
 authentication = rsa,
 spk_select = spk-efuse,
 spk_id = 0x12345678,
 sskfile = ssk2.pem
] zynqmp_fsbl.elf

 [
 destination_cpu =a53-0,
 authentication = rsa,
 spk_select = user-efuse,
 spk_id = 200,
 sskfile = ssk3.pem
] application1.elf

 [
 destination_cpu =a53-0,
 authentication = rsa,
 spk_select = spk-efuse,
 spk_id =0x12345678,
 sskfile = ssk4.pem
] application2.elf
}

sskfile
Syntax

[sskfile] <key filename>

Description

The SSK - Secondary Secret Key key is used to authenticate partitions in the boot image. For
more information, see Using Authentication.

Arguments

Specified file name.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 298Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=298

Example

all:
{
 [pskfile] primarykey.pem
 [sskfile] secondarykey.pem
 [bootloader, authentication=rsa]fsbl.elf
 [authentication=rsa] hello.elf
}

Note: The secret key file contains the public key component of the key. You need not specify the public key
(PPK) when the secret key (PSK) is mentioned.

startup
Syntax

[startup=<address_value>] <pattiion>

Description

This option sets the entry address for the partition, after it is loaded. This is ignored for partitions
that do not execute.

Example

all:
{
 [bootloader] fsbl.elf
 [startup=0x1000000] app.elf
}

trustzone
Syntax

[trustzone=<options>] <partition>

Description

Configures the core to be TrustZone secure or nonsecure. Options are:

• secure

• nonsecure (default)

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=299

Example

all:
{
 [bootloader,destination_cpu=a53-0] fsbl.elf
 [exception_level=el-3,trustzone = secure] bl31.elf
}

udf_bh
Syntax

[udf_bh] <filename>

Description

Imports a file of data to be copied to the user defined field (UDF) of the Boot Header. The input
user defined data is provided through a text file in the form of a hex string. Total number of bytes
in UDF in Xilinx® SoCs:

• zynq: 76 bytes

• zynqmp: 40 bytes

Arguments

Specified file name.

Example

all:
{
 [udf_bh]test.txt
 [bootloader]fsbl.elf
 hello.elf
}

The following is an example of the input file for udf_bh:

Sample input file for udf_bh - test.txt

123456789abcdef85072696e636530300301440408706d616c6c6164000508
266431530102030405060708090a0b0c0d0e0f101112131415161718191a1b
1c1d1

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=300

udf_data
Syntax

[udf_data=<filename>] <partition>

Description

Imports a file containing up to 56 bytes of data into user defined field (UDF) of the
Authentication Certificate. For more information, see Authentication for more information about
authentication certificates.

Arguments

Specified file name.

Example

all:
{
 [pskfile] primary0.pem
 [sskfile]secondary0.pem
 [bootloader, destination_cpu=a53-0,
authentication=rsa,udf_data=udf.txt]fsbl.elf
 [destination_cpu=a53-0,authentication=rsa] hello.elf
}

xip_mode
Syntax

[xip_mode] <partition>

Description

Indicates 'eXecute In Place' for FSBL to be executed directly from QSPI flash.

Note: This attribute is only applicable for an FSBL/Bootloader partition.

Arguments

Specified partition.

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=301

Example

This example shows how to create a boot image that executes in place for a Zynq® UltraScale+™
MPSoC device.

all:
{
 [bootloader, xip_mode] fsbl.elf
 application.elf
}

Chapter 35: BIF Attribute Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=302

Chapter 36

Command Reference

arch
Syntax

-arch [options]

Description

Xilinx® family architecture for which the boot image needs to be created.

Arguments

• zynq: Zynq®-7000 device architecture. This is the default value. family architecture for which
the boot image needs to be created.

• zynqmp: Zynq® UltraScale+™ MPSoC device architecture.

• fpga: Image is targeted for other FPGA architectures.

Return Value

None

Example

bootgen -arch zynq -image test.bif -o boot.bin

bif_help
Syntax

bootgen -bif_help

bootgen -bif_help aeskeyfile

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=303

Description

Lists the supported BIF file attributes. For a more detailed explanation of each bif attribute,
specify the attribute name as argument to -bif_help on the command line.

dual_qspi_mode
Syntax

bootgen -dual_qspi_mode [parallel]|[stacked <size>

Description

Generates two output files for dual QSPI configurations. In the case of stacked configuration, size
(in MB) of the flash needs to be mentioned (16 or 32 or 64 or 128).

Examples

This example generates two output files for independently programming to both flashes in QSPI
dual parallel configuration.

bootgen -image test.bif -o -boot.bin -dual_qspi_mode parallel

This example generates two output files for independently programming to both flashes in a
QSPI dual stacked configuration. The first 64 MB of the actual image is written to first file and
the remainder to the second file. In case the actual image itself is less than 64 MB, only one file is
generated.

bootgen -image test.bif -o -boot.bin -dual_qspi_mode stacked 64

Arguments

• parallel

• stacked <size>

efuseppkbits
Syntax

bootgen -image test.bif -o boot.bin -efuseppkbits efusefile.txt

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=304

Arguments

efusefile.txt

Description

This option specifies the name of the eFUSE file to be written to contain the PPK hash. This
option generates a direct hash without any padding. The efusefile.txt file is generated
containing the hash of the PPK key. Where:

• Zynq®-7000 uses the SHA2protocol for hashing.

• Zynq® UltraScale+™ MPSoC uses the SHA3 for hashing.

encrypt
Syntax

bootgen -image test.bif -o boot.bin -encrypt <efuse|bbram|>

Description

This option specifies how to perform encryption and where the keys are stored. The NKY key
file is passed through the BIF file attribute aeskeyfile. Only the source is specified using
command line.

Arguments

Key source arguments:
efuse: The AES key is stored in eFUSE. This is the default value.
bbram: The AES key is stored in BBRAM.

encryption_dump
Syntax

bootgen -arch zynqmp -image test.bif -encryption_dump

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 305Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=305

Description

Generates an encryption log file, aes_log.txt. The aes_log.txt generated has the details
of AES Key/IV pairs used for encrypting each block of data. It also logs the partition and the AES
key file used to encrypt it.

Note: This option is supported only for Zynq® UltraScale+™ MPSoC.

Example

all:
{
 [bootloader, encryption=aes, aeskeyfile=test.nky] fsbl.elf
 [encryption=aes, aeskeyfile=test1.nky] hello.elf
}

fill
Syntax

bootgen -arch zynq -image test.bif -fill 0xAB -o boot.bin

Description

This option specifies the byte to use for filling padded/reserved memory in <hex byte> format.

Outputs

The boot.bin file in the 0xAB byte.

Example

The output image is generated with name boot.bin. The format of the output image is
determined based on the file extension of the file given with -o option, where -fill: Specifies
the Byte to be padded. The <hex byte> is padded in the header tables instead of 0xFF.

bootgen -arch zynq -image test.bif -fill 0xAB -o boot.bin

generate_hashes
Syntax

bootgen -image test.bif -generate_hashes

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=306

Description

This option generates hash files for all the partitions and other components to be signed like boot
header, image and partition headers. This option generates a file containing PKCS#1v1.5 padded
hash for the Zynq®-7000 format:

Table 33: Zynq: SHA-2 (256-bytes)

Value SHA-2 Hash* T-Padding 0x0 0xFF 0x01 0x00
Number of
bytes

32 19 1 202 1 1

This option generates the file containing PKCS#1v1.5 padded hash for the Zynq® UltraScale+™
MPSoC format:

Table 34: ZynqMP: SHA-3 (384-bytes)

Value 0x0 0x1 0xFF 0xFF T-Padding SHA-3 Hash
Number of
bytes

1 1 314 1 19 48

Example

test:
{
 [pskfile] ppk.txt
 [sskfile] spk.txt
 [bootloader, authentication=rsa] fsbl.elf
 [authentication=rsa] hello.elf
}

Bootgen generates the following hash files with the specified BIF:

• bootheader hash

• spk hash

• header table hash

• fsbl.elf partition hash

• hello.elf partition hash

generate_keys
Syntax

bootgen -image test.bif -generate_keys <rsa|pem|obfuscated>

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 307Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=307

Description

This option generates keys for authentication and obfuscated key used for encryption.

Note: For more information on generating encryption keys, see Key Generation.

Authentication Key Generation Example

Authentication key generation example. This example generates the authentication keys in the
paths specified in the BIF file.

Examples

image:
{
 [ppkfile] <path/ppkgenfile.txt>
 [pskfile] <path/pskgenfile.txt>
 [spkfile] <path/spkgenfile.txt>
 [sskfile] <path/sskgenfile.txt>
}

Obfuscated Key Generation Example

This example generates the obfuscated in the same path as that of the familykey.txt.

Command:

bootgen -image test.bif -generata_keys rsa

The Sample BIF file is shown in the following example:

image:
{
 [aeskeyfile] aes.nky
 [bh_key_iv] bhkeyiv.txt
 [familykey] familykey.txt
}

Arguments

• rsa

• pem

• obfuscated

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=308

image
Syntax

-image <BIF_filename>

Description

This option specifies the input BIF file name. The BIF file specifies each component of the boot
image in the order of boot and allows optional attributes to be specified to each image
component. Each image component is usually mapped to a partition, but in some cases an image
component can be mapped to more than one partition if the image component is not contiguous
in memory.

Arguments

bif_filename

Example

bootgen -arch zynq -image test.bif -o boot.bin

The Sample BIF file is shown in the following example:

the_ROM_image:
{
 [init] init_data.int
 [bootloader] fsbl.elf
 Partition1.bit
 Partition2.elf
}

log
Syntax

bootgen -image test.bif -o -boot.bin -log trace

Description

Generates a log while generating the boot image. There are various options for choosing the level
of information. The information is displayed on the console as well as in the log file, named
bootgen_log.txt is generated in the current working directory.

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=309

Arguments

• error: Only the error information is captured.

• warning: The warnings and error information is captured. This is the default value.

• info: The general information and all the above info is captured.

• trace: More detailed information is captured along with the information above.

nonbooting
Syntax

bootgen -arch zynq -image test.bif -o test.bin -nonbooting

Description

This option is used to create an intermediate boot image. An intermediate test.bin image is
generated as output even in the absence of secret key, which is required to generate an
authenticated image. This intermediate image cannot be booted.

Example

all:
{
 [ppkfile]primary.pub
 [spkfile]secondary.pub
 [spksignature]secondary.pub.sha256.sig

[bootimage,authentication=rsa,presign=fsbl_0.elf.0.sha256.sig]fsbl_e.bin
}

o
Syntax

bootgen -arch zynq -image test.bif -o boot.<bin|mcs>

Description

This option specifies the name of the output image file with a .bin or .mcs extension.

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 310Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=310

Outputs

A full boot image file in either BIN or MCS format.

Example

bootgen -arch zynq -image test.bif -o boot.mcs

The boot image is output in an MCS format.

p
Syntax

bootgen -image test.bif -o boot.bin -p xc7z020clg48 -encrypt efuse

Description

This option specifies the partname of the Xilinx® device. This is needed for generating a
encryption key. It is copied verbatim to the *.nky file in the Device line of the nky file. This is
applicable only when encryption is enabled. If the key file is not present in the path specified in
BIF file, then a new encryption key is generated in the same path and xc7z020clg484 is copied
along side the Device field in the nky file. The generated image is an encrypted image.

padimageheader
Syntax

bootgen -image test.bif -w on -o boot.bin -padimageheader=<0|1>

Description

This option pads the Image Header Table and Partition Header Table to maximum partitions
allowed, to force alignment of following partitions. This feature is enabled by default. Specifying
a 0 disables this feature. The boot.bin has the image header tables and partition header tables
in actual and no extra tables are padded. If nothing is specified or if -padimageheader=1, the
total image header tables and partition header tables are padded to max partitions.

Arguments

• 1: Pad the header tables to max partitions. This is the default value.

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=311

• 0: Do not pad the header tables.

Image or Partition Header Lengths

• zynq: Maximum Partitions - 14

• zynqmp: Maximum Partitions - 32

process_bitstream
Syntax

-process_bitstream <bin|mcs>

Description

Processes only the bitstream from the BIF and outputs it as an MCS or a BIN file. For example: If
encryption is selected for bitstream in the BIF file, the output is an encrypted bitstream.

Arguments

• bin: Output in BIN format.

• mcs: Output in MCS format.

Returns

Output generated is bitstream in BIN or MCS format; a processed file without any headers
attached.

read
Syntax

-read [options]

Description

Used to read boot headers, image headers, and partition headers based on the options.

Arguments

• bh: To read boot header from bootimage in human readable form

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=312

• iht: To read image header table from bootimage

• ih: To read image headers from bootimage.

• pht: To read partition headers from bootimage

• bootgen -arch zynqmp -read BOOT.bin

• ac: To read authentication certificates from bootimage

spksignature
Syntax

bootgen -image test.bif -w on -o boot.bin -spksignature spksignfile.txt

Description

This option is used to generate the SPK signature file. This option must be used only when
spkfile and pskfile are specified in BIF. The SPK signature file (spksignfile.txt) is
generated.

Option

Specifies the name of the signature file to be generated.

split
Syntax

bootgen -arch zynq -image test.bif -split bin

Description

This option outputs each data partition with headers as a new file in MCS or BIN format.

Outputs

Output files generated are:

• Bootheader + Image Headers + Partition Headers + Fsbl.elf

• Partition1.bit

• Partition2.elf

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=313

Example

the_ROM_image:
{
 [bootloader] Fsbl.elf
 Partition1.bit
 Partition2.elf
}

verify
Syntax

bootgen -arch zynqmp -verify boot.bin

Description

This option is used for verifying authentication of a boot image. All the authentication
certificates in a boot image will be verified against the available partitions. Verification is
performed in the following steps:

1. Verify Header Authentication Certificate, verify SPK Signature, and verify Header Signature.

2. Verify Bootloader Authentication Certificate, verify Boot Header Signature, verify SPK
Signature, and verify Bootloader Signature.

3. Verify Partition Authentication Certificate, verify SPK Signature, and verify Partition
Signature.

This is repeated for all partitions in the given boot image.

verify_kdf
Syntax

bootgen -arch zynqmp -verify_kdf testVec.txt

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=314

Description

The format of the testVec.txt file is as below.

L = 256
KI = d54b6fd94f7cf98fd955517f937e9927f9536caebe148fba1818c1ba46bba3a4
FixedInputDataByteLen = 60
FixedInputData =
94c4a0c69526196c1377cebf0a2ae0fb4b57797c61bea8eeb0518ca08652d14a5e1bd1b116b1
794ac8a476acbdbbcd4f6142d7b8515bad09ec72f7af

Bootgen uses the counter Mode KDF to generate the output key (KO) based on the given input
data in the test vector file. This KO will be printed on the console for the user to compare.

w
Syntax

bootgen -image test.bif -w on -o boot.bin
or
bootgen -image test.bif -w -o boot.bin

Description

This option specifies whether to overwrite an existing file or not. If the file boot.bin already
exists in the path, then it is overwritten. Options -w on and -w are treated as same. If the -w
option is not specified, the file will not be overwritten by default.

Arguments

• on: Specified with the -w on command with or -w with no argument. This is the default
value.

• off: Specifies to not overwrite an existing file.

zynqmpes1
Syntax

bootgen -arch zynqmp -image test.bif -o boot.bin -zynqmpes1

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=315

Description

This option specifies that the image generated will be used on ES1 (1.0). This option makes a
difference only when generating an Authenticated image; otherwise, it is ignored. The default
padding scheme is for (2.0) ES2 and above.

Initialization Pairs and INT File Attribute
Initialization pairs let you easily initialize Processor Systems (PS) registers for the MIO multiplexer
and flash clocks. This allows the MIO multiplexer to be fully configured before the FSBL image is
copied into OCM or executed from flash with eXecute in place (XIP), and allows for flash device
clocks to be set to maximum bandwidth speeds.

There are 256 initialization pairs at the end of the fixed portion of the boot image header.
Initialization pairs are designated as such because a pair consists of a 32-bit address value and a
32-bit data value. When no initialization is to take place, all of the address values contain
0xFFFFFFFF, and the data values contain 0x00000000. Set initialization pairs with a text file
that has an .int file extension by default, but can have any file extension.

The[init]file attribute precedes the file name to identify it as the INIT file in the BIF file. The
data format consists of an operation directive followed by:

• An address value

• an = character

• a data value

The line is terminated with a semicolon (;). This is one .set. operation directive; for
example:

.set. 0xE0000018 = 0x00000411; // This is the 9600 uart setting.

Bootgen fills the boot header initialization from the INT file up to the 256 pair limit. When the
BootROM runs, it looks at the address value. If it is not 0xFFFFFFFF, the BootROM uses the
next 32-bit value following the address value to write the value of address. The BootROM loops
through the initialization pairs, setting values, until it encounters a 0xFFFFFFFF address, or it
reaches the 256th initialization pair.

Bootgen provides a full expression evaluator (including nested parenthesis to enforce
precedence) with the following operators:

* = multiply/
 = divide
% = mod
an address value
ulo divide

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=316

+ = addition
- = subtraction
~ = negation
>> = shift right
<< = shift left
& = binary and
 = binary or
^ = binary nor

The numbers can be hex (0x), octal (0o), or decimal digits. Number expressions are maintained as
128-bit fixed-point integers. You can add white space around any of the expression operators for
readability.

Chapter 36: Command Reference

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=317

Chapter 37

Bootgen Utility
CAUTION! This utility has been deprecated. Instead, use the -read option.

The bootgen_utility is a tool used to dump the contents of a Boot Image generated by
Bootgen, into a human-readable log file. This is useful in debugging and understanding the
contents of the different header tables of a boot image.

The utility generates the following files as output:

• Dump of all header tables.

• Dump of register init table.

• Dump of individual partitions.

Note: If the partitions are encrypted, the dump will be the encrypted partition and not the decrypted one

Usage:

bootgen_utility
 -arch <zynq | zynqmp> -bin <binary input file name> -out <output
text file>

Example:

bootgen_utility
 -arch zynqmp -bin boot.bin -out info.txt

Sample output file looks like the following:

Chapter 37: Bootgen Utility

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=318

Figure 25: Example Output

Chapter 37: Bootgen Utility

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=319

Section V

Xilinx Software Command-Line Tool

Section V: Xilinx Software Command-Line Tool

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=320

Chapter 38

Xilinx Software Command-Line Tool
Graphical development environments such as the Vitis™ IDE are useful for getting up to speed
on development for a new processor architecture. It helps to abstract away and group most of
the common functions into logical wizards that even the novice can use. However, scriptability of
a tool is also essential for providing the flexibility to extend what is done with that tool. It is
particularly useful when developing regression tests that will be run nightly or running a set of
commands that are used often by the developer.

Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable command-line
interface to the Vitis IDE. As with other Xilinx tools, the scripting language for XSCT is based on
Tools Command Language (Tcl). You can run XSCT commands interactively or script the
commands for automation. XSCT supports the following actions:

• Create hardware, domains, platform projects, system projects, and application projects

• Manage repositories

• Set toolchain preferences

• Configure and build domains/BSPs and applications

• Download and run applications on hardware targets

• Create and flash boot images by running Bootgen and program_flash tools.

This reference content is intended to provide the information you need to develop scripts for
software development and debug targeting Xilinx processors.

As you read the document you will notice usage of some abbreviations for various products
produced by Xilinx. For example:

• Use of ps7 in the source code implies that these files are targeting the Zynq®-7000 SoC
family of products, and specifically the dual-core Cortex™ Arm® A9 processors in the SoC.

• Use of psu in the source code implies that this code is targeting a Zynq® UltraScale+™
MPSoC device, which contains a Cortex Quad-core Arm A53, dual-core, Arm® R5, Arm, Mali
400 GPU, and a MicroBlaze™ processor based platform management unit (PMU).

• Hardware definition files (XSA/DSA) are used to transfer the information about the hardware
system that includes a processor to the embedded software development tools such as Vitis
IDE and Xilinx Software Command-Line Tools (XSCT). It includes information about which
peripherals are instantiated, clocks, memory interfaces, and memory maps.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=321

• Microprocessor Software Specification (MSS) files are used to store information about the
domain/BSP. They contain OS information for the domain/BSP, software drivers associated
with each peripheral of the hardware design, STDIO settings, and compiler flags like
optimization and debug information level.

System Requirements
If you plan to use capabilities that are offered through the Vitis IDE or the Xilinx Software
Command-Line Tool (XSCT), then you also need to meet the hardware and software
requirements that are specific to that capability.

Hardware Requirements

The table below lists the hardware requirements.

Table 35: Hardware Requirements

Requirement Description
CPU Speed 2.2 GHz minimum or higher; Hyper-threading (HHT) or multicore recommended.

Processor Intel Pentium 4, Intel Core Duo, or Xeon Processors; SSE2 minimum

Memory/RAM 2 GB or higher

Display Resolution 1024×768 or higher at normal size (96 dpi)

Disk Space Based on the components selected during the installation

Software Requirements

The table below lists the supported operating systems.

Note: 32-bit machine support is now only available through Lab Edition and Hardware Server standalone
product installers.

Table 36: Software Requirements

Operating System Supported Version
Windows

• Windows 7 SP1 (64-bit)

• Windows 8.1 (64-bit)

• Windows 10 Pro (64-bit)

Chapter 38: Xilinx Software Command-Line Tool

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=322

Table 36: Software Requirements (cont'd)

Operating System Supported Version
Linux

• Red Hat Enterprise Linux:

○ 6.6-6.9 (64-bit)

○ 7.0-7.1 (64-bit)

• CentOS:

○ 6.7-6.8 (64-bit)

○ 7.2-7.3 (64-bit)

• SUSE Linux Enterprise:

○ 11.4 (64-bit)

○ 12.2 (64-bit)

• Ubuntu Linux 16.04.2 LTS (64-bit)

Note: Additional library installation required.

Chapter 38: Xilinx Software Command-Line Tool

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=323

Chapter 39

Installing and Launching XSCT
The Xilinx® Software Command-Line Tool (XSCT) can be installed either as a part of the Vitis IDE
installer or as a separate command-line tool only installation. XSCT is available for the following
platforms:

• Microsoft Windows

• Linux

The following sections explain the installation process for each of these platforms.

Installing and Launching XSCT on Windows
XSCT can be installed using the Windows executable installer. The installer executable bears the
name Xilinx_vitis_<version>_Win64.EXE, where <version> indicates the Vitis IDE
version number.

Note: Installing XSCT on Microsoft Windows operating system might require administrator rights. In
addition, your project workspace needs to be set up in any folder that you can fully access.

1. To install XSCT, double-click the Windows installer executable file.

2. The installer accepts your login credentials and allows you to select specific tool components.
The client then automatically downloads only what you have selected and installs it on your
local machine.

3. In the Select Edition to Install window, select the Xilinx Software Command-Line Tool (XSCT)
option to install XSCT as a separate command-line tool only. Alternatively, you can also select
the Vitis IDE option to install XSCT as a part of the Vitis IDE, an Eclipse-based integrated
development environment.

4. Unless you choose otherwise, XSCT is installed in the C:\Xilinx directory.

5. To launch XSCT on Windows, select Start → Programs → Xilinx Design Tools → Vitis
<version> and then select Vitis. Where Vitis <version> indicates the Vitis version number.

6. You can also launch XSCT from the command line.

cd C:\Xilinx\vitis\<version>\bin
 xsct.bat

Chapter 39: Installing and Launching XSCT

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=324

7. To view the available command-line options, issue the help command at the XSCT command
prompt.

****** Xilinx Software Commandline Tool (XSCT)

 ** Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.

 xsct% help
 Available Help Categories

 breakpoints - Target Breakpoints/Watchpoints.
 connections - Target Connection Management.
 device - Device Configuration System.
 download - Target Download FPGA/BINARY.
 hsi - HSI commands.
 jtag - JTAG Access.
 memory - Target Memory.
 miscellaneous - Miscellaneous.
 petalinux - Petalinux commands.
 projects - Vitis Projects.
 registers - Target Registers.
 reset - Target Reset.
 running - Program Execution.
 streams - Jtag UART.
 svf - SVF Operations.
 tfile - Target File System.

 Type "help" followed by above "category" for more
details or
 help" followed by the keyword "commands" to list all
the commands

 xsct%

Installing and Launching XSCT on Linux
Xilinx Software Command-line Tool (XSCT) can be installed using the small self-extracting web
install executable binary distribution file. The installer file bears the name
Xilinx_vitis_<version>_Lin64.BIN, where <version> indicates the Vitis IDE version
number.

Note: The procedure for installing XSCT on Linux depends on which Linux distribution you are using.
Ensure that the installation folder has the appropriate permissions. In addition, your project workspace
needs to be set up in any folder that you can fully access.

1. To install XSCT, launch the terminal and change the permission of the self-extracting binary
executable.

$ chmod +x Xilinx_vitis_<version>_Lin64.BIN

2. Start the installation process or run the .BIN file.

./Xilinx_vitis_<version>_Lin64.BIN

Chapter 39: Installing and Launching XSCT

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=325

3. The installer accepts your login credentials and allows you to select specific tool components.
The client then automatically downloads only what you have selected and installs it on your
local machine.

4. In the Select Edition to Install window, select the Xilinx Software Command-Line Tool (XSCT)
option to install XSCT as a separate command-line tool only. Alternatively, you can also select
the Vitis option to install XSCT as a part of Vitis, an Eclipse-based integrated development
environment.

5. Unless you choose otherwise, XSCT is installed in the /opt/Xilinx directory.

6. To launch XSCT on Linux, select Applications → Other and then select Xilinx Software
Command Line Tool <version>. Where <version> is the version number of the XSCT.

7. You can also launch XSCT from the command line.

cd /opt/Xilinx/vitis/<version>/bin
./xsct

8. To view the available command-line options, issue the help command at the XSCT command
prompt.

****** Xilinx Software Commandline Tool (XSCT) v2019.2
 **** SW Build 2667712 on Thu Sep 19 20:14:55 MDT 2019
 ** Copyright 1986-2019 Xilinx, Inc. All Rights Reserved.

xsct% help
Available Help Categories

breakpoints - Target Breakpoints/Watchpoints.
connections - Target Connection Management.
device - Device Configuration System.
download - Target Download FPGA/BINARY.
hsi - HSI commands.
jtag - JTAG Access.
memory - Target Memory.
miscellaneous - Miscellaneous.
petalinux - Petalinux commands.
projects - Vitis Projects.
registers - Target Registers.
reset - Target Reset.
running - Program Execution.
streams - Jtag UART.
svf - SVF Operations.
tfile - Target File System.

Type "help" followed by above "category" for more details or
help" followed by the keyword "commands" to list all the commands

Chapter 39: Installing and Launching XSCT

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=326

Chapter 40

XSCT Commands
The Xilinx® Software Command-Line tool allows you to create complete Vitis workspaces,
investigate the hardware and software, debug and run the project, all from the command line.

XSCT commands are broadly classified into the following categories. The commands in each
category are described subsequently.

• Target Connection Management

• Target Registers

• Program Execution

• Target Memory

• Target Download FPGA/BINARY

• Target Reset

• Target Breakpoints/Watchpoints

• JTAG UART

• Miscellaneous

• JTAG Access

• Target File System

• SVF Operations

• Device Configuration System

• Vitis Projects

TIP:

• Help for each of the commands can be viewed by running help <command> or <command> -help
in the XSCT console. All the available XSCT commands can be listed by running help commands.

• You can use Ctrl+C to terminate long running commands like fpga or elf download or for/while
loops.

• You can terminate XSCT by pressing Ctrl+C twice in succession.

• Windows style paths are supported when the path is enclosed within curly brackets {}.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=327

Target Connection Management
The following is a list of connections commands:

• connect

• disconnect

• targets

• gdbremote connect

• gdbremote disconnect

connect
Connect to the hw_server/TCF agent.

Syntax

connect [options]

Allows users to connect to a server, list connections or switch between connections.

Options

Option Description
-host <host name/ip> Name/IP address of the host machine
-port <port num> TCP port number
-url <url> URL description of the hw_server/TCF agent
-list List open connections
-set <channel-id> Set active connection
-new Create a new connection, even one exist to the same url
-xvc-url <url> Open Xilinx Virtual Cable connection
-symbols Launch symbol server to enable source level debugging for

remote connections

Returns

The return value depends on the options used.

-port, -host, -url, -new: <channel-id> of the new connection or error if the
connection fails

-list: list of open channels or nothing when there are no open channels

-set: nothing

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 328Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=328

Example(s)

connect -host localhost -port 3121

Connect to the hw_server/TCF agent on host localhost and port 3121.

connect -url tcp:localhost:3121

Identical to previous example.

disconnect
Disconnect from the hw_server/TCF agent.

Syntax

disconnect

Disconnect from active channel.

disconnect <channel-id>

Disconnect from specified channel.

Returns

Nothing, if the connection is closed. Error string, if invalid channel-id is specified.

targets
List targets or switch between targets.

Syntax

targets [options]

List available targets.

targets <target id>

Select <target id> as active target.

Options

Option Description
-set Set current target to entry single entry in list. This is useful

in comibination with -filter option. An error will be generate
if list is empty or contains more than one entry.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=329

Option Description
-regexp Use regexp for filter matching
-nocase Use case insensitive filter matching
-filter <filter-expression> Specify filter expression to control which targets are

included in list based on its properties. Filter expressions
are similar to Tcl expr syntax. Target properties are
references by name, while Tcl variables are accessed using
the $ syntax, string must be quoted. Operators ==, !=, <=,
>=, <, >, && and || are supported as well as (). There
operators behave like Tcl expr operators. String matching
operator =~ and !~ match lhs string with rhs pattern using
either regexp or string match.

-target-properties Returns a Tcl list of dict's containing target properties.
-index <index> Include targets based on jtag scan chain position. This is

identical to specifying -filter {jtag_device_index==<index>}.

-timeout <sec> Poll until the targets specified by filter option are found on
the scan chain, or until timeout. This option is valid only with
filter option. The timeout value is in seconds. Default
timeout is 3 seconds

Returns

The return value depends on the options used.

<none>: Targets list when no options are used.

-filter: Filtered targets list.

-target-properties: Tcl list consisting of target properties.

An error is returned when target selection fails.

Example(s)

targets

List all targets.

targets -filter {name =~ "ARM*#1"}

List targets with name starting with "ARM" and ending with "#1".

targets 2

Set target with id 2 as the current target.

targets -set -filter {name =~ "ARM*#1"}

Set current target to target with name starting with "ARM" and ending with "#1".

targets -set -filter {name =~ "MicroBlaze*"} -index 0

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 330Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=330

Set current target to target with name starting with "MicroBlaze" and which is on 1st Jtag Device.

gdbremote connect
Connect to GDB remote server.

Syntax

gdbremote connect [options] server

Connect to a GDB remote server, for example qemu. A special client named tcfgdbclient is used
to connect to remote GDB server.

Options

Option Description
-architecture <name> Specify default architecture is remote server does not

provide it.

Returns

Nothing, if the connection is successful. Error string, if the connection failed.

gdbremote disconnect
Disconnect from GDB remote server.

Syntax

gdbremote disconnect [target-id]

Disconnect from GDB remote server, for example qemu.

Returns

Nothing, if the connection is close. Error string, if there is no active connection.

Target Registers
The following is a list of registers commands:

• rrd

• rwr

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 331Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=331

rrd
Read register for active target.

Syntax

rrd [options] [reg]

Read registers or register definitions. For a processor core target, processor core register can be
read. For a target representing a group of processor cores, system registers or IOU registers can
be read.

Options

Option Description
-defs Read register definitions instead of values
-no-bits Does not show bit fields along with register values. By

default, bit fields are shown, when available

Returns

Register names and values, or register definitions if successful. Error string, if the registers cannot
be read or if an invalid register is specified.

Example(s)

rrd

Read top level registers or groups.

rrd r0

Read register r0.

rrd usr r8

Read register r8 in group usr.

rwr
Write to register

Syntax

rwr <reg> <value>

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=332

Write the <value> to active target register specified by <reg> For a processor core target,
processor core register can be written to. For a target representing a group of processor cores,
system registers or IOU registers can be written.

Returns

Nothing, if successful. Error string, if an invalid register is specified or the register cannot be
written.

Example(s)

rwr r8 0x0

Write 0x0 to register r8.

rwr usr r8 0x0

Write 0x0 to register r8 in group usr.

Program Execution
The following is a list of running commands:

• state

• stop

• con

• stp

• nxt

• stpi

• nxti

• stpout

• dis

• print

• locals

• backtrace

• profile

• mbprofile

• mbtrace

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=333

state
Display the current state of the target.

Syntax

state

Return the current execution state of target.

stop
Stop active target.

Syntax

stop

Suspend execution of active target.

Returns

Nothing, if the target is suspended. Error string, if the target is already stopped or cannot be
stopped.

An information message is printed on the console when the target is suspended.

con
Resume active target.

Syntax

con [options]

Resume execution of active target.

Options

Option Description
-addr <address> Resume execution from address specified by <address>

-block Block until the target stops or a timeout is reached
-timeout <sec> Timeout value in seconds

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=334

Returns

Nothing, if the target is resumed. Error string, if the target is already running or cannot be
resumed or does not halt within timeout, after being resumed.

An information message is printed on the console when the target is resumed.

Example(s)

con -addr 0x100000

Resume execution of the active target from address 0x100000.

con -block

Resume execution of the active target and wait until the target stops.

con -block -timeout 5

Resume execution of the active target and wait until the target stops or until the 5 sec timeout is
reached.

stp
Step into a line of source code.

Syntax

stp [count]

Resume execution of the active target until control reaches instruction that belongs to different
line of source code. If a function is called, stop at first line of the function code. Error is returned
if line number information not available. If <count> is greater than 1, repeat <count> times.
Default value of count is 1.

Returns

Nothing, if the target has single stepped. Error string, if the target is already running or cannot be
resumed.

An information message is printed on the console when the target stops at the next address.

nxt
Step over a line of source code.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=335

Syntax

nxt [count]

Resume execution of the active target until control reaches instruction that belongs to a different
line of source code, but runs any functions called at full speed. Error is returned if line number
information not available. If <count> is greater than 1, repeat <count> times. Default value of
count is 1.

Returns

Nothing, if the target has stepped to the next source line. Error string, if the target is already
running or cannot be resumed.

An information message is printed on the console when the target stops at the next address.

stpi
Execute a machine instruction.

Syntax

stpi [count]

Execute a single machine instruction. If instruction is function call, stop at first instruction of the
function code If <count> is greater than 1, repeat <count> times. Default value of count is 1.

Returns

Nothing, if the target has single stepped. Error if the target is already running or cannot be
resumed.

An information message is printed on the console when the target stops at the next address.

nxti
Step over a machine instruction.

Syntax

nxti [count]

Step over a single machine instruction. If instruction is function call, execution continues until
control returns from the function. If <count> is greater than 1, repeat <count> times. Default
value of count is 1.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=336

Returns

Nothing, if the target has stepped to the next address. Error string, if the target is already running
or cannot be resumed.

An information message is printed on the console when the target stops at the next address.

stpout
Step out from current function.

Syntax

stpout [count]

Resume execution of current target until control returns from current function. If <count> is
greater than 1, repeat <count> times. Default value of count is 1.

Returns

Nothing, if the target has stepped out of the current function. Error if the target is already
running or cannot be resumed.

An information message is printed on the console when the target stops at the next address.

dis
Disassemble Instructions.

Syntax

dis <address> [num]

Disassemble <num> instructions at address specified by <address> The keyword "pc" can be
used to disassemble instructions at current PC Default value for <num> is 1.

Returns

Disassembled instructions if successful. Error string, if the target instructions cannot be read.

Example(s)

dis

Disassemble an instruction at the current PC value.

dis pc 2

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=337

Disassemble two instructions at the current PC value.

dis 0x0 2

Disassemble two instructions at address 0x0.

print
Get or set the value of an expression.

Syntax

print [options] [expression]

Get or set the value of an expression specified by <expression>. The <expression> can
include constants, local/global variables, CPU registers, or any operator, but pre-processor
macros defined through #define are not supported. CPU registers can be specified in the format
{$r1}, where r1 is the register name. Elements of a complex data types like a structure can be
accessed through '.' operator. For example, var1.int_type refers to int_type element in var1 struct.
Array elements can be accessed through their indices. For example, array1[0] refers to the
element at index 0 in array1.

Options

Option Description
-add <expression> Add the <expression> to auto expression list. The values

or definitions of the expressions in auto expression list are
displayed when expression name is not specified.
Frequently used expressions should be added to the auto
expression list.

-defs [expression] Return the expression definitions like address, type, size and
RW flags. Not all definitions are available for all the
expressions. For example, address is available only for
variables and not when the expression includes an operator.

-dict [expression] Return the result in Tcl dict format, with variable names as
dict keys and variable values as dict values. For complex
data like structures, names are in the form of parent.child.

-remove [expression] Remove the expression from auto expression list. Only
expressions previously added to the list through -add option
can be removed. When the expression name is not
specified, all the expressions in the auto expression list are
removed.

-set <expression> Set the value of a variable. It is not possible to set the value
of an expression which includes constants or operators.

Returns

The return value depends on the options used.

<none> or -add: Expression value(s)

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=338

-defs: Expression definition(s)

-remove or -set: Nothing

Error string, if expression value cannot be read or set.

Example(s)

print Int_Glob

Return the value of variable Int_Glob.

print -a Microseconds

Add the variable Microseconds to auto expression list and return its value.

print -a Int_Glob*2 + 1

Add the expression (Int_Glob*2 + 1) to auto expression list and return its value.

print tmp_var.var1.int_type

Return the value of int_type element in var1 struct, where var1 is a member of tmp_var struct.

print tmp_var.var1.array1[0]

Return the value of the element at index 0 in array array1. array1 is a member of var1 struct,
which is in turn a member of tmp_var struct.

print

Return the values of all the expressions in auto expression list.

print -defs

Return the definitions of all the expressions in auto expression list.

print -set Int_Glob 23

Set the value of the variable Int_Glob to 23.

print -remove Microseconds

Remove the expression Microseconds from auto expression list.

print {r1}

Return the value of CPU register r1.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 339Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=339

locals
Get or set the value of a local variable.

Syntax

locals [options] [variable-name [variable-value]]

Get or set the value of a variable specified by <variable-name>. When variable name and
value are not specified, values of all the local variables are returned. Elements of a complex data
types like a structure can be accessed through '.' operator. For example, var1.int_type refers to
int_type element in var1 struct. Array elements can be accessed through their indices. For
example, array1[0] refers to the element at index 0 in array1.

Options

Option Description
-defs Return the variable definitions like address, type, size and

RW flags.
-dict [expression] Return the result in Tcl dict format, with variable names as

dict keys and variable values as dict values. For complex
data like structures, names are in the form of parent.child.

Returns

The return value depends on the options used.

<none>: Variable value(s)

-defs: Variable definition(s)

Nothing, when variable value is set. Error string, if variable value cannot be read or set.

Example(s)

locals Int_Loc

Return the value of the local variable Int_Loc.

locals

Return the values of all the local variables in the current stack frame.

locals -defs

Return definitions of all the local variables in the current stack frame.

locals Int_Loc 23

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=340

Set the value of the local variable Int_Loc to 23.

locals tmp_var.var1.int_type

Return the value of int_type element in var1 struct, where var1 is a member of tmp_var struct.

locals tmp_var.var1.array1[0]

Return the value of the element at index 0 in array array1. array1 is a member of var1 struct,
which is in turn a member of tmp_var struct.

backtrace
Stack back trace.

Syntax

backtrace

Return stack trace for current target. Target must be stopped. Use debug information for best
result.

Returns

Stack Trace, if successful. Error string, if Stack Trace cannot be read from the target.

profile
Configure and run the GNU profiler.

Syntax

profile [options]

Configure and run the GNU profiler. The profiling needs to enabled while building bsp and
application to be profiled.

Options

Option Description
-freq <sampling-freq> Sampling frequency.
-scratchaddr <addr> Scratch memory for storing the profiling related data. It

needs to be assigned carefully, as it should not overlap with
the program sections.

-out <file-name> Name of the output file for writing the profiling data. This
option also runs the profiler and collects the data. If file
name is not specified, profiling data is written to gmon.out.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=341

Returns

Depends on options used.

-scratchaddr, -freq: Returns nothing on successful configuration. Error string, in case of
error.

-out: Returns nothing, and generates a file. Error string, in case of error.

Example(s)

profile -freq 10000 -scratchaddr 0

Configure the profiler with a sampling frequency of 10000 and scratch memory at 0x0.

profile -out testgmon.out

Output the profile data in testgmon.out.

mbprofile
Configure and run the MB profiler.

Syntax

mbprofile [options]

Configure and run the MB profiler, a non-intrusive profiler for profiling the application running on
MB. The output file is generated in gmon.out format. The results can be viewed using gprof
editor. In case of cycle count, an annotated disassembly file is also generated clearly marking
time taken for execution of instructions.

Options

Option Description
-low <addr> Low address of the profiling address range.
-high <addr> High address of the profiling address range.
-freq <value> Microblaze clock frequency in Hz. Default is 100MHz.
-count-instr Count no. of executed instructions. By default no. of clock

cycles of executed instructions are counted.
-cumulate Cumulative profiling. Profiling without clearing the profiling

buffers.
-start Enable and start profiling.
-stop Disable/stop profiling.
-out <filename> Output profiling data to file. <filename> Name of the

output file for writing the profiling data. If file name is not
specified, profiling data is written to gmon.out.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=342

Returns

Depends on options used. -low, -high, -freq, -count-instr, -start, -cumulate Returns nothing on
successful configuration. Error string, in case of error.

-stop: Returns nothing, and generates a file. Error string, in case of error.

Example(s)

mbprofile -low 0x0 -high 0x3FFF

Configure the mb-profiler with address range 0x0 to 0x3FFF for profiling to count the clock
cycles of executed instructions.

mbprofile -start

Enable and start profiling.

mbprofile -stop -out testgmon.out

Output the profile data in testgmon.out.

mbprofile -count-instr

Configure the mb-profiler to profile for entire program address range to count no. of instructions
executed.

mbtrace
Configure and run MB trace.

Syntax

mbtrace [options]

Configure and run MB program and event trace for tracing the application running on MB. The
output is the disassembly of the executed program.

Options

Option Description
-start Enable and start trace. After starting trace the execution of

the program is captured for later output.
-stop Stop and output trace.
-con Execute the command and output trace.

Note: The -con option is only available with embedded trace.-stp

-nxt

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=343

Option Description
-out <filename> Output trace data to a file. <filename> Name of the output

file for writing the trace data. If not specified, data is output
to standard output.

-level <level> Set the trace level to "full", "flow", "event", or "cycles". If
not specified, "flow" is used.

-halt Set to halt program execution when the trace buffer is full. If
not specified, trace is stopped but program execution
continues.

-save Set to enable capture of load and get instruction new data
value.

-low <addr> Set low and high address of the external trace buffer
address range. The address range must indicate an unused
accessible memory space. Only used with external trace.-high <addr>

-format <format> Set external trace data format to "mdm", "ftm", or "tpiu". If
format is not specified, "mdm" is used. The "ftm" and "tpiu"
formats are output by Zynq-7000 PS. Only used with
external trace.

Returns

Depends on options used. -start, -out, -level, -halt -save, -low, -high, -format Returns nothing on
successful configuration. Error string, in case of error.

-stop, -con, -stp, -nxt: Returns nothing, and outputs trace data to a file or standard
output. Error string, in case of error.

Example(s)

mbtrace -start

Enable and start trace.

mbtrace -start -level full -halt

Enable and start trace, configuring to save complete trace instead of only program flow and to
halt execution when trace buffer is full.

mbtrace -stop

Stop trace and output data to standard output.

mbtrace -stop -out trace.out

Stop trace and output data to trace.out.

mbtrace -con -out trace.out

Continue execution and output data to trace.out.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 344Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=344

Target Memory
The following is a list of memory commands:

• mrd

• mwr

• osa

• memmap

mrd
Memory Read

Syntax

mrd [options] <address> [num]

Read <num> data values from the active target's memory address specified by <address>.

Options

Option Description
-force Overwrite access protection. By default accesses to reserved

and invalid address ranges are blocked.
-size <access-size> <access-size> can be one of the values below: b = Bytes

accesses h = Half-word accesses w = Word accesses d =
Double-word accesses Default access size is w Address will
be aligned to access-size before reading memory, if '-
unaligned-access' option is not used. For targets which do
not support double-word access, debugger uses 2 word
accesses. If number of data values to be read is more than
1, then debugger selects appropriate access size. For
example, 1. mrd -size b 0x0 4 Debugger accesses one word
from the memory, displays 4 bytes. 2. mrd -size b 0x0 3
Debugger accesses one half-word and one byte from the
memory, displays 3 bytes. 3. mrd 0x0 3 Debugger accesses 3
words from the memory and displays 3 words.

-value Return a Tcl list of values, instead of displaying the result on
console.

-bin Return data read from the target in binary format.
-file <file-name> Write binary data read from the target to <file-name>.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=345

Option Description
-address-space <name> Access specified memory space instead default memory

space of current target. For ARM DAP targets, address
spaces DPR, APR and AP<n> can be used to access DP
Registers, AP Registers and MEM-AP addresses, respectively.
For backwards compatibility -arm-dap and -arm-ap options
can be used as shorthand for "-address-space APR" and "-
address-space AP<n>", respectively. The APR address range
is 0x0 - 0xfffc, where the higher 8 bits select an AP and lower
8 bits are the register address for that AP.

-unaligned-access Memory address is not aligned to access size, before
performing a read operation. Support for unaligned
accesses is target architecture dependent. If this option is
not specified, addresses are automatically aligned to access
size.

Note(s)

• Select a APU target to access ARM DAP and MEM-AP address space.

Returns

Memory addresses and data in requested format, if successful. Error string, if the target memory
cannot be read.

Example(s)

mrd 0x0

Read a word at 0x0.

mrd 0x0 10

Read 10 words at 0x0.

mrd -value 0x0 10

Read 10 words at 0x0 and return a Tcl list of values.

mrd -size b 0x1 3

Read 3 bytes at address 0x1.

mrd -size h 0x2 2

Read 2 half-words at address 0x2.

mrd -bin -file mem.bin 0 100

Read 100 words at address 0x0 and write the binary data to mem.bin.

mrd -address-space APR 0x100

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=346

Read APB-AP CSW on Zynq. The higher 8 bits (0x1) select the APB-AP and lower 8 bits (0x0) is
the address of CSW.

mrd -address-space APR 0x04

Read AHB-AP TAR on Zynq. The higher 8 bits (0x0) select the AHB-AP and lower 8 bits (0x4) is
the address of TAR.

mrd -address-space AP1 0x80090088

Read address 0x80090088 on DAP APB-AP. 0x80090088 corresponds to DBGDSCR register of
Cortex-A9#0, on Zynq AP 1 selects the APB-AP.

mrd -address-space AP0 0xe000d000

Read address 0xe000d000 on DAP AHB-AP. 0xe000d000 corresponds to QSPI device on Zynq
AP 0 selects the AHB-AP.

mwr
Memory Write.

Syntax

mwr [options] <address> <values> [num]

Write <num> data values from list of <values> to active target memory address specified by
<address>. If <num> is not specified, all the <values> from the list are written sequentially
from the address specifed by <address> If <num> is greater than the size of the <values> list,
the last word in the list is filled at the remaining address locations.

mwr [options] -bin -file <file-name> <address> [num]

Read <num> data values from a binary file and write to active target memory address specified
by <address>. If <num> is not specified, all the data from the file is written sequentially from
the address specifed by <address>.

Options

Option Description
-force Overwrite access protection. By default accesses to reserved

and invalid address ranges are blocked.
-bypass-cache-sync Do not flush/invalidate CPU caches during memory write.

Without this option, debugger flushes/invalidates caches to
make sure caches are in sync.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=347

Option Description
-size <access-size> <access-size> can be one of the values below: b = Bytes

accesses h = Half-word accesses w = Word accesses d =
Double-word accesses Default access size is w. Address will
be aligned to accesss-size before writing to memory, if '-
unaligned-access' option is not used. If target does not
support double-word access, the debugger uses 2 word
accesses. If number of data values to be written is more
than 1, then debugger selects appropriate access size. For
example, 1. mwr -size b 0x0 {0x0 0x13 0x45 0x56} Debugger
writes one word to the memory, combining 4 bytes. 2. mwr -
size b 0x0 {0x0 0x13 0x45} Debugger writes one half-word
and one byte to the memory, combining the 3 bytes. 3. mwr
0x0 {0x0 0x13 0x45} Debugger writes 3 words to the
memory.

-bin Read binary data from a file and write it to target address
space.

-file <file-name> File from which binary data is read to write to target address
space.

-address-space <name> Access specified memory space instead default memory
space of current target. For ARM DAP targets, address
spaces DPR, APR and AP<n> can be used to access DP
Registers, AP Registers and MEM-AP addresses, respectively.
For backwards compatibility -arm-dap and -arm-ap options
can be used as shorthand for "-address-space APR" and "-
address-space AP<n>", respectively. The APR address range
is 0x0 - 0xfffc, where the higher 8 bits select an AP and lower
8 bits are the register address for that AP.

-unaligned-accesses Memory address is not aligned to access size, before
performing a write operation. Support for unaligned
accesses is target architecture dependent. If this option is
not specified, addresses are automatically aligned to access
size.

Note(s)

• Select a APU target to access ARM DAP and MEM-AP address space.

Returns

Nothing, if successful. Error string, if the target memory cannot be written.

Example(s)

mwr 0x0 0x1234

Write 0x1234 to address 0x0.

mwr 0x0 {0x12 0x23 0x34 0x45}

Write 4 words from the list of values to address 0x0.

mwr 0x0 {0x12 0x23 0x34 0x45} 10

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=348

Write 4 words from the list of values to address 0x0 and fill the last word from the list at
remaining 6 address locations.

mwr -size b 0x1 {0x1 0x2 0x3} 3

write 3 bytes from the list at address 0x1.

mwr -size h 0x2 {0x1234 0x5678} 2

write 2 half-words from the list at address 0x2.

mwr -bin -file mem.bin 0 100

Read 100 words from binary file mem.bin and write the data at target address 0x0.

mwr -arm-dap 0x100 0x80000042

Write 0x80000042 to APB-AP CSW on Zynq The higher 8 bits (0x1) select the APB-AP and
lower 8 bits (0x0) is the address of CSW.

mwr -arm-dap 0x04 0xf8000120

Write 0xf8000120 to AHB-AP TAR on Zynq The higher 8 bits (0x0) select the AHB-AP and lower
8 bits (0x4) is the address of TAR.

mwr -arm-ap 1 0x80090088 0x03186003

Write 0x03186003 to address 0x80090088 on DAP APB-AP 0x80090088 corresponds to
DBGDSCR register of Cortex-A9#0, on Zynq AP 1 selects the APB-AP.

mwr -arm-ap 0 0xe000d000 0x80020001

Write 0x80020001 to address 0xe000d000 on DAP AHB-AP 0xe000d000 corresponds to QSPI
device on Zynq AP 0 selects the AHB-AP.

osa
Configure OS awareness for a symbol file.

Syntax

osa -file <file-name> [options]

Configure OS awareness for the symbol file <file-name> specified. If no symbol file is specifed
and only one symbol file exists in target's memory map, then that symbol file is used. If no symbol
file is specifed and multiple symbol files exist in target's memory map, then an error is thrown.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=349

Options

Option Description
-disable Disable OS awareness for a symbol file. If this option is not

specified, OS awareness is enabled.
-fast-exec Enable fast process start. New processes will not be tracked

for debug and are not visible in the debug targets view.
-fast-step Enable fast stepping. Only the current process will be re-

synced after stepping. All other processes will not be re-
synced when this flag is turned on.

Note(s)

• fast-exec and fast-step options are not valid with disable option.

Returns

Nothing, if OSA is configured successfully. Error, if ambiguous options are specified.

Example(s)

osa -file <symbol-file> -fast-step -fast-exec

Enable OSA for <symbole-file> and turn on fast-exec and fast-step modes.

osa -disable -file <symbol-file>

Disable OSA for <symbol-file>.

memmap
Modify Memory Map.

Syntax

memmap <options>

Add/remove a memory map entry for the active target.

Options

Option Description
-addr <memory-address> Address of the memory region that should be added/

removed from the target's memory map.
-size <memory-size> Size of the memory region.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=350

Option Description
-flags <protection-flags> Protection flags for the memory region. <protection-

flags> can be a bitwise OR of the values below: 0x1 = Read
access is allowed 0x2 = Write access is allowed 0x4 =
Instruction fetch access is allowed Default value of
<protection-flags> is 0x3 (Read/Write Access).

-list List the memory regions added to the active target's
memory map.

-clear Specify whether the memory region should be removed
from the target's memory map.

-relocate-section-map <addr> Relocate the address map of the program sections to
<addr>. This option should be used when the code is self-
relocating, so that the debugger can find the debug symbol
info for the code. <addr> is the relative address, to which all
the program sections are relocated.

-osa Enable OS awareness for the symbol file. Fast process start
and fast stepping options are turned off by default. These
options can be enabled using the osa command. See "help
osa" for more details.

-properties <dict> Specify advanced memory map properties.
-meta-data <dict> Specify meta-data of advanced memory map properties.

Note(s)

• Only the memory regions previously added through memmap command can be removed.

Returns

Nothing, while setting the memory map, or list of memory maps when -list option is used.

Example(s)

memmap -addr 0xfc000000 -size 0x1000 -flags 3

Add the memory region 0xfc000000 - 0xfc000fff to target's memory map Read/Write accesses
are allowed to this region.

memmap -addr 0xfc000000 -clear

Remove the previously added memory region at 0xfc000000 from target's memory map.

Target Download FPGA/BINARY
The following is a list of download commands:

• dow

• verify

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=351

• fpga

dow
Download ELF and binary file to target.

Syntax

dow [options] <file>

Download ELF file <file> to active target.

dow -data <file> <addr>

Download binary file <file> to active target address specified by <addr>.

Options

Option Description
-clear Clear uninitialized data (bss).
-keepsym Keep previously downloaded elfs in the list of symbol files.

Default behavior is to clear the old symbol files while
downloading an elf.

-force Overwrite access protection. By default accesses to reserved
and invalid address ranges are blocked.

-bypass-cache-sync Do not flush/invalidate CPU caches during elf download.
Without this option, debugger flushes/invalidates caches to
make sure caches are in sync.

-relocate-section-map <addr> Relocate the address map of the program sections to
<addr>. This option should be used when the code is self-
relocating, so that the debugger can find debug symbol info
for the code. <addr> is the relative address, to which all the
program sections are relocated.

-vaddr Use vaddr from the elf program headers while downloading
the elf. This option is valid only for elf files.

Returns

Nothing.

verify
Verify if ELF/binary file is downloaded correctly to target.

Syntax

verify [options] <file>

Verify if the ELF file <file> is downloaded correctly to active target.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 352Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=352

verify -data <file> <addr>

Verify if the binary file <file> is downloaded correctly to active target address specified by
<addr>.

Options

Option Description
-force Overwrite access protection. By default accesses to reserved

and invalid address ranges are blocked.
-vaddr Use vaddr from the elf program headers while verifying the

elf data. This option is valid only for elf files.

Returns

Nothing, if successful. Error string, if the memory address cannot be accessed or if there is a
mismatch.

fpga
Configure FPGA.

Syntax

fpga <bitstream-file>

Configure FPGA with given bitstream.

fpga [options]

Configure FPGA with bitstream specified options, or read FPGA state.

Options

Option Description
-file <bitstream-file> Specify file containing bitstream.
-partial Configure FPGA without first clearing current configuration.

This options should be used while configuring partial
bitstreams created before 2014.3 or any partial bitstreams
in binary format.

-no-revision-check Disable bitstream vs silicon revision revision compatibility
check.

-skip-compatibility-check Disable bitstream vs FPGA device compatibility check.
-state Return whether the FPGA is configured.
-config-status Return configuration status.
-ir-status Return IR capture status.
-boot-status Return boot history status.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 353Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=353

Option Description
-timer-status Return watchdog timer status.
-cor0-status Return configuration option 0 status.
-cor1-status Return configuration option 1 status.
-wbstar-status Return warm boot start address status.

Note(s)

• If no target is selected or if the current target is not a supported FPGA device, and only one
supported FPGA device is found in the targets list, then this device will be configured.

Returns

Depends on options used.

-file, -partial: Nothing, if fpga is configured, or an error if the configuration failed.

One of the other options Configutation value.

Target Reset
The following is a list of reset commands:

• rst

rst
Target Reset.

Syntax

rst [options]

Reset the active target.

Options

Option Description
-processor Reset the active processor target.
-cores Reset the active processor group. This reset type is

supported only on Zynq. A processor group is defined as a
set of processors and on-chip peripherals like OCM.

-system Reset the active System.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=354

Option Description
-srst Generate system reset for active target. With JTAG this is

done by generating a pulse on the SRST pin on the JTAG
cable assocated with the active target.

-por Generate power on reset for active target. With JTAG this is
done by generating a pulse on the POR pin on the JTAG
cable assocated with the active target.

-ps Generate PS only reset on Zynq MP. This is supported only
through MicroBlaze PMU target.

Returns

Nothing, if reset if successful. Error string, if reset is unsupported.

Target Breakpoints/Watchpoints
The following is a list of breakpoints commands:

• bpadd

• bpremove

• bpenable

• bpdisable

• bplist

• bpstatus

bpadd
Set a Breakpoint/Watchpoint.

Syntax

bpadd <options>

Set a software or hardware breakpoint at address, function or <file>:<line>, or set a read/
write watchpoint, or set a cross-trigger breakpoint.

Options

Option Description
-addr <breakpoint-address> Specify the address at which the Breakpoint should be set.
-file <file-name> Specify the <file-name> in which the Breakpoint should be

set.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 355Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=355

Option Description
-line <line-number> Specify the <line-number> within the file, where

Breakpoint should be set.
-type <breakpoint-type> Specify the Breakpoint type <breakpoint-type> can be

one of the values below: auto = Auto - Breakpoint type is
chosen by the hw_server/TCF agent. This is the default type
hw = Hardware Breakpoint sw = Software Breakpoint

-mode <breakpoint-mode> Specify the access mode that will trigger the breakpoint.
<breakpoint-mode> can be a bitwise OR of the values
below: 0x1 = Triggered by a read from the breakpoint
location 0x2 = Triggered by a write to the breakpoint
location 0x4 = Triggered by an instruction execution at the
breakpoint location This is the default for Line and Address
breakpoints 0x8 = Triggered by a data change (not an
explicit write) at the breakpoint location

-enable <mode> Specify initial enablement state of breakpoint. When
<mode> is 0 the breakpoint is disabled, otherwise the
breakpoint is enabled. The default is enabled.

-ct-input <list> -ct-output <list> Specify input and output cross triggers. <list> is a list of
numbers identifying the cross trigger pin. For Zynq 0-7 is
CTI for core 0, 8-15 is CTI for core 1, 16-23 is CTI ETB and
TPIU, and 24-31 is CTI for FTM.

-skip-on-step <value> Specify the trigger behaviour on stepping. This option is
only applicable for cross trigger breakpoints and when
DBGACK is used as breakpoint input. 0 = trigger every time
core is stopped (default). 1 = supress trigger on stepping
over a code breakpoint. 2 = supress trigger on any kind of
stepping.

-properties <dict> Specify advanced breakpoint properties.
-meta-data <dict> Specify meta-data of advanced breakpoint properties.
-target-id <id> Specify a target id for which the breakpoint should be set. A

breakpoint can be set for all the targets by specifying the
<id> as "all". If this option is not used, then the breakpoint
is set for the active target selected through targets
command. If there is no active target, then the breakpoint is
set for all targets.

Note(s)

• Breakpoints can be set in XSDB before connecting to the hw_server/TCF agent. If there is an
active target when a Breakpoint is set, the Breakpoint will be enabled only for that active
target. If there is no active target, the Breakpoint will be enabled for all the targets. target-id
option can be used to set a breakpoint for a specific target, or all targets. An address
breakpoint or a file:line breakpoint can also be set without the options -addr, -file or -line. For
address breakpoints, specify the address as an argument, after all other options. For file:line
breakpoints, specify the file name and line number in the format <file>:<line>, as an
argument, after all other options.

Returns

Breakpoint id or an error if invalid target id is specified.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=356

Example(s)

bpadd -addr 0x100000

Set a Breakpoint at address 0x100000. Breakpoint type is chosen by the hw_server/TCF agent.

bpadd -addr &main

Set a function Breakpoint at main. Breakpoint type is chosen by the hw_server/TCF agent.

bpadd -file test.c -line 23 -type hw

Set a Hardware Breakpoint at test.c:23.

bpadd -target-id all 0x100

Set a breakpoint for all targets, at address 0x100.

bpadd -target-id 2 test.c:23

Set a breakpoint for target 2, at line 23 in test.c.

bpadd -addr &fooVar -type hw -mode 0x3

Set a Read_Write Watchpoint on variable fooVar.

bpadd -ct-input 0 -ct-output 8

Set a cross trigger to stop Zynq core 1 when core 0 stops.

bpremove
Remove Breakpoints/Watchpoints.

Syntax

bpremove <id-list> | -all

Remove the Breakpoints/Watchpoints specified by <id-list> or remove all the breakpoints
when \"-all\" option is used.

Options

Option Description
-all Remove all breakpoints.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=357

Returns

Nothing, if the breakpoint is removed successfully. Error string, if the breakpoint specified by
<id> is not set.

Example(s)

bpremove 0

Remove Breakpoint 0.

bpremove 1 2

Remove Breakpoints 1 and 2.

bpremove -all

Remove all Breakpoints.

bpenable
Enable Breakpoints/Watchpoints.

Syntax

bpenable <id-list> | -all

Enable the Breakpoints/Watchpoints specified by <id-list> or enable all the breakpoints
when \"-all\" option is used.

Options

Option Description
-all Enable all breakpoints.

Returns

Nothing, if the breakpoint is enabled successfully. Error string, if the breakpoint specified by
<id> is not set.

Example(s)

bpenable 0

Enable Breakpoint 0.

bpenable 1 2

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=358

Enable Breakpoints 1 and 2.

bpenable -all

Enable all Breakpoints.

bpdisable
Disable Breakpoints/Watchpoints.

Syntax

bpdisable <id-list> | -all

Disable the Breakpoints/Watchpoints specified by <id-list> or disable all the breakpoints
when \"-all\" option is used.

Options

Option Description
-all Disable all breakpoints.

Returns

Nothing, if the breakpoint is disabled successfully. Error string, if the breakpoint specified by
<id> is not set.

Example(s)

bpdisable 0

Disable Breakpoint 0.

bpdisable 1 2

Disable Breakpoints 1 and 2.

bpdisable -all

Disable all Breakpoints.

bplist
List Breakpoints/Watchpoints.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 359Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=359

Syntax

bplist

List all the Beakpoints/Watchpoints along with brief status for each Breakpoint and the target on
which it is set.

Returns

List of breakpoints.

bpstatus
Print Breakpoint/Watchpoint status.

Syntax

bpstatus <id>

Print the status of a Breakpoint/Watchpoint specified by <id>. Status includes the target
information for which the Breakpoint is active and also Breakpoint hitcount or error message.

Options

None

Returns

Breakpoint status, if the breakpoint exists. Error string, if the breakpoint specified by <id> is not
set.

JTAG UART
The following is a list of streams commands:

• jtagterminal

• readjtaguart

jtagterminal
Start/Stop Jtag based hyper-terminal.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 360Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=360

Syntax

jtagterminal [options]

Start/Stop a Jtag based hyper-terminal to communicate with ARM DCC or MDM UART interface.

Options

Option Description
-start Start the Jtag Uart terminal. This is the default option.
-stop Stop the Jtag Uart terminal.
-socket Return the socket port number, instead of starting the

terminal. External terminal programs can be used to
connect to this port.

Note(s)

• Select a MDM or ARM/MicroBlaze processor target before runnning this command.

Returns

Socket port number.

readjtaguart
Start/Stop reading from Jtag Uart.

Syntax

readjtaguart [options]

Start/Stop reading from the ARM DCC or MDM Uart Tx interface. Jtag Uart output can be
printed on stdout or redirected to a file.

Options

Option Description
-start Start reading the Jtag Uart output.
-stop Stop reading the Jtag Uart output.
-handle <file-handle> Specify the file handle to which the data should be

redirected. If no file handle is given, data is printed on
stdout.

Note(s)

• Select a MDM or ARM/MicroBlaze processor target before runnning this command.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 361Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=361

• While running a script in non-interactive mode, output from Jtag uart may not be written to
the log, until "readjtaguart -stop" is used.

Returns

Nothing, if successful. Error string, if data cannot be read from the Jtag Uart.

Example(s)

readjtaguart

Start reading from the Jtag Uart and print the output on stdout. set fp [open test.log w];
readjtaguart -start -handle $fp Start reading from the Jtag Uart and print the output to test.log.

readjtaguart -stop

Stop reading from the Jtag Uart.

Miscellaneous
The following is a list of miscellaneous commands:

• loadhw

• unloadhw

• mdm_drwr

• mb_drwr

• mdm_drrd

• mb_drrd

• configparams

• version

• xsdbserver start

• xsdbserver stop

• xsdbserver disconnect

• xsdbserver version

loadhw
Load a Vivado HW design.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=362

Syntax

loadhw [options]

Load a Vivado HW design, and set the memory map for the current target. If the current target is
a parent for a group of processors, memory map is set for all its child processors. If current target
is a processor, memory map is set for all the child processors of it's parent. This command returns
the HW design object.

Options

Option Description
-hw HW design file.
-list Return a list of open designs for the targets.
-mem-ranges [list {start1 end1} {start2 end2}] List of memory ranges from which the memory map should

be set. Memory map is not set for the addresses outside
these ranges. If this option is not specified, then memory
map is set for all the addresses in the hardware design.

Returns

Design object, if the HW design is loaded and memory map is set successfully. Error string, if the
HW design cannot be opened.

Example(s)

targets -filter {name =~ "APU"}; loadhw design.hdf Load the HW design named design.hdf and set
memory map for all the child processors of APU target. targets -filter {name =~ "xc7z045"};
loadhw design.hdf Load the HW design named design.hdf and set memory map for all the child
processors for which xc7z045 is the parent.

unloadhw
Unload a Vivado HW design.

Syntax

unloadhw

Close the Vivado HW design which was opened during loadhw command, and clear the memory
map for the current target. If the current target is a parent for a group of processors, memory
map is cleared for all its child processors. If the current target is a processor, memory map is
cleared for all the child processors of it's parent. This command does not clear memory map
explicitly set by users.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 363Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=363

Returns

Nothing.

mdm_drwr
Write to MDM Debug Register.

Syntax

mdm_drwr [options] <cmd> <data> <bitlen>

Write to MDM Debug Register. cmd is 8-bit MDM command to access a Debug Register. data is
the register value and bitlen is the register width.

Options

Option Description
-target-id <id> Specify a target id representing MicroBlaze Debug Module

or MicroBlaze instance to access. If this option is not used
and

-user is not specified, then the current
target is used.

-user <bscan number> Specify user bscan port number.

Returns

Nothing, if successful.

Example(s)

mdm_drwr 8 0x40 8

Write to MDM Break/Reset Control Reg.

mb_drwr
Write to MicroBlaze Debug Register.

Syntax

mb_drwr [options] <cmd> <data> <bitlen>

Write to MicroBlaze Debug Register available on MDM. cmd is 8-bit MDM command to access a
Debug Register. data is the register value and bitlen is the register width.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 364Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=364

Options

Option Description
-target-id <id> Specify a target id representing MicroBlaze instance to

access. If this option is not used and -user is not specified,
then the current target is used.

-user <bscan number> Specify user bscan port number.
-which <instance> Specify MicroBlaze instance number.

Returns

Nothing, if successful.

Example(s)

mb_drwr 1 0x282 10

Write to MB Control Reg.

mdm_drrd
Read from MDM Debug Register.

Syntax

mdm_drrd [options] <cmd> <bitlen>

Read a MDM Debug Register. cmd is 8-bit MDM command to access a Debug Register and bitlen
is the register width. Returns hex register value.

Options

Option Description
-target-id <id> Specify a target id representing MicroBlaze Debug Module

or MicroBlaze instance to access. If this option is not used
and

-user is not specified, then the current
target is used.

-user <bscan number> Specify user bscan port number.

Returns

Register value, if successful.

Example(s)

mdm_drrd 0 32

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=365

Read XMDC ID Reg.

mb_drrd
Read from MicroBlaze Debug Register.

Syntax

mb_drrd [options] <cmd> <bitlen>

Read a MicroBlaze Debug Register available on MDM. cmd is 8-bit MDM command to access a
Debug Register. bitlen is the register width. Returns hex register value.

Options

Option Description
-target-id <id> Specify a target id representing MicroBlaze instance to

access. If this option is not used and -user is not specified,
then the current target is used.

-user <bscan number> Specify user bscan port number.
-which <instance> Specify MicroBlaze instance number.

Returns

Register value, if successful.

Example(s)

mb_drrd 3 28

Read MB Status Reg.

configparams
List, get or set configuration parameters.

Syntax

configparams <options>

List name and description for available configuration parameters. Configuration parameters can
be global or connection specific, therefore the list of available configuration parameters and their
value may change depending on current connection.

configparams <options> <name>

Get configuration parameter value(s).

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=366

configparams <options> <name> <value>

Set configuration parameter value.

Options

Option Description
-all Include values for all contexts in result.
-context [context] Specify context of value to get or set. The default context is

"" which represet the global default. Not all options support
context specific values.

-target-id <id> Specify target id or value to get or set. This is an alternative
to the -context option.

Returns

Depends on the arguments specified.

<none>: List of parameters and description of each parameter.

<parameter name>: Parameter value or error, if unsupported parameter is specified.

<parameter name> <parameter value>: Nothing if the value is set, or error, if
unsupported parameter is specified.

Example(s)

configparams force-mem-accesses 1

Disable access protection for dow, mrd, and mwr commands.

configparams vitis-launch-timeout 100

Change the Vitis launch timeout to 100 seconds, used for running Vitis batch mode commands.

version
Get Vitis or TCF server version.

Syntax

version [options]

Get Vitis or TCF server version. When no option is specified, Vitis build version is returned.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 367Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=367

Options

Option Description
-server Get the TCF server build version, for the active connection.

Returns

Vitis or TCF Server version, on success. Error string, if server version is requested when there is
no connection.

xsdbserver start
Start XSDB command server.

Syntax

xsdbserver start [options]

Start XSDB command server listener. XSDB command server allows external processes to
connect to XSDB to evaluate commands. The XSDB server reads commands from the connected
socket one line at the time. After evaluation, a line is sent back starting with 'okay' or 'error'
followed by the result or error as a backslash quoted string.

Options

Option Description
-host <addr> Limits the network interface on which to listen for

incomming connections.
-port <port> Specifies port to listen on. If this option is not specified or if

the port is zero then a dynamically allocated port number is
used.

Returns

Server details are disaplayed on the console if server is started. successfully, or error string, if a
server has been already started.

Example(s)

xsdbserver start

Start XSDB server listener using dynamically allocated port.

xsdbserver start -host localhost -port 2000

Start XSDB server listener using port 2000 and only allow incomming connections on this host.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=368

xsdbserver stop
Stop XSDB command server.

Syntax

xsdbserver stop

Stop XSDB command server listener and disconnect connected client if any.

Returns

Nothing, if the server is closed successfully. Error string, if the server has not been started
already.

xsdbserver disconnect
Disconnect active XSDB server connection.

Syntax

xsdbserver disconnect

Disconnect current XSDB server connection.

Returns

Nothing, if the connection is closed. Error string, if there is no active connection.

xsdbserver version
Return XSDB command server version

Syntax

xsdbserver version

Return XSDB command server protocol version.

Returns

Server version if there is an active connection. Error string, if there is no active connection.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=369

JTAG Access
The following is a list of jtag commands:

• jtag targets

• jtag sequence

• jtag device_properties

• jtag lock

• jtag unlock

• jtag claim

• jtag disclaim

• jtag frequency

• jtag skew

• jtag servers

jtag targets
List JTAG targets or switch between JTAG targets.

Syntax

jtag targets

List available JTAG targets.

jtag targets <target id>

Select <target id> as active JTAG target.

Options

Option Description
-set Set current target to entry single entry in list. This is useful

in comibination with -filter option. An error will be generate
if list is empty or contains more than one entry.

-regexp Use regexp for filter matching.
-nocase Use case insensitive filter matching.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=370

Option Description
-filter <filter-expression> Specify filter expression to control which targets are

included in list based on its properties. Filter expressions
are similar to Tcl expr syntax. Target properties are
references by name, while Tcl variables are accessed using
the $ syntax, string must be quoted. Operators ==, !=, <=,
>=, <, >, && and || are supported as well as (). There
operators behave like Tcl expr operators. String matching
operator =~ and !~ match lhs string with rhs pattern using
either regexp or string match.

-target-properties Returns a Tcl list of dictionaries containing target properties.
-open Open all targets in list. List can be shorted by specifying

target-ids and using filters.
-close Close all targets in list. List can be shorted by specifying

target-ids and using filters.
-timeout <sec> Poll until the targets specified by filter option are found on

the scan chain, or until timeout. This option is valid only with
filter option. The timeout value is in seconds. Default
timeout is 3 seconds.

Returns

The return value depends on the options used.

<none>: Jtag targets list when no options are used.

-filter: Filtered jtag targets list.

-target-properties: Tcl list consisting of jtag target properties.

An error is returned when jtag target selection fails.

Example(s)

jtag targets

List all targets.

jtag targets -filter {name == "arm_dap"}

List targets with name "arm_dap".

jtag targets 2

Set target with id 2 as the current target.

jtag targets -set -filter {name =~ "arm*"}

Set current target to target with name starting with "arm".

jtag targets -set -filter {level == 0}

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 371Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=371

List Jtag cables.

jtag sequence
Create JTAG sequence object.

Syntax

jtag sequence

Create JTAG sequence object. DESCRIPTION The jtag sequence command creates a new
sequence object. After creation the sequence is empty. The following sequence object
commands are available:

sequence state new-state [count]

Move JTAG state machine to <new-state> and then generate <count> JTAG clocks. If
<clock> is given and <new-state> is not a looping state (RESET, IDLE, IRSHIFT, IRPAUSE,
DRSHIFT or DRPAUSE) then state machine will move towards RESET state.

sequence irshift [options] [bits [data]]

sequence drshift [options] bits [data] Shift data in IRSHIFT or DRSHIFT state. Data is either given
as the last argument or if -tdi option is given then data will be all zeros or all ones depending on
the argument given to -tdi. The <bits> and <data> arguments are not used for irshift when the
-register option is specified. Available options: -register <name> Select instruction register by
name. This option is only supported for irshift. -tdi <value> TDI value to use for all clocks in
SHIFT state. -binary Format of <data> is binary, for example data from a file or from binary
format. -integer Format of <data> is an integer. The least significant bit of data is shifted first. -
bits Format of <data> is a binary text string. The first bit in the string is shifted first. -hex Format
of <data> is a hexadecimal text string. The least significant bit of the first byte in the string is
shifted first. -capture Cature TDO data during shift and return from sequence run command. -
state <new-state> State to enter after shift is complete. The default is RESET.

sequence delay usec

Generate delay between sequence commands. No JTAG clocks will be generated during the
delay. The delay is guaranteed to be at least <usec> microseconds, but can be longer for cables
that do not support delays without generating JTAG clocks.

sequence get_pin pin

Get value of <pin>. Supported pins is cable specific.

sequence set_pin pin value

Set value of <pin> to <value>. Supported pins is cable specific.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 372Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=372

sequence atomic enable

Set or clear atomic sequences. This is useful to creating sequences that are guaranteed to run
with precise timing or fail. Atomic sequences should be as short as possible to minimize the risk
of failure.

sequence run [options]

Run JTAG operations in sequence for the currently selected jtag target. This command will return
the result from shift commands using -capture option and from get_pin commands. Available
options: -binary Format return value(s) as binary. The first bit shifted out is the least significant bit
in the first byte returned. -integer Format return values(s) as integer. The first bit shifted out is
the least significant bit of the integer. -bits Format return value(s) as binary text string. The first
bit shifted out is the first character in the string. -hex Format return value(s) as hexadecimal text
string. The first bit shifted out is the least significant bit of the first byte of the in the string. -
single Combine all return values as a single piece of data. Without this option the return value is
a list with one entry for every shift with -capture and every get_pin.

sequence clear

Remove all commands from sequence.

sequence delete

Delete sequence.

Returns

Jtag sequence object.

Example(s)

set seqname [jtag sequence] $seqname state RESET $seqname drshift -capture -tdi 0 256 set
result [$seqname run] $seqname delete

jtag device_properties
Get/set device properties.

Syntax

jtag device_properties idcode

Get JTAG device properties associated with <idcode>.

jtag device_properties key value ...

Set JTAG device properties.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 373Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=373

Returns

Jtag device properties for the given idcode, or nothing, if the idcode is unknown.

Example(s)

jtag device_properties 0x4ba00477

Return Tcl dict containing device properties for idcode 0x4ba00477.

jtag device_properties {idcode 0x4ba00477 mask 0xffffffff name dap irlen 4}

Set device properties for idcode 0x4ba00477.

jtag lock
Lock JTAG scan chain.

Syntax

jtag lock [timeout]

Lock JTAG scan chain containing current JTAG target. DESCRIPTION Wait for scan chain lock to
be available and then lock it. If <timeout> is specified the wait time is limited to <timeout>
milliseconds. The JTAG lock prevents other clients from performing any JTAG shifts or state
changes on the scan chain. Other scan chains can be used in parallel. The jtag run_sequence
command will ensure that all commands in the sequence are performed in order so the use of
jtag lock is only needed when multiple jtag run_sequence commands needs to be done without
interruption.

Note(s)

• A client should avoid locking more than one scan chain since this can cause dead-lock.

Returns

Nothing.

jtag unlock
Unlock JTAG scan chain.

Syntax

jtag unlock

Unlock JTAG scan chain containing current JTAG target.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 374Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=374

Returns

Nothing.

jtag claim
Claim JTAG device.

Syntax

jtag claim <mask>

Set claim mask for current JTAG device. DESCRIPTION This command will attept to set the claim
mask for the current JTAG device. If any set bits in <mask> are already set in the

claim mask then this command will return error "already claimed".

The claim mask allow clients to negotiate control over JTAG devices. This is different from jtag
lock in that 1) it is specific to a device in the scan chain, and 2) any clients can perform JTAG
operations while the claim is in effect.

Note(s)

• Currently claim is used to disable the hw_server debugger from controlling microprocessors
on ARM DAP devices and FPGA devices containing Microblaze processors.

Returns

Nothing.

jtag disclaim
Disclaim JTAG device.

Syntax

jtag disclaim <mask>

Clear claim mask for current JTAG device.

Returns

Nothing.

jtag frequency
Get/set JTAG frequency.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 375Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=375

Syntax

jtag frequency

Get JTAG clock frequency for current scan chain.

jtag frequency -list

Get list of supported JTAG clock frequencies for current scan chain.

jtag frequency <frequency>

Set JTAG clock frequency for current scan chain. This frequency is persistent as long as the
hw_server is running, and is reset to the default value when a new hw_server is started.

Returns

Current Jtag frequency, if no arguments are specified, or if Jtag frequency is successfully set.
Supported Jtag frequencies, if -list option is used. Error string, if invalid frequency is specified or
frequency cannot be set.

jtag skew
Get/set JTAG skew.

Syntax

jtag skew

Get JTAG clock skew for current scan chain.

jtag skew <clock-skew>

Set JTAG clock skew for current scan chain.

Note(s)

• Clock skew property is not supported by some Jtag cables.

Returns

Current Jtag clock skew, if no arguments are specified, or if Jtag skew is successfully set. Error
string, if invalid skew is specified or skew cannot be set.

jtag servers
List, open or close JTAG servers.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 376Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=376

Syntax

jtag servers [options]

List, open, and close JTAG servers. JTAG servers are use to implement support for different types
of JTAG cables. An open JTAG server will enumberate or connect to available JTAG ports.

Options

Option Description
-list List opened servers. This is the default if no other option is

given.
-format List format of supported server strings.
-open <server> Specifies server to open.
-close <server> Specifies server to close.

Returns

Depends on the options specified

<none>, -list: List of open Jtag servers.

-format: List of supported Jtag servers.

-close: Nothing if the server is closed, or an error string, if invalid server is specified.

Example(s)

jtag servers

List opened servers and number of associated ports.

jtag servers -open xilinx-xvc:localhost:10200

Connect to XVC server on host localhost port 10200

jtag servers -close xilinx-xvc:localhost:10200

Close XVC server for host localhost port 10200

Target File System
The following is a list of tfile commands:

• tfile open

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 377Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=377

• tfile close

• tfile read

• tfile write

• tfile stat

• tfile lstat

• tfile fstat

• tfile setstat

• tfile fsetstat

• tfile remove

• tfile rmdir

• tfile mkdir

• tfile realpath

• tfile rename

• tfile readlink

• tfile symlink

• tfile opendir

• tfile readdir

• tfile copy

• tfile user

• tfile roots

• tfile ls

tfile open
Open file

Syntax

tfile open <path>

Open specified file

Returns

File handle

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=378

tfile close
Close file handle

Syntax

tfile close <handle>

Close specified file handle

Returns

tfile read
Read file handle

Syntax

tfile read <handle>

Read from specified file handle

Options

Option Description
-offset <seek> File offset to read from

Returns

Read data

tfile write
Write file handle

Syntax

tfile write <handle>

Write to specified file handle

Options

Option Description
-offset <seek> File offset to write to

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 379Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=379

Returns

tfile stat
Get file attributes from path

Syntax

tfile stat <handle>

Get file attributes for <path>

Returns

File attributes

tfile lstat
Get link file attributes from path

Syntax

tfile lstat <path>

Get link file attributes for <path>

Returns

Link file attributes

tfile fstat
Get file attributes from handle

Syntax

tfile fstat <handle>

Get file attributes for <handle>

Returns

File attributes

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=380

tfile setstat
Set file attributes for path

Syntax

tfile setstat <path> <attributes>

Set file attributes for <path>

Returns

File attributes

tfile fsetstat
Set file attributes for handle

Syntax

tfile fsetstat <handle> <attributes>

Set file attributes for <handle>

Returns

File attributes

tfile remove
Remove path

Syntax

tfile remove <path>

Remove <path>

Returns

tfile rmdir
Remove directory

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=381

Syntax

tfile rmdir <path>

Remove directory <path>

Returns

tfile mkdir
Create directory

Syntax

tfile mkdir <path>

Make directory <path>

Returns

tfile realpath
Get real path

Syntax

tfile realpath <path>

Get real path of <path>

Returns

Real path

tfile rename
Rename path

Syntax

tfile rename <old path> <new path>

Rename file or directory

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=382

Returns

tfile readlink
Read symbolic link

Syntax

tfile readlink <path>

Read link file

Returns

Target path

tfile symlink
Create symbolic link

Syntax

tfile symlink <old path> <new path>

Symlink file or directory

Returns

tfile opendir
Open directory

Syntax

tfile opendir <path>

Open directory <path>

Returns

File handle

tfile readdir
Read directory

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=383

Syntax

tfile readdir <file handle>

Read directory

Returns

File handle

tfile copy
Copy target file

Syntax

tfile copy <src> <dest>

Copy file <src> to <dest>

Returns

Copy file locally on target

tfile user
Get user attributes

Syntax

tfile user

Get user attributes

Returns

User information

tfile roots
Get file system roots

Syntax

tfile roots

Get file system roots

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=384

Returns

List of file system roots

tfile ls
List directory contents

Syntax

tfile ls <path>

List directory content

Returns

Directory content

SVF Operations
The following is a list of svf commands:

• svf config

• svf generate

• svf mwr

• svf dow

• svf stop

• svf con

• svf delay

svf config
Configure options for SVF file

Syntax

svf config [options]

Configure and generate SVF file.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 385Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=385

Options

Option Description
-scan-chain <list of idcode-irlength pairs> List of idcode-irlength pairs. This can be obtained from xsdb

command - jtag targets
-device-index <index> This is used to select device in the jtag scan chain.
-cpu-index <processor core> Specify the cpu-index to generate the SVF file. For A53#0 -

A53#3 on ZynqMP, use cpu-index 0 -3 For R5#0 - R5#1 on
ZynqMP, use cpu-index 4 -5 For A9#0 - A9#1 on Zynq, use
cpu-index 0 -1 If multiple MicroBlaze processors are
connected to MDM, select the specific MicroBlaze index for
execution.

-out <filename> Output SVF file.
-delay <tcks> Delay in ticks between AP writes.
-linkdap Generate SVF for linking DAP to the jtag chain for ZynqMP

Silicon versions 2.0 and above.
-bscan <user port> This is used to specify user bscan port to which MDM is

connected.
-mb-chunksize <size in bytes> This used to specify the chunk size in bytes for each

transaction while downloading. Supported only for
Microblaze processors.

Returns

Nothing

Example(s)

svf config -scan-chain {0x14738093 12 0x5ba00477 4} -device-index 1 -cpu-
index 0 -out "test.svf"

This creates a SVF file with name test.svf for core A53#0

svf config -scan-chain {0x14738093 12 0x5ba00477 4} -device-index 0 -bscan
pmu -cpu-index 0 -out "test.svf"

This creates a SVF file with name test.svf for PMU MB

svf config -scan-chain {0x23651093 6} -device-index 0 -cpu-index 0 -bscan
user1 -out "test.svf"

This creates a SVF file with name test.svf for MB connected to MDM on bscan USER1

svf generate
Generate recorded SVF file

Syntax

svf generate

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 386Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=386

Generate SVF file in the path specified in the config command.

Options

None

Returns

If successful, this command returns nothing. Otherwise it returns an error.

Example(s)

svf generate

svf mwr
Record memory write to SVF file

Syntax

svf mwr <address> <value>

Write <value> to the memory address specified by <address>.

Options

None

Returns

If successful, this command returns nothing. Otherwise it returns an error.

Example(s)

svf mwr 0xffff0000 0x14000000

svf dow
Record elf download to SVF file

Syntax

svf dow <elf file>

Record downloading of elf file <elf file> to the memory.

svf dow -data <file> <addr>

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=387

Record downloading of binary file <file> to the memory.

Options

None

Returns

If successful, this command returns nothing. Otherwise it returns an error.

Example(s)

svf dow "fsbl.elf"

Record downloading of elf file fsbl.elf.

svf dow -data "data.bin" 0x1000

Record downloading of binary file data.bin to the address 0x1000.

svf stop
Record stopping of core to SVF file

Syntax

svf stop

Record suspending execution of current target to SVF file.

Options

None

Returns

Nothing

Example(s)

svf stop

svf con
Record resuming of core to SVF file

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 388Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=388

Syntax

svf con

Record resuming the execution of active target to SVF file.

Options

None

Returns

Nothing

Example(s)

svf con

svf delay
Record delay in tcks to SVF file

Syntax

svf delay <delay in tcks>

Record delay in tcks to SVF file.

Options

None

Returns

Nothing

Example(s)

svf delay 1000

Delay of 1000 tcks is added to the SVF file.

Device Configuration System
The following is a list of device commands:

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=389

• device program

• device status

device program
Program PDI/BIT

Syntax

device program <file>

Program PDI or BIT file into device device.

Note: If no target is selected or if the current target is not a configurable device, and only one supported
device is found in the targets list, then this device will be configured. Otherwise, users will have to select a
device using targets command.

Returns

Nothing, if device is configured, or an error if the configuration failed.

device status
Return JTAG Register Status

Syntax

device status <options> <jtag-register-name>

Return device JTAG Register status or list of available registers if no name is given

Options

Option Description
-jreg-name <jtag-register-name> Specify jtag register name to read. This is the default option,

so register name can be directly specified as an argument
without using this option.

-hex Format the return data in hexadecimal.

Returns

Status report

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=390

Vitis Projects
The following is a list of projects commands:

• getaddrmap

• getperipherals

• repo

• platform

• domain

• bsp

• library

• setws

• getws

• app

• sysproj

• importprojects

• importsources

• toolchain

getaddrmap
Get the address ranges of IP connected to processor.

Syntax

getaddrmap <hw spec file> <processor-instance>

Return the address ranges of all the IP connected to the processor in a tabular format, along with
details like size and access flags of all IP.

Options

None

Returns

If successful, this command returns the output of IPs and ranges. Otherwise it returns an error.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 391Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=391

Example(s)

getaddrmap system.xsa ps7_cortexa9_0

Return the address map of peripherals connected to ps7_cortexa9_0. system.xsa is the hw
specification file exported from Vivado.

getperipherals
Get a list of all peripherals in the HW design

Syntax

getperipherals <xsa> <processor-instance>

Return the list of all the peripherals in the hardware design, along with version and type. If
[processor-instance] is specified, return only a list of slave peripherals connected to that
processor.

Options

None

Returns

If successful, this command returns the list of peripherals. Otherwise it returns an error.

Example(s)

getperipherals system.xsa

Return a list of peripherals in the hardware design.

getperipherals system.xsa ps7_cortexa9_0

Return a list of peripherals connected to processor ps7_cortexa9_0 in the hardware design.

repo
Get, set, or modify software repositories

Syntax

repo [OPTIONS]

Get/set the software repositories path currently used. This command is used to scan the
repositories, to get the list of OS/libs/drivers/apps from repository.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=392

Options

Option Description
-set <path-list> Set the repository path and load all the software cores

available. Multiple repository paths can be specified as Tcl
list.

-get Get the repository path(s).
-scan Scan the repositories. Used this option to scan the

repositories, when some changes are done.
-os Return a list of all the OS from the repositories.
-libs Return a list of all the libs from the repositories.
-drivers Return a list of all the drivers from the repositories.
-apps Return a list of all the applications from the repositories.
-add-platforms <platform-name> Add the platform specified by <platform-name> to the

repository.

Returns

Depends on the OPTIONS specified.

-scan, -set: Returns nothing.

-get: Returns the current repository path.

-os, -libs, -drivers, -apps: Returns the list of OS/libs/drivers/apps respectively.

Example(s)

repo -set <repo-path>

Set the repository path to the path specified by <repo-path>.

repo -os

Return a list of OS from the repo.

repo -libs

Return a list of libraries from the repo.

platform
Create, configure, list, and report platforms

Syntax

platform <sub-command> [options]

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=393

Create a platform project, or perform various other operations on the platform project, based on
<sub-command> specified. Following sub-commands are supported. active - Set or return the
active platform. clean - Clean platform. config - Configure the properties of a platform. create -
Create/define a platform. fsbl - Specify extra compiler/linker flags for fsbl. generate - Build the
platform. list - List all the platforms in workspace. pmufw - Specify extra compiler/linker flags for
pmufw. report - Report the details of a platform. read - Read the platform settings from a file.
remove - Delete the platform. write - Save the platform settings to a file. Type "help" followed by
"platform sub-command", or "platform sub-command" followed by "-help" for more details.

Options

Depends on the sub-command. Refer to sub-command help for details.

Returns

Depends on the sub-command. Refer to sub-command help for details.

Example(s)

Refer to sub-command help for details.

platform active

Set/Get active platform

Syntax

platform active [platform-name]

Set or get the active platform. If platform-name is specified, it is made as active platform,
otherwise the name of active platform is returned. If no active platform exists, this command
returns an empty string.

Options

None

Returns

Empty string, if a platform is set as active or no active platform exists. Platform name, when
active platform is read.

Example(s)

platform active

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 394Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=394

Return the name of the active platform.

platform active zc702_platform

Set zc702_platform as active platform.

platform clean

Clean Platform

Syntax

platform clean

Clean the active platform in the workspace. This will clean all the components in platform like
fsbl, pmufw etc.

Options

None

Returns

Nothing. Build log will be printed on the console.

Example(s)

platform active zcu102

platform clean

Set zcu102 as active platform and clean it.

platform config

Configure the active platform

Syntax

platform config [options]

Configure the properties of active platform.

Options

Option Description
-desc <description> Add a Brief description about the platform.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 395Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=395

Option Description
-updatehw <hw-spec> Update the platform to use a new hardware specification

file specified by <hw-spec>.

-samples <samples-dir> Make the application template specified in <samples-dir>,
part of the platform. This option can only be used for
acceleratable application. "repo -apps <platform-name>"
can be used to list the application templates available for
the given platform-name.

-make-local Make the referenced SW components local to the platform.
-fsbl-target <processor-type> Processor-type for which the existing fsbl has to be re-

generated. This option is valid only for ZU+.
-create-boot-bsp Generate boot components for the platform.
-remove-boot-bsp Remove all the boot components generated during

platform creation.
-fsbl-elf <fsbl.elf> Prebuilt fsbl.elf to be used as boot component when

"remove-boot-bsp" option is specified.
-pmufw-elf <pmufw.elf> Prebuilt pmufw.elf to be used as boot component when

"remove-boot-bsp" option is specified.

Returns

Empty string, if the platform is configured successfully. Error string, if no platform is active or if
the platform cannot be configured.

Example(s)

platform active zc702

platform config -desc "ZC702 with memory test application"

-samples /home/user/newDir Make zc702 as active platform, configure the description of the
platform and make samples in /home/user/newDir part of the platform.

platform config -updatehw /home/user/newdesign.xsa

Updates the platform project with the new xsa.

platform create

Create a new platform

Syntax

platform create [options]

Create a new platform by importing hardware definition file. Platform can also be created from
pre-defined hw platforms. Supported pre-defined platforms are zc702, zcu102, zc706 and zed.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=396

Options

Option Description
-name <software-platform name> Name of the software platform to be generated.
-desc <description> Brief description about the software platform.
-hw <handoff-file> Hardware description file to be used to create the platform.
-out <output-directory> The directory where the software platform needs to be

created. If the workspace is set, this option is not needed as
the platform will be created in workspace. If the workspace
is not set and this option is not specified, then platform will
be generated in current working directory.

-prebuilt Mark the platform to be built from already built sw artifacts.
This option should be used only if you have existig software
platform artifacts.

-proc <processor> The processor to be used; the tool will create default
domain.

-samples <samples-directory> Make the samples in <samples-directory>, part of the
platform.

-os <os> The os to be used; the tool will create default domain. This
works in combination with -proc option.

-xpfm <platform-path> Existing platform from which the projects have to be
imported and made part of the current platform.

-no-boot-bsp Mark the platform to build without generating boot
components.

Returns

Empty string, if the platform is created successfully. Error string, if the platform cannot be
created.

Example(s)

platform create -name "zcu102_test" -hw zcu102

Defines a software platform for a pre-defined hardware desciption file.

platform create -name "zcu102_test" -hw zcu102 -proc psu_cortexa53_0 -os
standalone

Defines a software platform for a pre-defined hardware desciption file. Create a default domain
with standalone os running on psu_cortexa53_0.

platform create -xpfm /path/zc702.xpfm

This will create a platform project for the platform pointed by the xpfm file.

platform create -name "ZC702Test" -hw /path/zc702.xsa

Defines a software platform for a hardware desciption file.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 397Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=397

platform fsbl

Configure fsbl

Syntax

platform fsbl

Configure extra compiler and linker flags for fsbl.

Options

Option Description
-extra-compiler-flags <flags> Set extra compiler flags for fsbl to the flags specified by

<flags>.

-extra-linker-flags <flags> Set extra linker flags for fsbl to the flags specified by
<flags>.

-report Return a table of extra compiler and linker flags set for fsbl.

Returns

Empty string, if the flag is set successfully. Error string, if the flag cannot be set.

Example(s)

platform fsbl -extra-compiler-flags "-DFSBL_DEBUG_INFO"

Add -DFSBL_DEBUG_INFO to the compiler options, while building the fsbl application.

platform fsbl -report

Return table of extra compiler and extra linker flags that are set.

platform generate

Build a platform

Syntax

platform generate

Build the active platform and add it to the repository. The platform must be created through
platform create command, and must be selected as active platform before building.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 398Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=398

Options

Option Description
-domains <domain-list> List of domains which need to be built and added to the

repository. Without this option, all the domains that are part
of the plafform are built.

Returns

Empty string, if the platform is generated successfully. Error string, if the platform cannot be
built.

Example(s)

platform generate

Build the active platform and add it to repository.

platform generate -domains a53_standalone,r5_standalone

Build only a53_standalone,r5_standalone domains and add it to the repository.

platform list

List the platforms

Syntax

List the platforms in the workspace and repository.

Options

None

Returns

List of platforms, or "No active platform present" string if no platforms exist.

Example(s)

platform list

Return a list of all the platforms in the workspace and repository.

platform pmufw

Configure pmufw

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 399Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=399

Syntax

platform pmufw

Configure pmufw to build with extra compiler and linker flags.

Options

Option Description
-extra-compiler-flags <value> Set extra compiler flag for pmufw with the provided value.
-extra-linker-flags <value> Set extra linker flag for pmufw with the provided value.
-report Return the list of the flags set to pmufw.

Returns

Empty string, if the flag is set successfully. Error string, if the flag cannot be set.

Example(s)

platform pmufw -extra-compiler-flags "-DDEBUG_INFO"

Add -DDEBUG_INFO to the compiler options, while building the pmufw application.

platform read

Read from the platform file

Syntax

platform read [platform-file]

Read platform settings from the platform file and makes it available for edit. Platform file gets
created during the creation of platform itself and it contains all details of platform like hw
specification file, processor information etc

Options

None

Returns

Empty string, if the platform is read successfully. Error string, if the platform file cannot be read.

Example(s)

platform read <platform.spr>

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 400Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=400

Reads the platform from the platform.spr file.

platform remove

Delete a platform

Syntax

platform remove <platform-name>

Delete the given platform. If platform-name is not specified, active platform is deleted.

Options

None

Returns

Empty string, if the platform is deleted successfully. Error string, if the platform cannot be
deleted.

Example(s)

platform remove zc702

Removes zc702 platform from the disk.

platform report

Report the details of a platform

Syntax

platform report [platform-name]

Return details like domains, processors, etc. created in a platform. If platform-name is not
specified, details of the active platform are returned.

Options

None

Returns

Table with details of platform, or error string if no platforms exist.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 401Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=401

Example(s)

platform report

Return a table with details of the active platform.

platform write

Write platform settings to a file

Syntax

platform write

Writes the platform settings to platform.spr file. It can be read back using "platform read"
command.

Options

None

Returns

Empty string, if the platform settings are written successfully. Error string, if the platform settings
cannot be written.

Example(s)

platform write

Writes platform to platform.spr file.

domain
Create, configure, list and report domains

Syntax

domain <sub-command> [options]

Create a domain, or perform various other operations on the domain, based on <sub-command>
specified. Following sub-commands are supported. active - Set/Get the active domain. config -
Configure the properties of a domain. create - Create a domain in the active platform. list - List all
the domains in active platform. report - Report the details of a domain. remove - Delete a
domain. Type "help" followed by "app sub-command", or "app sub-command" followed by "-help"
for more details.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 402Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=402

Options

Depends on the sub-command. Refer to sub-command help for details.

Returns

Depends on the sub-command. Refer to sub-command help for details.

Example(s)

Refer to sub-command help for details.

domain active

Set/Get the active domain

Syntax

domain active [domain-name]

Set or get the active domain. If domain-name is specified, it is made as active domain, otherwise
the name of active domain is returned. If no active domain exists, this command returns an
empty string.

Options

None

Returns

Empty string, if a domain is set as active or no active domain exists. Domain name, when active
domain is read.

Example(s)

domain active

Return the name of the active domain .

domain active test_domain

Set test_domain as active domain.

domain active

Set/Get the active domain

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 403Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=403

Syntax

domain active [domain-name]

Set or get the active domain. If domain-name is specified, it is made as active domain, otherwise
the name of active domain is returned. If no active domain exists, this command returns an
empty string.

Options

None

Returns

Empty string, if a domain is set as active or no active domain exists. Domain name, when active
domain is read.

Example(s)

domain active

Return the name of the active domain .

domain active test_domain

Set test_domain as active domain.

domain config

Configure the active domain

Syntax

domain config [options]

Configure the properties of active domain.

Options

Option Description
-display-name <display name> Display name of the domain.
-desc <description> Brief description about the domain.
-image <location> For domain with Linux as OS, use pre-built Linux images

from this directory, while creating the PetaLinux project.
This option is valid only for Linux domains.

-sw-repo <repositories-list> List of repositories to be used to pick software components
like drivers and libraries while generating this domain.
Repository list should be a tcl list of software repository
paths.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 404Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=404

Option Description
-mss <mss-file> Use mss from specified by <mss-file>, instead of

generating mss file for the domain.
-prebuilt-data <directory-name> Pre-generated hardware data specified in directory-name

will be used for building user applications that do not
contain accelerators. This will reduce the build time.

-readme <file-name> Add README file for the domain, with boot instructions, etc.
-inc-path <include-path> Additional include path which should be added while

building the application created for this domain.
-lib-path <library-path> Additional library search path which should be added to the

linker settings of the application created for this domain.
-sysroot <sysroot-dir> The Linux sysroot directory that should be added to the

platform. This sysroot will be consumed during application
build.

-boot <boot-dir> Directory to generate components after Linux image build.
-bif <file-name> Bif file used to create boot image for Linux boot.
-qemu-args <file-name> File with all PS QEMU args listed. This is used to start PS

QEMU.
-pmuqemu-args <file-name> File with all PMC QEMU args listed. This is used to start PMU

QEMU.
-pmcqemu-args <file-name> File with all pmcqemu args listed. This is used to start

pmcqemu.
-qemu-data <data-dir> Directory which has all the files listed in file-name provided

as part of qemu-args and pmuqemu-args options.

Returns

Empty string, if the domain is configured successfully. Error string, if no domain is active or if the
domain cannot be configured.

Example(s)

domain config -display-name zc702_MemoryTest

-desc "Memory test application for Zynq" -prebuilt-data /home/user/build_dir/ Configure display
name, description, and set prebuilt-data directory for the active domain.

domain config -image "/home/user/linux_image/"

Create PetaLinux project from pre-built Linux image. domain -inc-path /path/include/ -lib-path /
path/lib/ Adds include and library search paths to the domain's application build settings.

domain create

Create a new domain

Syntax

domain create [options]

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 405Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=405

Create a new domain in active platform.

Options

Option Description
-name <domain-name> Name of the domain.
-display-name <display_name> The name to be displayed in the report for the domain.
-desc <description> Brief description about the domain.
-proc <processor> Processor core to be used for creating the domain. For SMP

Linux, this can be a Tcl list of processor cores.
-os <os> OS type. Default type is standalone.
-support-app <app-name> Create a domain with BSP settings needed for application

specified by <app-name>. This option is valid only for
standalone domains. "repo -apps" command can be used to
list the available application.

-auto-generate-linux Generate the Linux artifacts automatically.
-image <location> For domain with Linux as OS, use pre-built Linux images

from this directory, while creating the PetaLinux project.
This option is valid only for Linux domains.

-sysroot <sysroot-dir> The linux sysroot directory that should be added to the
platform. This sysroot will be consumed during application
build.

Returns

Empty string, if the domain is created successfully. Error string, if the domain cannot be created.

Example(s)

domain create -name "ZUdomain" -os standalone -proc psu_cortexa53_0

-support-app {Hello World} Create a standalone domain and configure settings needed for "Hello
World" template application.

domain create -name "SMPLinux" -os linux

-proc {ps7_cortexa9_0 ps7_cortexa9_1} Create a Linux domain named SMPLinux for processor
cores ps7_cortexa9_0 ps7_cortexa9_1 in the active platform.

domain list

List domains

Syntax

domain list

List domains in the active platform.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 406Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=406

Options

None

Returns

List of domains in the active platform, or empty string if no domains exist.

Example(s)

platform active platform1

domain list

Display all the domain created in platform1.

domain remove

Delete a domain

Syntax

domain remove [domain-name]

Delete a domain from active platform. If domain-name is not specified, active domain is deleted.

Options

None

Returns

Empty string, if the domain is deleted successfully. Error string, if the domain deletion fails.

Example(s)

domain remove test_domain

Removes test_domin from the active platform.

domain report

Report the details of a domain

Syntax

domain report [domain-name]

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 407Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=407

Return details like platform, processor core, OS, etc. of a domain. If domain-name is not specified,
details of the active domain are reported.

Options

None

Returns

Table with details of a domain, if domain-name or active domain exists. Error string, if active
domain does not exist and domain-name is not specified.

Example(s)

domain report

Return a table with details of the active domain.

bsp
Configure bsp settings of baremetal domain

Syntax

bsp <sub-command> [options]

Configure the bsp settings which includes library, driver and OS version of a active domain, based
on <sub-command> specified. Following sub-commands are supported. config - Modify the
configurable parameters of bsp settings. getdrivers - List IP instance and it's driver. getlibs - List
the libraries from bsp settings. getos - List os details from bsp settings. listparams - List the
configurable parameters of os/proc/library. regenerate - Regenerate BSP sources. removelib -
Remove library from bsp settings. setdriver - Sets the driver for the given IP instance. setlib - Sets
the given library. setosversion - Sets version for the given os. Type "help" followed by "bsp sub-
command", or "bsp sub-command" followed by "-help" for more details.

Options

Depends on the sub-command. Refer to sub-command help for details.

Returns

Depends on the sub-command. Refer to sub-command help for details.

Example(s)

Refer to sub-command help for details.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 408Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=408

bsp config

configure parameters of bsp settings

Syntax

bsp config <param> <value>

Set/Get/Append value to the configurable parameters. If <param> and <value> are not
specified, returns the details of all configurable parameters of processor, os, or all libraries in BSP.
If <param> is specified and <value> value is not specified, return the value of the parameter. If
<param> and <value> are specified, set the value of parameter. Use "bsp list-params <-os/-
proc/-driver>" to know configurable parameters of OS/processor/driver.

Options

Option Description
-append <param> <value> Append the given value to the parameter.

Returns

Nothing, if the parameter is set/Appended successfully. Current value of the paramter if
<value> is not specified. Error string, if the parameter cannot be set/Appended.

Example(s)

bsp config -append extra_compiler_flags "-pg"

Append -pg to extra_compiler_flags.

bsp config stdin

Return the current value of stdin.

bsp config stdin ps7_uart_1

Set stdin to ps7_uart_1 .

bsp getdrivers

list drivers

Syntax

bsp getdrivers

Return the list of drivers assigned to IP in bsp.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 409Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=409

Options

None

Returns

Table with IP, it's corresponding driver and driver version. Empty string, if there are no IP's.

Example(s)

bsp getdrivers

Return the list of IP's and it's driver.

bsp getlibs

list libraries added in the bsp settings

Syntax

bsp getlibs

Display list of libraries added in the bsp settings.

Options

None

Returns

List of library/(ies). Empty string, if there are no library added.

Example(s)

bsp getlibs

Return the list of libraries added in bsp settings of active domain.

bsp getos

Display os details from bsp settings

Syntax

bsp getos

Displays the current OS and it's version.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 410Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=410

Options

None

Returns

OS name and it's version.

Example(s)

bsp getos

Return OS name and version from the bsp settings of the active domain.

bsp listparams

List the configurable parameters of the bsp

Syntax

bsp listparams <option>

List the configurable parameters of the <option>.

Options

Option Description
-lib <lib-name> Return the configurable parameters of Library in BSP.
-os Return the configurable parameters of OS in BSP.
-proc Return the configurable parameters of processor in BSP.

Returns

parameter names, empty string, if no parameter exist.

Example(s)

bsp listparams -os

List all the configurable parameters of OS in the bsp settings.

bsp regenerate

Regenerate BSP sources.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 411Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=411

Syntax

bsp regenerate

Regenerate the sources with the modifications made to BSP.

Options

None

Returns

Nothing, if the bsp is generated successfully. Error string, if the bsp cannot be generated.

Example(s)

bsp regenerate

Regenerate the BSP sources with the changes done in the BSP settings.

bsp removelib

Remove library from bsp settings

Syntax

bsp removelib -name <lib-name>

Remove the library from bsp settings of the active domain.

Options

Option Description
-name <lib-name> Library to be removed from bsp settings.

Returns

Nothing, if the library is removed successfully. Error string, if the library cannot be removed.

Example(s)

bsp removelib -name xilffs

Remove xilffs library from bsp settings.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 412Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=412

bsp setdriver

Set the driver to IP

Syntax

bsp setdriver [options]

Set specified driver to the IP core in bsp settings of active domain.

Options

Option Description
-driver <driver-name> Driver to be assigned to an IP.
-ip <ip-name> IP instance for which the driver has to be added.
-ver <version> Driver version.

Returns

Nothing, if the driver is set successfully. Error string, if the driver cannot be set.

Example(s)

bsp setdriver -ip ps7_uart_1 -driver generic -ver 2.0

Set the generic driver for the ps7_uart_1 IP instance for the bsp.

bsp setlib

Adds the library to the bsp settings

Syntax

bsp setlib [options]

Add the library to the bsp settings of active domain.

Options

Option Description
-name <lib-name> Library to be added to the bsp settings.
-ver <version> Library version.

Returns

Nothing, if the library is set successfully. Error string, if the library cannot be set.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 413Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=413

Example(s)

bsp setlib -name xilffs

Add the xilffs library to the bsp settings.

bsp setosversion

Set the OS version

Syntax

bsp setosversion [options]

Set OS version in the bsp settings of active domain. Latest version is added by default.

Options

Option Description
-ver <version> OS version.

Returns

Nothing, if the OS version is set successfully. Error string, if the OS version cannot be set.

Example(s)

bsp setosversion -ver 6.6

Set the OS version 6.6 in bsp settings of the active domain.

library
Library project management

Syntax

library <sub-command> [options]

Create a library project, or perform various other operations on the library project, based on
<sub-command> specified. Following sub-commands are supported. build - Build the library
project. clean - Clean the library project. create - Create a library project. list - List all the library
projects in workspace. remove - Delete the library project. report - Report the details of the
library project. Type "help" followed by "library sub-command", or "library sub-command"
followed by "-help" for more details.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 414Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=414

Options

Depends on the sub-command. Refer to sub-command help for details.

Returns

Depends on the sub-command.

Example(s)

See sub-command help for examples.

library build

Build library project

Syntax

library build -name <project-name>

Build the library project specified by <project-name> in the workspace. "-name" switch is
optional, so <project-name> can be specified directly, without using -name.

Options

Option Description
-name <project-name> Name of the library project to be built.

Returns

Nothing, if the library project is built successfully. Error string, if the library project build fails.

Example(s)

library build -name lib1

Build lib1 library project.

library clean

Clean library project

Syntax

library clean -name <project-name>

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 415Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=415

Clean the library project specified by <project-name> in the workspace. "-name" switch is
optional, so <project-name> can be specified directly, without using -name.

Options

Option Description
-name <project-name> Name of the library project to be clean built.

Returns

Nothing, if the library project is cleaned successfully. Error string, if the library project build clean
fails.

Example(s)

library clean -name lib1

Clean lib1 library project.

library create

Create a library project

Syntax

library create -name <project-name> -type <library-type> -platform
<platform>

-domain <domain> -sysproj <system-project> Create a library project using an existing
platform, and domain. If <platform>, <domain>, and <sys-config> are not specified, then
active platform and domain are used for Creating library project. For creating library project and
adding them to existing system project, refer to next use case.

library create -name <project-name> -type <library-type> -sysproj
<system-project>

-domain <domain> Create a library project for domain specified by <domain> and add it to
system project specified by <system-project>. If <system-project> exists, platform
corresponding to this system project are used for creating the library project. If <domain> is not
specified, then active domain is used.

Options

Option Description
-name <project-name> Project name that should be created.
-type <library-type> <library-type> can be 'static' or 'shared'

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 416Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=416

Option Description
-platform <platform-name> Name of the platform. Use "repo -platforms" to list available

pre-defined platforms.
-domain <domain-name> Name of the domain. Use "platform report <platform-

name>" to list the available domains in a platform.

-sysproj <system-project> Name of the system project. Use "sysproj list" to know the
available system projects in the workspace.

Returns

Nothing, if the library project is created successfully. Error string, if the library project creation
fails.

Example(s)

library create -name lib1 -type static -platform zcu102 -domain
a53_standalone

Create a static library project with name 'lib1', for the platform zcu102, which has a domain
named a53_standalone domain.

library create -name lib2 -type shared -sysproj test_system -domain
test_domain

Create shared library project with name 'lib2' and add it to system project test_system.

library list

List library projects

Syntax

List all library projects in the workspace.

Options

None

Returns

List of library projects in the workspace. If no library projects exist, an empty string is returned.

Example(s)

library list

Lists all the library projects in the workspace.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 417Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=417

library remove

Delete library project

Syntax

library remove [options] <project-name>

Delete a library project from the workspace.

Options

None

Returns

Nothing, if the library project is deleted successfully. Error string, if the library project deletion
fails.

Example(s)

library remove lib1

Removes lib1 from workspace.

library report

Report details of the library project

Syntax

library report <project-name>

Return details like platform, domain etc. of the library project.

Options

None

Returns

Details of the library project, or error string, if library project does not exist.

Example(s)

app report lib1 Return all the details of library lib1.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 418Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=418

setws
Set vitis workspace

Syntax

setws [OPTIONS] [path]

Set vitis workspace to <path>, for creating projects. If <path> does not exist, then the
directory is created. If <path> is not specified, then current directory is used.

Options

Option Description
-switch <path> Close existing workspace and switch to new workspace.

Returns

Nothing if the workspace is set successfully. Error string, if the path specified is a file.

Example(s)

setws /tmp/wrk/wksp1

Set the current workspace to /tmp/wrk/wksp1.

setws -switch /tmp/wrk/wksp2

Close the current workspace and switch to new workspace /tmp/wrk/wksp2.

getws
Get vitis workspace

Syntax

getws

Return the current vitis workspace.

Returns

Current workspace.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 419Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=419

app
Application project management

Syntax

app <sub-command> [options]

Create an application project, or perform various other operations on the application project,
based on <sub-command> specified. Following sub-commands are supported. build - Build the
application project. clean - Clean the application project. config - Configure C/C++ build settings
of the application project. create - Create an application project. list - List all the application
projects in workspace. remove - Delete the application project. report - Report the details of the
application project. switch - Switch application project to refer another platform. Type "help"
followed by "app sub-command", or "app sub-command" followed by "-help" for more details.

Options

Depends on the sub-command. Refer to sub-command help for details.

Returns

Depends on the sub-command. Refer to sub-command help for details.

Example(s)

Please refer to sub-command help for examples.

app build

Build application

Syntax

app build -name <app-name>

Build the application specified by <app-name> in the workspace. "-name" switch is optional, so
<app-name> can be specified directly, without using -name.

Options

Option Description
-name <app-name> Name of the application to be built.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 420Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=420

Returns

Nothing. Build log will be printed on the console.

Example(s)

app build -name helloworld

Build helloworld application.

app clean

Clean application

Syntax

app clean -name <app-name>

Clean the application specified by <app-name> in the workspace. "-name" switch is optional, so
<app-name> can be specified directly, without using -name.

Options

Option Description
-name <app-name> Name of the application to be clean built.

Returns

Nothing. Build log will be printed on the console.

Example(s)

app clean -name helloworld

Clean helloworld application.

app config

Configure C/C++ build settings of the application

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 421Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=421

Syntax

Configure C/C++ build settings for the specified application. Following settings can be configured
for applications: assembler-flags : Miscellaneous flags for assembler build-config : Get/set build
configuration compiler-misc : Compiler miscellaneous flags compiler-optimization : Optimization
level define-compiler-symbols : Define symbols. Ex. MYSYMBOL include-path : Include path for
header files libraries : Libraries to be added while linking library-search-path : Search path for the
libraries added linker-misc : Linker miscellaneous flags linker-script : Linker script for linking
undef-compiler-symbols : Undefine symbols. Ex. MYSYMBOL

app config -name <app-name> <param-name>

Get the value of configuration parameter <param-name> for the application specified by <app-
name>.

app config [OPTIONS] -name <app-name> <param-name> <value>

Set/modify/remove the value of configuration parameter <param-name> for the application
specified by <app-name>.

Options

Option Description
-name Name of the application.
-set Set the configuration parameter value to new <value>.

-get Get the configuration parameter value.
-add Append the new <value> to configuration parameter value.

Add option is not supported for ,compiler-optimization
-info Displays more information like possible values and possible

operations about the configuration parameter. A parameter
name must be specified when this option is used.

-remove Remove <value> from the configuration parameter value.
Remove option is not supported for assembler-flags, build-
config, compiler-misc, compiler-optimization, linker-misc
and linker-script.

Returns

Depends on the arguments specified. <none> List of parameters available for configuration and
description of each parameter.

<parameter name>: Parameter value, or error, if unsupported parameter is specified.

<parameter name> <paramater value>: Nothing if the value is set successfully, or error, if
unsupported parameter is specified.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 422Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=422

Example(s)

app config -name test build-config

Return the current build configuration for the application named test.

app config -name test define-compiler-symbols FSBL_DEBUG_INFO

Add -DFSBL_DEBUG_INFO to the compiler options, while building the test application.

app config -name test -remove define-compiler-symbols FSBL_DEBUG_INFO

Remove -DFSBL_DEBUG_INFO from the compiler options, while building the test application.

app config -name test -set compiler-misc {-c -fmessage-length=0 -MT"$@"}

Set {-c -fmessage-length=0 -MT"$@"} as compiler miscellaneous flags for the test application.

app config -name test -append compiler-misc {-pg}

Add {-pg} to compiler miscellaneous flags for the test application.

app config -name test -info compiler-optimization

Display more information about possible values and default values for compiler optimization
level.

app create

Create an application

Syntax

app create [options] -platform <platform> -domain <domain>

-sysproj <system-project> Create an application using an existing platform and domain, and
add it to a system project. If <platform> and <domain> are not specified, then active platform
and domain are used for creating the application. If <system-project> is not specified, then a
system project is created with name appname_system. For creating applications and adding them
to existing system project, refer to next use case. Supported options are: -name, -template.

app create [options] -sysproj <system-project> -domain <domain>

Create an application for domain specified by <domain> and add it to system project specified
by <system-project>. If <system-project> exists, platform corresponding to this system
project are used for creating the application. If <domain> is not specified, then active domain is
used. Supported options are: -name, -template.

app create [options] -hw <hw-spec> -proc <proc-instance>

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 423Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=423

Create an application for processor core specified <proc-instance> in HW platform specified
by <hw-spec>. Supported options are: -name, -template, -os, -lang.

Options

Option Description
-name <application-name> Name of the application to be created.
-platform <platform-name> Name of the platform. Use "repo -platforms" to list available

pre-defined platforms.
-domain <domain-name> Name of the domain. Use "platform report <platform-

name>" to list the available system configurations in a
platform.

-hw <hw-spec> HW specification file exported from Vivado (XSA).
-sysproj <system-project> Name of the system project. Use "sysproj list" to know

available system projects in the workspace.
-proc <processor> Processor core for which the application should be created.
-template <application template> Name of the template application. Default is "Hello World".

Use "repo -apps" to list available template applications.
-os <os-name> OS type. Default type is standalone.
-lang <programming language> Programming language can be c or c++.

Returns

Nothing, if the application is created successfully. Error string, if the application creation fails.

Example(s)

app create -name test -platform zcu102 -domain a53_standalone

Create Hello World application named test, for the platform zcu102, with a domain named
a53_standalone.

app create -name zqfsbl -hw zc702 -proc ps7_cortexa9_0 -os standalone

-template "Zynq FSBL" Create Zynq FSBL application named zqfsbl for ps7_cortexa9_0 processor
core, in zc702 HW platform.

app create -name memtest -hw /path/zc702.xsa -proc ps7_cortexa9_0 -os
standalone

-template "Memory Tests" Create Memory Test application named memtest for ps7_cortexa9_0
processor core, in zc702.xsa HW platform.

app create -name test -sysproj test_system -domain test_domain

Create Hello World application project with name test and add it to system project test_system.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 424Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=424

app list

List applications

Syntax

app list

List all applications for in the workspace.

Options

None

Returns

List of applications in the workspace. If no applications exist, "No application exist" string is
returned.

Example(s)

app list

Lists all the applications in the workspace.

app remove

Delete application

Syntax

app remove <app-name>

Delete an application from the workspace.

Options

None

Returns

Nothing, if the application is deleted successfully. Error string, if the application deletion fails.

Example(s)

app remove zynqapp

Removes zynqapp from workspace.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 425Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=425

app report

Report details of the application

Syntax

app report <app-name>

Return details like platform, domain, processor core, OS, etc. of an application.

Options

None

Returns

Details of the application, or error string, if application does not exist.

Example(s)

app report test

Return all the details of application test.

app switch

Switch the application to use another domain/platform

Syntax

app switch -name <app-name> -platform <platform-name> -domain <domain-
name>

Switch the application to use another platform and domain. If the domain name is not specified,
application will be moved to the first domain which is created for the same processor as current
domain. This option is supported if there is only one application under this platform.

app switch -name <app-name> -domain <domain-name>

Switch the application to use another domain within the same platform. New domain should be
created for the same processor as current domain.

Options

Option Description
-name <application-name> Name of the application to be switched.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 426Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=426

Option Description
-platform <platform-name> Name of the new Platform. Use "platform -list" to list the

available platforms.
-domain <domain-name> Name of the new domain. Use "domain -list" to list avaliable

domain in the active platform.

Returns

Nothing if application is switched successfully, or error string, if given platform project does not
exist or given platform project does not have valid domain.

Example(s)

app switch -name helloworld -platform zcu102

Switch the helloworld application to use zcu102 platform.

sysproj
System project management

Syntax

sysproj <sub-command> [options]

Build, list and report system project, based on <sub-command> specified. Following sub-
commands are supported. build - Build the system project. clean - Clean the system project. list -
List all system projects in workspace. remove - Delete the system project. report - Report the
details of the system project. Type "help" followed by "sysproj sub-command", or "sysproj sub-
command" followed by "-help" for more details.

Options

Depends on the sub-command. Refer to sub-command help for details.

Returns

Depends on the sub-command.

Example(s)

See sub-command help for examples.

sysproj build

Build system project

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 427Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=427

Syntax

sysproj build -name <sysproj-name>

Build the application specified by <sysproj-name> in the workspace. "-name" switch is
optional, so <sysproj-name> can be specified directly, without using -name.

Options

Option Description
-name <sysproj-name> Name of the system project to be built.

Example(s)

sysproj build -name helloworld_system

Build the system project specified.

sysproj clean

Clean application

Syntax

sysproj clean -name <app-name>

Clean the application specified by <sysproj-name> in the workspace. "-name" switch is
optional, so <sysproj-name> can be specified directly, without using -name.

Options

Option Description
-name <sysproj-name> Name of the application to be clean built.

Returns

Nothing, if the application is cleaned suceessfully. Error string, if the application build clean fails.

Example(s)

sysproj clean -name helloworld_system

Clean-build the system project specified.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 428Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=428

sysproj list

List system projects

Syntax

sysproj list

List all system projects in the workspace.

Options

None

Returns

List of system projects in the workspace. If no system project exist, an empty string is returned.

Example(s)

sysproj list

List all system projects in the workspace.

sysproj remove

Delete system project

Syntax

sysproj remove [options]

Delete a system project from the workspace.

Options

None

Returns

Nothing, if the system project is deleted successfully. Error string, if the system project deletion
fails.

Example(s)

sysproj remove test_system

Delete test_system from workspace.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 429Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=429

sysproj report

Report details of the system project

Syntax

sysproj report <sysproj-name>

Return the details like platform, domain, etc. of a system project.

Options

None

Returns

Details of the system project, or error string, if system project does not exist.

Example(s)

sysproj report test_system

Return all the details of the system project test_system.

importprojects
Import projects to workspace

Syntax

importprojects <path>

Import all the vitis projects from <path> to workspace.

Returns

Nothing, if the projects are imported successfully. Error string, if project path is not specified or if
the projects cannot be imported.

Example(s)

importprojects /tmp/wrk/wksp1/hello1

Import vitis project(s) into the current workspace.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 430Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=430

importsources
Import sources to an application project.

Syntax

importsources [OPTIONS]

Import sources from a path to application project in workspace.

Options

Option Description
-name <project-name> Application Project to which the sources should be

imported.
-path <source-path> Path from which the source files should be imported. If

<source-path> is a file, it is imported to application
project. If <source-path> is a directory, all the files/sub-
directories from the <source-path> are imported to
application project. All existing source files will be
overwritten in the application, and new files will be copied.
Linker script will not be copied to the application directory,
unless -linker-script option is used.

-linker-script Copies the linker script as well.

Returns

Nothing, if the project sources are imported successfully. Error string, if invalid options are used
or if the project sources cannot be read/imported.

Example(s)

importsources -name hello1 -path /tmp/wrk/wksp2/hello2

Import the 'hello2' project sources to 'hello1' application project without the linker script.

importsources -name hello1 -path /tmp/wrk/wksp2/hello2 -linker-script

Import the 'hello2' project sources to 'hello1' application project along with the linker script.

toolchain
Set or get toolchain used for building projects

Syntax

toolchain

Return a list of available toolchains and supported processor types.

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 431Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=431

toolchain <processor-type>

Get the current toolchain for <processor-type>.

toolchain <processor-type> <tool-chain>

Set the <toolchain> for <processor-type>. Any new projects created will use the new
toolchain during build.

Returns

Depends on the arguments specified <none> List of available toolchains and supported
processor types

<processor-type>: Current toolchain for processor-type

<processor-type> <tool-chain>: Nothing if the tool-chain is set, or error, if unsupported
tool-chain is specified

Chapter 40: XSCT Commands

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 432Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=432

Chapter 41

XSCT Use Cases
As with Vitis IDE, the first step to use Xilinx Software Command-line Tool (XSCT) involves
selecting a workspace. For creating and managing projects, XSCT launches Vitis IDE in the
background. XSCT workspaces can be seamlessly used with Vitis IDE and vice-versa.

Note: At any given point of time, a workspace can either be used only from Vitis IDE or XSCT.

The following is a list of use cases describing how you can use the tool to perform common tasks:

• Running Tcl Scripts

• Creating an Application Project Using an Application Template

• Modifying BSP Settings

• Changing Compiler Options of an Application Project

• Working with Libraries

• Creating a Bootable Image and Program the Flash

• Switching Between XSCT and Vitis Integrated Development Environment

• Performing Standalone Application Debug

• Running an Application in Non-Interactive Mode

• Debugging a Program Already Running on the Target

• Using JTAG UART

• Debugging Applications on Zynq UltraScale+ MPSoC

• Editing FSBL/PMUFW Source File

• Editing FSBL/PMUFW Settings

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 433Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=433

Changing Compiler Options of an Application
Project

Below is an example XSCT session that demonstrates creating an empty application for Cortex®

A53 processor, by adding the compiler option -std=c99.

setws /tmp/wrk/workspace
app create -name test_a53 -hw /tmp/wrk/system.xsa -os standalone -proc
psu_cortexa53_0 -template {Empty Application}
importsources -name test_a53 -path /tmp/sources/
app config -name test_a53 -add compiler-misc {-std=c99}
app build -name test_a53

Creating an Application Project Using an
Application Template (Zynq UltraScale+
MPSoC FSBL)

Below is an example XSCT session that demonstrates creating a FSBL project for a Cortex-A53
processor.

Note: Creating an application project creates a BSP project by adding the necessary libraries.
FSBL_DEBUG_DETAILED symbol is added to FSBL for debug messages.

setws /tmp/wrk/workspace
app create -name a53_fsbl -hw /tmp/wrk/system.xsa -os standalone -proc
psu_cortexa53_0 -template {Zynq MP FSBL}
app config -name a53_fsbl define-compiler-symbols {FSBL_DEBUG_INFO}
app build -name a53_fsbl

Creating a Bootable Image and Program the
Flash

Below is an example XSCT session that demonstrates creating two applications (FSBL and Hello
World). Further, create a bootable image using the applications along with bitstream and program
the image on to the flash.

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 434Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=434

Note: Assuming the board to be zc702. Hence -flash_type qspi_single is used as an option in
program_flash.

setws /tmp/wrk/workspace
app create -name a9_hello -hw /tmp/wrk/system.xsa -os standalone proc
ps7_cortexa9_0 -template {Zynq FSBL}
app create -name a9_fsbl -hw /tmp/wrk/system.xsa -os standalone proc
ps7_cortexa9_0 -template {Hello World}
app build -name a9_hello
app build -name a9_fsbl
exec bootgen -arch zynq -image output.bif -w -o /tmp/wrk/BOOT.bin
exec program_flash -f /tmp/wrk/BOOT.bin -flash_type qspi_single -
blank_check -verify -cable type xilinx_tcf url tcp:localhost:3121

Debugging a Program Already Running on the
Target

Xilinx® System Debugger Command-line Interface (XSDB) can be used to debug a program which
is already running on the target (for example, booting from flash). Users will need to connect to
the target and set the symbol file for the program running on the target. This method can also be
used to debug Linux kernel booting from flash. For best results, the code running on the target
should be compiled with debug info.

Below is an example of debugging a program already running on the target. For demo purpose,
the program has been stopped at main(), before this example session.

Connect to the hw_server

xsdb% conn -url TCP:xhdbfarmc7:3121
tcfchan#0
xsdb% Info: ARM Cortex-A9 MPCore #0 (target 2) Stopped at 0x1005a4
(Hardware Breakpoint)
xsdb% Info: ARM Cortex-A9 MPCore #1 (target 3) Stopped at 0xfffffe18
(Suspended)

Select the target on which the program is running and specify the symbol
file using the
memmap command

xsdb% targets 2
xsdb% memmap -file dhrystone/Debug/dhrystone.elf

When the symbol file is specified, the debugger maps the code on the
target to the symbol
file. bt command can be used to see the back trace. Further debug is
possible, as shown in
the first example

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 435Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=435

xsdb% bt
 0 0x1005a4 main(): ../src/dhry_1.c, line 79
 1 0x1022d8 _start()+88
 2 unknown-pc

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 436Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=436

Debugging Applications on Zynq UltraScale+
MPSoC

Note: For simplicity, this help page assumes that Zynq® UltraScale+™ MPSoC boots up in JTAG bootmode.
The flow described here can be applied to other bootmodes too, with minor changes.

When Zynq® UltraScale+™ MPSoC boots up JTAG bootmode, all the A53 and R5 cores are held
in reset. Users must clear resets on each core, before debugging on these cores. 'rst' command in
XSCT can be used to clear the resets. 'rst -processor' clears reset on an individual processor core.
'rst -cores' clears resets on all the processor cores in the group (APU or RPU), of which the
current target is a child. For example, when A53 #0 is the current target, rst -cores clears resets
on all the A53 cores in APU.

Below is an example XSCT session that demonstrates standalone application debug on A53 #0
core on Zynq UltraScale+ MPSoC.

Note: Similar steps can be used for debugging applications on R5 cores and also on A53 cores in 32 bit
mode. However, the A53 cores must be put in 32 bit mode, before debugging the applications. This should
be done after POR and before the A53 resets are cleared.

#connect to remote hw_server by specifying its url.
If the hardware is connected to a local machine,-url option and the <url>
are not needed. connect command returns the channel ID of the connection

xsdb% connect -url TCP:xhdbfarmc7:3121 -symbols
tcfchan#0

List available targets and select a target through its id.
The targets are assigned IDs as they are discovered on the Jtag chain,
so the IDs can change from session to session.
For non-interactive usage, -filter option can be used to select a target,
instead of selecting the target through its ID

xsdb% targets
 1 PS TAP
 2 PMU
 3 MicroBlaze PMU (Sleeping. No clock)
 4 PL
 5 PSU
 6 RPU (Reset)
 7 Cortex-R5 #0 (RPU Reset)
 8 Cortex-R5 #1 (RPU Reset)
 9 APU (L2 Cache Reset)
 10 Cortex-A53 #0 (APU Reset)
 11 Cortex-A53 #1 (APU Reset)
 12 Cortex-A53 #2 (APU Reset)
 13 Cortex-A53 #3 (APU Reset)
xsdb% targets 5

Configure the FPGA. When the active target is not a FPGA device,
the first FPGA device is configured

xsdb% fpga ZCU102_HwPlatform/design_1_wrapper.bit

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 437Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=437

100% 36MB 1.8MB/s 00:24

Source the psu_init.tcl script and run psu_init command to initialize PS
xsdb% source ZCU102_HwPlatform/psu_init.tcl
xsdb% psu_init

PS-PL power isolation must be removed and PL reset must be toggled,
before the PL address space can be accessed

Some delay is needed between these steps

xsdb% after 1000
xsdb% psu_ps_pl_isolation_removal
xsdb% after 1000
xsdb% psu_ps_pl_reset_config

Select A53 #0 and clear its reset

To debug 32 bit applications on A53, A53 core must be configured
to boot in 32 bit mode, before the resets are cleared

32 bit mode can be enabled through CONFIG_0 register in APU module.
See ZynqMP TRM for details about this register

xsdb% targets 10
xsdb% rst -processor

Download the application program

xsdb% dow dhrystone/Debug/dhrystone.elf
Downloading Program -- dhrystone/Debug/dhrystone.elf
 section, .text: 0xfffc0000 - 0xfffd52c3
 section, .init: 0xfffd5300 - 0xfffd5333
 section, .fini: 0xfffd5340 - 0xfffd5373
 section, .note.gnu.build-id: 0xfffd5374 - 0xfffd5397
 section, .rodata: 0xfffd5398 - 0xfffd6007
 section, .rodata1: 0xfffd6008 - 0xfffd603f
 section, .data: 0xfffd6040 - 0xfffd71ff
 section, .eh_frame: 0xfffd7200 - 0xfffd7203
 section, .mmu_tbl0: 0xfffd8000 - 0xfffd800f
 section, .mmu_tbl1: 0xfffd9000 - 0xfffdafff
 section, .mmu_tbl2: 0xfffdb000 - 0xfffdefff
 section, .init_array: 0xfffdf000 - 0xfffdf007
 section, .fini_array: 0xfffdf008 - 0xfffdf047
 section, .sdata: 0xfffdf048 - 0xfffdf07f
 section, .bss: 0xfffdf080 - 0xfffe197f
 section, .heap: 0xfffe1980 - 0xfffe397f
 section, .stack: 0xfffe3980 - 0xfffe697f
100% 0MB 0.4MB/s 00:00
Setting PC to Program Start Address 0xfffc0000
Successfully downloaded dhrystone/Debug/dhrystone.elf

Set a breakpoint at main()
xsdb% bpadd -addr &main
0

Resume the processor core
xsdb% con

Info message is displayed when the core hits the breakpoint
Info: Cortex-A53 #0 (target 10) Running
xsdb% Info: Cortex-A53 #0 (target 10) Stopped at 0xfffc0d5c (Breakpoint)

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 438Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=438

Registers can be viewed when the core is stopped
xsdb% rrd
 r0: 0000000000000000 r1: 0000000000000000 r2: 0000000000000000
 r3: 0000000000000004 r4: 000000000000000f r5: 00000000ffffffff
 r6: 000000000000001c r7: 0000000000000002 r8: 00000000ffffffff
 r9: 0000000000000000 r10: 0000000000000000 r11: 0000000000000000
 r12: 0000000000000000 r13: 0000000000000000 r14: 0000000000000000
 r15: 0000000000000000 r16: 0000000000000000 r17: 0000000000000000
 r18: 0000000000000000 r19: 0000000000000000 r20: 0000000000000000
 r21: 0000000000000000 r22: 0000000000000000 r23: 0000000000000000
 r24: 0000000000000000 r25: 0000000000000000 r26: 0000000000000000
 r27: 0000000000000000 r28: 0000000000000000 r29: 0000000000000000
 r30: 00000000fffc1f4c sp: 00000000fffe5980 pc: 00000000fffc0d5c
cpsr: 600002cd vfp sys

Local variables can be viewed
xsdb% locals
Int_1_Loc : 1113232
Int_2_Loc : 30
Int_3_Loc : 0
Ch_Index : 0
Enum_Loc : 0
Str_1_Loc : char[31]
Str_2_Loc : char[31]
Run_Index : 1061232
Number_Of_Runs : 2

Local variable value can be modified
xsdb% locals Number_Of_Runs 100
xsdb% locals Number_Of_Runs
Number_Of_Runs : 100

Global variables and be displayed, and its value can be modified
xsdb% print Int_Glob
Int_Glob : 0
xsdb% print -set Int_Glob 23
xsdb% print Int_Glob
Int_Glob : 23

Expressions can be evaluated and its value can be displayed
xsdb% print Int_Glob + 1 * 2
Int_Glob + 1 * 2 : 25

Step over a line of source code
xsdb% nxt
Info: Cortex-A53 #0 (target 10) Stopped at 0xfffc0d64 (Step)

View stack trace
xsdb% bt
 0 0xfffc0d64 main()+8: ../src/dhry_1.c, line 79
 1 0xfffc1f4c _startup()+84: xil-crt0.S, line 110

Note: If the .elf file is not accessible from the remote machine on which the server is running, the xsdb%
connect -url TCP:xhdbfarmc7:3121 command should be appended with the -symbols option. as
shown in the above example.

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 439Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=439

Modifying BSP Settings
Below is an example XSCT session that demonstrates building a HelloWorld application to target
the MicroBlaze™ processor. The STDIN and STDOUT OS parameters are changed to use the
MDM_0.

Note: When the BSP settings are changed, it is necessary to update the mss and regenerate the BSP
sources to reflect the changes in the source file before compiling.

setws /tmp/wrk/workspace
app create -name mb_app -hw /tmp/wrk/kc705_system.xsa -proc microblaze_0 -
os standalone -template {Hello World}
bsp config stdin mdm_0
bsp config stdout mdm_0
platform generate
app build -name mb_app

Performing Standalone Application Debug
Xilinx® System Command-line Tool (XSCT) can be used to debug standalone applications on one
or more processor cores simultaneously. The first step involved in debugging is to connect to
hw_server and select a debug target. You can now reset the system/processor core, initialize the
PS if needed, program the FPGA, download an elf, set breakpoints, run the program, examine the
stack trace, view local/global variables.

Below is an example XSCT session that demonstrates standalone application debug on Zynq® -
7000 AP SoC. Comments begin with #.

#connect to remote hw_server by specifying its url.
#If the hardware is connected to a local machine,-url option and the <url>
#are not needed. connect command returns the channel ID of the connection

xsct% connect -url TCP:xhdbfarmc7:3121 tcfchan#0

List available targets and select a target through its id.
#The targets are assigned IDs as they are discovered on the Jtag chain,
#so the IDs can change from session to session.
#For non-interactive usage, -filter option can be used to select a target,
#instead of selecting the target through its ID

xsct% targets
 1 APU
 2 ARM Cortex-A9 MPCore #0 (Running)
 3 ARM Cortex-A9 MPCore #1 (Running)
 4 xc7z020
xsct% targets 2
Reset the system before initializing the PS and configuring the FPGA

xsct% rst

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 440Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=440

Info messages are displayed when the status of a core changes
Info: ARM Cortex-A9 MPCore #0 (target 2) Stopped at 0xfffffe1c (Suspended)
Info: ARM Cortex-A9 MPCore #1 (target 3) Stopped at 0xfffffe18 (Suspended)

Configure the FPGA. When the active target is not a FPGA device,
#the first FPGA device is configured

xsct% fpga ZC702_HwPlatform/design_1_wrapper.bit
100% 3MB 1.8MB/s 00:02

Run loadhw command to make the debugger aware of the processor cores’
memory map
xsct% loadhw ZC702_HwPlatform/system.hdf
design_1_wrapper

Source the ps7_init.tcl script and run ps7_init and ps7_post_config
commands
xsct% source ZC702_HwPlatform/ps7_init.tcl
xsct% ps7_init
xsct% ps7_post_config

Download the application program
xsct% dow dhrystone/Debug/dhrystone.elf
Downloading Program -- dhrystone/Debug/dhrystone.elf
 section, .text: 0x00100000 - 0x001037f3
 section, .init: 0x001037f4 - 0x0010380b
 section, .fini: 0x0010380c - 0x00103823
 section, .rodata: 0x00103824 - 0x00103e67
 section, .data: 0x00103e68 - 0x001042db
 section, .eh_frame: 0x001042dc - 0x0010434f
 section, .mmu_tbl: 0x00108000 - 0x0010bfff
 section, .init_array: 0x0010c000 - 0x0010c007
 section, .fini_array: 0x0010c008 - 0x0010c00b
 section, .bss: 0x0010c00c - 0x0010e897
 section, .heap: 0x0010e898 - 0x0010ec9f
 section, .stack: 0x0010eca0 - 0x0011149f
100% 0MB 0.3MB/s 00:00

Setting PC to Program Start Address 0x00100000

Successfully downloaded dhrystone/Debug/dhrystone.elf

Set a breakpoint at main()
xsct% bpadd -addr &main
0

Resume the processor core
xsct% con

Info message is displayed when the core hits the breakpoint
xsct% Info: ARM Cortex-A9 MPCore #0 (target 2) Stopped at 0x1005a4
(Breakpoint)

Registers can be viewed when the core is stopped
xsct% rrd
 r0: 00000000 r1: 00000000 r2: 0010e898 r3: 001042dc
 r4: 00000003 r5: 0000001e r6: 0000ffff r7: f8f00000
 r8: 00000000 r9: ffffffff r10: 00000000 r11: 00000000
 r12: 0010fc90 sp: 0010fca0 lr: 001022d8 pc: 001005a4
 cpsr: 600000df usr fiq irq
 abt und svc mon
 vfp cp15 Jazelle

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 441Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=441

Memory contents can be displayed
xsct% mrd 0xe000d000
E000D000: 800A0000

Local variables can be viewed
xsct% locals
Int_1_Loc : 1113232
Int_2_Loc : 30
Int_3_Loc : 0
Ch_Index : 0
Enum_Loc : 0
Str_1_Loc : char[31]
Str_2_Loc : char[31]
Run_Index : 1061232
Number_Of_Runs : 2

Local variable value can be modified
xsct% locals Number_Of_Runs 100
xsct% locals Number_Of_Runs
Number_Of_Runs : 100

Global variables and be displayed, and its value can be modified
xsct% print Int_Glob
Int_Glob : 0
xsct% print -set Int_Glob 23
xsct% print Int_Glob
Int_Glob : 23

Expressions can be evaluated and its value can be displayed
xsct% print Int_Glob + 1 * 2
Int_Glob + 1 * 2 : 25

Step over a line of source code
xsct% nxt
Info: ARM Cortex-A9 MPCore #0 (target 2) Stopped at 0x1005b0 (Step)

View stack trace
xsct% bt
 0 0x1005b0 main()+12: ../src/dhry_1.c, line 91
 1 0x1022d8 _start()+88
 2 unknown-pc

Set a breakpoint at exit and resume execution
xsct% bpadd -addr &exit
1
xsct% con
Info: ARM Cortex-A9 MPCore #0 (target 2) Running
xsct% Info: ARM Cortex-A9 MPCore #0 (target 2) Stopped at 0x103094
(Breakpoint)
xsct% bt
 0 0x103094 exit()
 1 0x1022e0 _start()+96
 2 unknown-pc

While a program is running on A9 #0, users can download another elf onto A9 #1 and debug it,
using similar steps. Note that, it’s not necessary to re-connect to the hw_server, initialize the PS
or configure the FPGA in such cases. Users can just select A9 #1 target and download the elf
and continue with further debug.

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 442Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=442

Generating SVF Files
SVF (Serial Vector Format) is an industry standard file format that is used to describe JTAG chain
operations in a compact, portable fashion. Below is a example XSCT script to generate an SVF
file:

Reset values of respective cores
set core 0
set apu_reset_a53 {0x380e 0x340d 0x2c0b 0x1c07}
Generate SVF file for linking DAP to the JTAG chain
Next 2 steps are required only for Rev2.0 silicon and above.
svf config -scan-chain {0x14738093 12 0x5ba00477 4
} -device-index 1 -linkdap -out "dapcon.svf"
svf generate
Configure the SVF generation
svf config -scan-chain {0x14738093 12 0x5ba00477 4
} -device-index 1 -cpu-index $core -delay 10 -out "fsbl_hello.svf"
Record writing of bootloop and release of A53 core from reset
svf mwr 0xffff0000 0x14000000
svf mwr 0xfd1a0104 [lindex $apu_reset_a53 $core]
Record stopping the core
svf stop
Record downloading FSBL
svf dow "fsbl.elf"
Record executing FSBL
svf con
svf delay 100000
Record some delay and then stopping the core
svf stop
Record downloading the application
svf dow "hello.elf"
Record executing application
svf con
Generate SVF
svf generate

Note: SVF files can only be recorded using XSCT. You can use any standard SVF player to play the SVF file.

To play a SVF file in Vivado® Hardware manager, connect to a target and use the following TCL
command to play the file on the selected target.

execute_hw_svf <*.svf file>

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 443Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=443

Running an Application in Non-Interactive
Mode

Xilinx® System Debugger Command-line Interface (XSDB) provides a scriptable interface to run
applications in non-interactive mode. To run the program in previous example using a script,
create a tcl script (and name it as, for example, test.tcl) with the following commands. The
script can be run by passing it as a launch argument to xsdb.

connect -url TCP:xhdbfarmc7:3121

Select the target whose name starts with ARM and ends with #0.
On Zynq, this selects “ARM Cortex-A9 MPCore #0”

targets -set -filter {name =~ "ARM* #0"}
rst
fpga ZC702_HwPlatform/design_1_wrapper.bit
loadhw ZC702_HwPlatform/system.hdf
source ZC702_HwPlatform/ps7_init.tcl
ps7_init
ps7_post_config
dow dhrystone/Debug/dhrystone.elf

Set a breakpoint at exit

bpadd -addr &exit

Resume execution and block until the core stops (due to breakpoint)
or a timeout of 5 sec is reached

con -block -timeout 5

Running Tcl Scripts
You can create Tcl scripts with XSCT commands and run them in an interactive or non-interactive
mode. In the interactive mode, you can source the script at XSCT prompt. For example:

xsct% source xsct_script.tcl

In the non-interactive mode, you can run the script by specifying the script as a launch argument.
Arguments to the script can follow the script name. For example:

$ xsct xsct_script.tcl [args]

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 444Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=444

The script below provides a usage example of XSCT. This script creates and builds an application,
connects to a remote hw_server, initializes the Zynq® PS connected to remote host, downloads
and executes the application on the target. These commands can be either scripted or run
interactively.

Set Vitis workspace
setws /tmp/workspace
Create application project
app create -name hello -hw /tmp/wrk/system.xsa -proc ps7_cortexa9_0 -os
standalone -lang C -template {Hello World}
app build -name hello hw_server
connect -host raptor-host
Select a target
targets -set -nocase -filter {name =~ “ARM* #0}
System Reset
rst -system
PS7 initialization
namespace eval xsdb {source /tmp/workspace/hw1/ps7_init.tcl; ps7_init}
Download the elf
dow /tmp/workspace/hello/Debug/hello.elf
Insert a breakpoint @ main
bpadd -addr &main
Continue execution until the target is suspended
con -block -timeout 500
Print the target registers
puts [rrd]
Resume the target
con

Switching Between XSCT and Vitis Integrated
Development Environment

Below is an example XSCT session that demonstrates creating two applications using XSCT and
modifying the BSP settings. After the execution, launch the Vitis development environment and
select the workspace created using XSCT, to view the updates.

Note: The workspace created in XSCT can be used from Vitis IDE. However, at a time, only one instance of
the tool can use the workspace.

Set Vitis workspace
setws /tmp/workspace
Create application project
app create -name hello -hw /tmp/wrk/system.xsa -proc ps7_cortexa9_0 -os
standalone -lang C -template {Hello World}
app build -name hello

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 445Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=445

Using JTAG UART
Xilinx® System Debugger Command-line Interface (XSDB) supports virtual UART through Jtag,
which is useful when the physical Uart doesn't exist or is non-functional. To use Jtag UART, the
SW application should be modified to redirect STDIO to the Jtag UART. Vitis IDE provides a
CoreSight driver to support redirecting of STDIO to virtual Uart, on ARM based designs. For MB
designs, the uartlite driver can be used. To use the virtual Uart driver, open board support
settings in Vitis IDE and can change STDIN / STDOUT to coresight/mdm.

XSDB supports virtual UART through two commands.

• jtagterminal - Start/Stop Jtag based hyper-terminal. This command opens a new terminal
window for STDIO. The text input from this terminal will be sent to STDIN and any output
from STDOUT will be displayed on this terminal.

• readjtaguart - Start/Stop reading from Jtag Uart. This command starts polling STDOUT
for output and displays in on XSDB terminal or redirects it to a file.

Below is an example XSCT session that demonstrates how to use a JTAG terminal for STDIO.

connect
source ps7_init.tcl
targets -set -filter {name =~"APU"}
loadhw system.hdf
stop
ps7_init
targets -set -nocase -filter {name =~ "ARM*#0"}
rst –processor
dow <app>.elf
jtagterminal
con
jtagterminal -stop #after you are done

Below is an example XSCT session that demonstrates how to use the XSCT console as STDOUT
for JTAG UART.

connect
source ps7_init.tcl
targets -set -filter {name =~"APU"}
loadhw system.hdf
stop
ps7_init
targets -set -nocase -filter {name =~ "ARM*#0"}
rst –processor
dow <app>.elf
readjtaguart
con
readjtaguart -stop #after you are done

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 446Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=446

Below is an example XSCT session that demonstrates how to redirect the STDOUT from JTAG
UART to a file.

connect
source ps7_init.tcl
targets -set -filter {name =~"APU"}
loadhw system.hdf
stop
ps7_init
targets -set -nocase -filter {name =~ "ARM*#0"}
rst –processor
dow <app>.elf
set fp [open uart.log w]
readjtaguart -handle $fp
con
readjtaguart -stop #after you are done

Working with Libraries
Below is an example XSCT session that demonstrates creating a default domain and adding
XILFFS and XILRSA libraries to the BSP. Create a FSBL application thereafter.

Note: A normal domain/BSP does not contain any libraries.

setws /tmp/wrk/workspace
app create -name hello -hw /tmp/wrk/system.xsa -proc ps7_cortexa9_0 -os
standalone -lang C -template {Hello World}
bsp setlib -name xilffs
bsp setlib -name xilrsa
platform generate
app build -name hello

Changing the OS version.

bsp setosversion -ver 6.6

Assigning a driver to an IP.

bsp setdriver -ip ps7_uart_1 -driver generic -ver 2.0

Removing a library (removes xilrsa library from the domain/BSP).

bsp removelib -name xilrsa

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 447Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=447

Editing FSBL/PMUFW Source File
The following example shows you how to edit FSBL/PMUFW source files.

setws workspace
app create -name a53_app -hw zcu102 -os standalone -proc psu_cortexa53_0
#Go to “workspace/zcu102/zynqmp_fsbl” or “workspace/zcu102/zynqmp_pmufw”
and modify the source files using any editor like gedit or gvim for boot
domains zynqmp_fsbl and zynqmp_pmufw.
platform generate

Editing FSBL/PMUFW Settings
The following example shows you how to edit FSBL/PMUFW settings.

setws workspace
app create -name a53_app -hw zcu102 -os standalone -proc psu_cortexa53_0
#If you want to modify anything in zynqmp_fsbl domain use below command to
active that domain
domain active zynqmp_fsbl
#If you want to modify anything in zynqmp_pmufw domain use below command to
active that domain
domain active zynqmp_pmufw
#configure the BSP settings for boot domain like FSBL or PMUFW
bsp config -append compiler_flags -DFSBL_DEBUG_INFO
platform generate

Chapter 41: XSCT Use Cases

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 448Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=448

Section VI

Embedded Design Tutorials
The following hardware specific embedded design tutorials are available for embedded software
designers.

• Zynq-7000 SoC: Embedded Design Tutorial (UG1165)

• Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 449Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1165-zynq-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=449

Section VII

Embedded Drivers and Libraries
The embedded drivers and libraries are hosted on the Xilinx® wiki. You can access them with the
following links:

• Embedded Driver Documentation

• Embedded Library Documentation

Section VII: Embedded Drivers and Libraries

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 450Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841745/Baremetal+Drivers+and+Libraries
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841745/Baremetal+Drivers+and+Libraries
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=450

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 451Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=451

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2019 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal, Virtex,
Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United
States and other countries. All other trademarks are the property of their respective owners.

Appendix A: Additional Resources and Legal Notices

UG1400 (v2019.2) November 11, 2019 www.xilinx.com
Vitis Embedded Software Development 452Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1400&Title=Vitis%20Unified%20Software%20Platform%20Documentation&releaseVersion=2019.2&docPage=452

	Vitis Unified Software Platform Documentation
	Revision History
	Table of Contents
	Sec. I: Getting Started
	Ch. 1: Overview
	Key Concepts
	Document Scope and Audience

	Ch. 2: Migrating to the Vitis Software Platform from Xilinx SDK
	Ch. 3: Installing the Vitis Software Platform
	Installation Requirements
	Install Required CentOS/RHEL Packages
	OpenCL Installable Client Driver Loader

	Vitis Software Platform Installation
	Install the Vitis Software Platform
	Installing Xilinx Runtime
	Installing Embedded Platforms
	Setting Up the Environment to Run Vitis Tools

	Licensing
	Install Certificate-Based Node-Locked License Key File
	Serving Certificate-Based Floating Licenses
	Serve New License Servers
	Serve Client Machines Pointing to a Floating License

	Ch. 4: Create a Platform
	Create a Hardware Design (XSA File)
	Create a Platform Project

	Ch. 5: Create a Sample Application
	Build a Sample Application
	Debug and Run the Application

	Ch. 6: Vitis IDE Extensions

	Sec. II: Using the Vitis IDE
	Ch. 7: Develop
	Platform
	Creating a Platform
	Configuring a Domain/Board Support Package
	Using the Board Support Package Overview Page
	Using the Board Support Package Settings Page
	Using the Board Support Package Drivers Page
	Using the Board Support Package Settings Driver Configuration Page
	Adding a Domain to an Existing Platform
	Adding a Linux Domain
	Adding a Standalone Domain
	Adding a FreeRTOS Domain

	Generating a Platform

	Modifying Source Code for FSBL and PMU Firmware
	Re-targeting a Platform for a New Hardware Specification
	Resetting BSP Sources for a Domain

	Applications
	Creating a Standalone Application Project
	Creating a Linux Application Project
	Creating a User Application Template
	Accessing User Application Templates

	Working with Projects
	Building Projects
	Build Configurations
	Changing the Build Configuration
	Adding Libraries and Library Paths
	Specifying the Linker Options
	Specifying Debug and Optimization Compiler Flags
	Specifying Miscellaneous Compiler Flags
	Restoring Build Configuration

	Makefiles

	Debugging Projects
	Hardware Debug Target
	Working with GDB

	Linker Scripts
	Generating a Linker Script for an Application
	Basic Tab
	Advanced Tab

	Manually Adding the Linker Script
	Modifying a Linker Script

	Creating a Library Project
	Creating a New Zynq UltraScale+ MPSoC FSBL Application Project

	Using Custom Libraries in Application Projects

	Ch. 8: Run, Debug, and Optimize
	Run Application Project
	Launch Configurations
	Main Tab
	Application Tab
	Target Setup Tab
	Profiler
	Creating or Editing a Launch Configuration
	Customizing Launch Configurations

	Target Connections
	Creating a New Target Connection
	Setting Custom JTAG Frequency
	Establishing a Target Connection

	Viewing Memory Contents
	Dump/Restore Memory

	Viewing Target Registers
	Viewing IP Register Details

	Debug Application Project
	System Debugger Supported Design Flows
	Standalone Application Debug Using Xilinx System Debugger
	Linux Application Debugging with System Debugger
	Troubleshooting
	My application already exists in the Linux target. How can I tell System Debugger to use my existing application, instead of downloading the application?

	Attach and Debug using Xilinx System Debugger
	Standalone Application Debug using System Debugger on QEMU

	Multi-Processor Debugging with System Debugger
	Using a Remote Host with System Debugger
	OS Aware Debugging
	Enabling OS Aware Debug
	Process/Thread Level Debugging
	Debugging a Process from main()
	Debugging a Loadable Kernel Module

	Xen Aware Debugging
	Enabling Xen Awareness
	Debugging Hypervisor
	Debugging a Dom-0/Dom-U Kernel
	Debugging Dom-0/Dom-U User Space Processes
	Debugging a Dom-U Standalone Application

	Debugging Self-Relocating Programs

	Cross-Triggering
	Enable Cross-Triggering
	Cross-Triggering in Zynq Devices
	Cross-Triggering in Zynq UltraScale+ MPSoCs
	Use Cases
	FPGA to CPU Triggering
	PTM to CPU Triggering
	CPU to CPU Triggering
	XSCT Cross-Triggering Commands

	Profile/Analyze
	TCF Profiling
	gprof Profiling (Zynq-7000 SoC)
	Specifying Profiler Configuration
	Setting Up the Hardware for Profiling
	Setting Up the Software for Profiling
	Setting up the Domain
	Setting Up the Software Application
	Viewing the Profiling Results

	Profiling Linux Applications with System Debugger
	Non-Intrusive Profiling for MicroBlaze Processors
	Specifying Non-Intrusive Profiler Configuration
	Viewing the Non-Intrusive Profiling Results

	FreeRTOS Analysis using STM

	Optimize
	Performance Analysis
	Working with the Performance Analysis Perspective
	Project Explorer View
	Deleting Supplementary Files
	Link with Editor
	Exporting a Trace Package
	Importing a Trace Package

	Events Editor
	Searching and Filtering Events
	Searching an Event
	Filtering an Event

	Bookmarking an Event

	Histogram View
	Colors View
	Filters View
	Time Chart View
	Analysis Views
	Performance Session Manager
	Configure Session
	Modify ATG Configuration

	System Performance Modeling
	Predefined Design Flow
	System Performance Modeling Using the Predefined Design
	Creating the System Performance Modeling Project
	Selecting an ATG Traffic Configuration

	Configure FSBL Parameters

	User-Defined Flow
	System Performance Modeling Using a User-Defined Flow

	Limitations

	Packaging the System/Utilities
	Bootgen Utility
	Program Flash
	Creating a Bootable Image and Program the Flash

	Ch. 9: Other Xilinx Utilities
	Xilinx Software Command-Line Tool
	Program FPGA
	Dump/Restore Data File
	Launch Shell
	Import
	Export
	Generating Device Tree

	Sec. III: Embedded Software Development Flow in Vitis
	Ch. 11: Creating a Platform Project
	Ch. 12: Customizing a Pre-Built Platform
	Ch. 13: Adding Domains to a Platform Project
	Ch. 14: Creating Applications from Domains in a Platform
	Ch. 15: Managing Multiple Applications in a System Project
	Ch. 17: Switching FSBL Targeting Processor
	Ch. 18: Creating Multiple Domains for a Single Hardware
	Ch. 19: Changing a Referenced Domain
	Ch. 20: Changing and Updating the Hardware Specification
	Ch. 21: Debugging the Application on Hardware
	Ch. 22: Running and Debugging Applications under a System Project Together
	Ch. 23: Creating a Bootable Image
	Ch. 24: Flash Programming
	Ch. 25: Generating Device Tree
	Ch. 10: Overview
	Document Scope and Audience
	New Concepts in the Vitis Software Platform
	Vitis Software Platform and SDK Comparison Table

	Ch. 16: Creating and Building Applications for XSA Exported from the Vivado Design Suite
	Exporting the DSA/XSA files from the Vivado Design Suite

	Ch. 26: Debugging an Application using the User-Modified/Custom FSBL
	Creating a Hello World Application
	Modifying the Source Code of the FSBL in Platform
	Modifying the BSP Settings of the FSBL in Platform
	Debugging the “Hello World” Application using the Modified FSBL

	Ch. 27: Modifying the Domain Sources (Driver and Library Code)
	Creating a Repository
	Adding the Repository
	Creating the Application Project

	Sec. IV: Bootgen Tool
	Ch. 28: Introduction
	Installing Bootgen
	Boot Time Security

	Ch. 29: Boot Image Layout
	Zynq-7000 SoC Boot and Configuration
	Zynq-7000 SoC Boot Image Layout
	Zynq-7000 SoC Boot Header
	Zynq-7000 SoC Register Initialization Table
	Zynq-7000 SoC Image Header Table
	Zynq-7000 SoC Image Header
	Zynq-7000 SoC Partition Header
	Zynq-7000 SoC Partition Attribute Bits

	Zynq-7000 SoC Authentication Certificate
	Zynq-7000 SoC Authentication Certificate Header

	Zynq-7000 SoC Boot Image Block Diagram

	Zynq UltraScale+ MPSoC Boot and Configuration
	Zynq UltraScale+ MPSoC Boot Image
	Zynq UltraScale+ MPSoC Boot Header
	Zynq UltraScale+ MPSoC Boot Header Attribute Bits

	Zynq UltraScale+ MPSoC Register Initialization Table
	Zynq UltraScale+ MPSoC PUF Helper Data
	Zynq UltraScale+ MPSoC Image Header Table
	Zynq UltraScale+ MPSoC Image Header
	Zynq UltraScale+ MPSoC Partition Header
	Zynq UltraScale+ MPSoC Partition Attribute Bits

	Zynq UltraScale+ MPSoC Authentication Certificates
	Zynq UltraScale+ MPSoC Authentication Certification Header

	Zynq UltraScale+ MPSoC Secure Header
	Zynq UltraScale+ MPSoC Boot Image Block Diagram

	Ch. 30: Creating Boot Images
	Boot Image Format (BIF)
	BIF Syntax and Supported File Types
	Attributes

	Ch. 31: Using Bootgen Interfaces
	Bootgen GUI Options
	Using Bootgen on the Command Line
	Commands and Descriptions

	Ch. 32: Boot Time Security
	Using Encryption
	Encryption Process
	Decryption Process
	Encrypting Zynq-7000 Device Partitions
	Encrypting Zynq MPSoC Device Partitions
	Operational Key
	Rolling Keys
	Gray/Obfuscated Keys
	Key Generation
	Black/PUF Keys
	Multiple Encryption Key Files

	Using Authentication
	Signing
	Verifying
	Zynq UltraScale+ MPSoC Authentication Support
	NIST SHA-3 Support
	Bitstream Authentication Using External Memory
	User eFUSE Support with Enhanced RSA Key Revocation
	Key Generation
	PPK Hash for eFUSE

	Using HSM Mode
	Creating a Boot Image Using HSM Mode: PSK is not Shared
	Creating a Zynq-7000 SoC Device Boot Image using HSM Mode
	Creating a Zynq UltraScale+ MPSoC Device Boot Image using HSM Mode

	Ch. 33: FPGA Support
	Encryption and Authentication
	HSM Mode

	Ch. 34: Use Cases and Examples
	Zynq MPSoC Use Cases
	Simple Application Boot on Different Cores
	PMUFW Load by BootROM
	PMUFW Load by FSBL
	Booting Linux
	Encryption Flow: BBRAM Red Key
	Encryption Flow: Red Key Stored in eFUSE
	Encryption Flow: Black Key Stored in eFUSE
	Encryption Flow: Black Key Stored in Boot Header
	Encryption Flow: Gray Key Stored in eFUSE
	Encryption Flow: Gray Key stored in Boot Header
	Operational Key
	Using Op Key to Protect the Device Key in a Development Environment
	Single Partition Image
	Authentication Flow
	BIF File with SHA-3 eFUSE RSA Authentication and PPK0
	XIP

	Ch. 35: BIF Attribute Reference
	aarch32_mode
	aeskeyfile
	alignment
	auth_params
	authentication
	big_endian
	bh_keyfile
	bh_key_iv
	bhsignature
	blocks
	boot_device
	bootimage
	bootloader
	bootvectors
	checksum
	destination_cpu
	destination_device
	early_handoff
	encryption
	exception_level
	familykey
	fsbl_config
	headersignature
	hivec
	init
	keysrc_encryption
	load
	offset
	partition_owner
	pid
	pmufw_image
	ppkfile
	presign
	pskfile
	puf_file
	reserve
	split
	spkfile
	spksignature
	spk_select
	sskfile
	startup
	trustzone
	udf_bh
	udf_data
	xip_mode

	Ch. 36: Command Reference
	arch
	bif_help
	dual_qspi_mode
	efuseppkbits
	encrypt
	encryption_dump
	fill
	generate_hashes
	generate_keys
	image
	log
	nonbooting
	o
	p
	padimageheader
	process_bitstream
	read
	spksignature
	split
	verify
	verify_kdf
	w
	zynqmpes1
	Initialization Pairs and INT File Attribute

	Ch. 37: Bootgen Utility

	Sec. V: Xilinx Software Command-Line Tool
	Ch. 38: Xilinx Software Command-Line Tool
	System Requirements

	Ch. 39: Installing and Launching XSCT
	Installing and Launching XSCT on Windows
	Installing and Launching XSCT on Linux

	Ch. 40: XSCT Commands
	Target Connection Management
	connect
	disconnect
	targets
	gdbremote connect
	gdbremote disconnect

	Target Registers
	rrd
	rwr

	Program Execution
	state
	stop
	con
	stp
	nxt
	stpi
	nxti
	stpout
	dis
	print
	locals
	backtrace
	profile
	mbprofile
	mbtrace

	Target Memory
	mrd
	mwr
	osa
	memmap

	Target Download FPGA/BINARY
	dow
	verify
	fpga

	Target Reset
	rst

	Target Breakpoints/Watchpoints
	bpadd
	bpremove
	bpenable
	bpdisable
	bplist
	bpstatus

	JTAG UART
	jtagterminal
	readjtaguart

	Miscellaneous
	loadhw
	unloadhw
	mdm_drwr
	mb_drwr
	mdm_drrd
	mb_drrd
	configparams
	version
	xsdbserver start
	xsdbserver stop
	xsdbserver disconnect
	xsdbserver version

	JTAG Access
	jtag targets
	jtag sequence
	jtag device_properties
	jtag lock
	jtag unlock
	jtag claim
	jtag disclaim
	jtag frequency
	jtag skew
	jtag servers

	Target File System
	tfile open
	tfile close
	tfile read
	tfile write
	tfile stat
	tfile lstat
	tfile fstat
	tfile setstat
	tfile fsetstat
	tfile remove
	tfile rmdir
	tfile mkdir
	tfile realpath
	tfile rename
	tfile readlink
	tfile symlink
	tfile opendir
	tfile readdir
	tfile copy
	tfile user
	tfile roots
	tfile ls

	SVF Operations
	svf config
	svf generate
	svf mwr
	svf dow
	svf stop
	svf con
	svf delay

	Device Configuration System
	device program
	device status

	Vitis Projects
	getaddrmap
	getperipherals
	repo
	platform
	platform active
	platform clean
	platform config
	platform create
	platform fsbl
	platform generate
	platform list
	platform pmufw
	platform read
	platform remove
	platform report
	platform write

	domain
	domain active
	domain active
	domain config
	domain create
	domain list
	domain remove
	domain report

	bsp
	bsp config
	bsp getdrivers
	bsp getlibs
	bsp getos
	bsp listparams
	bsp regenerate
	bsp removelib
	bsp setdriver
	bsp setlib
	bsp setosversion

	library
	library build
	library clean
	library create
	library list
	library remove
	library report

	setws
	getws
	app
	app build
	app clean
	app config
	app create
	app list
	app remove
	app report
	app switch

	sysproj
	sysproj build
	sysproj clean
	sysproj list
	sysproj remove
	sysproj report

	importprojects
	importsources
	toolchain

	Ch. 41: XSCT Use Cases
	Changing Compiler Options of an Application Project
	Creating an Application Project Using an Application Template (Zynq UltraScale+ MPSoC FSBL)
	Creating a Bootable Image and Program the Flash
	Debugging a Program Already Running on the Target
	Debugging Applications on Zynq UltraScale+ MPSoC
	Modifying BSP Settings
	Performing Standalone Application Debug
	Generating SVF Files
	Running an Application in Non-Interactive Mode
	Running Tcl Scripts
	Switching Between XSCT and Vitis Integrated Development Environment
	Using JTAG UART
	Working with Libraries
	Editing FSBL/PMUFW Source File
	Editing FSBL/PMUFW Settings

	Sec. VI: Embedded Design Tutorials
	Sec. VII: Embedded Drivers and Libraries
	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	Please Read: Important Legal Notices

