

VANGO TECHNOLOGIES, INC.

Contents

1	Intro	duction	
2	Descr	iption	
	2.1	Device	overview
	2.2	Overvie	ew14
		2.2.1	ARM® Cortex®-M4F with FPU core and DSP instruction set 14
		2.2.2	Memory protection unit (MPU) 15
		2.2.3	Flash memory
		2.2.4	Cyclic redundancy check (CRC) calculation unit
		2.2.5	Embedded SRAM
		2.2.6	Nested vectored interrupt controller (NVIC)16
		2.2.7	External interrupt/event controller (EXTI) 17
		2.2.8	Clocks and startup
		2.2.9	Boot modes
		2.2.10	Power supply schemes19
		2.2.11	Power supply supervisor 19
		2.2.12	Voltage regulator
		2.2.13	Low-power modes
		2.2.14	Direct Memory Access Controller (DMA)
		2.2.15	Real-time clock (RTC) and backup registers
		2.2.16	Timers and watchdogs (TMR/WDG) 21
		2.2.17	Inter-integrated-circuit interface (I2C)
		2.2.18	Universal synchronous/asynchronous receiver transmitters (USART) 23
		2.2.19	Serial peripheral interface (SPI)24
		2.2.20	Inter-integrated sound interface (I2S)25
		2.2.21	Controller area network (CAN)25
		2.2.22	General-purpose inputs/outputs (GPIO)25
		2.2.23	Remap capability
		2.2.24	Analog to digital converter (ADC)
		2.2.25	Temperature sensor
		2.2.26	Serial wire JTAG debug port (SWJ-DP)26

V32G410x Datasheet

Contents

Pino	uts and pi	n descriptions27		
Mem	ory mappi	ing44		
Elect	Electrical characteristics45			
5.1	Parame	ter conditions		
	5.1.1	Minimum and maximum values		
	5.1.2	Typical values		
	5.1.3	Typical curves		
	5.1.4	Loading capacitor		
	5.1.5	Pin input voltage		
	5.1.6	Power supply scheme		
	5.1.7	Current consumption measurement		
5.2	Absolute	e maximum ratings		
5.3	Operati	ng conditions		
	5.3.1	General operating conditions 49		
	5.3.2	Operating conditions at power-up/ power-down		
	5.3.3	Embedded reset and power control block characteristics		
	5.3.4	Embedded reference voltage 51		
	5.3.5	Supply current characteristics		
	5.3.6	External clock source characteristics		
	5.3.7	Internal clock source characteristics		
	5.3.8	Wakeup time from low-power mode		
	5.3.9	PLL characteristics		
	5.3.10	Memory characteristics		
	5.3.11	I/O port characteristics		
	5.3.12	NRST pin characteristics		
	5.3.13	TMR timer characteristics		
	5.3.14	Communications interfaces		
	5.3.15	12-bit ADC characteristics74		
	5.3.16	Temperature sensor characteristics		
5.4	ESD ele	ctricial character		
stroa	ige			
6.1	-	sensitivity		
6.2	Storage	conditions77		

Contents

7	Reflo	ow soldering process	78
8	Package information		
	8.1	LQFP100 14 x 14 mm package information	79
	8.2	LQFP64 10x10mm package information	
	8.3	QFN48 7 x 7 mm package information	
	8.4	Thermal characteristics	

List of Tables

Table1.	Document Version History9
Table2.	V32G410x series device function and configuration13
Table3.	The bootloader pin configurations18
Table4.	Timer feature comparison21
Table5.	USART/UART feature comparison24
Table6.	V32G410x series pin definitions
Table7.	Voltage characteristics48
Table8.	Current characteristics48
Table9.	Thermal characteristics48
Table10.	General operating conditions49
Table11.	Operating conditions at power-up / power-down49
Table12.	Embedded reset and power control block characteristics
Table13.	Embedded internal reference voltage51
Table14.	Typical Current Consumption in Operating Modes52
Table15.	Typical Current Consumption in Sleep Mode53
Table16.	Maximum Current Consumption in Operating Mode54
Table17.	Maximum Current Consumption in Sleep Mode55
Table18.	Typical and Maximum Current Consumption in Shutdown and Standby Modes
Table19.	Comparison of typical current consumption in standby mode with temperature at different VDD56
Table20.	Current Consumption of Built-in Peripherals57
Table21.	High-speed external user clock characteristics58
Table22.	Low-speed external user clock characteristics59
Table23.	HSE 4-25 MHz oscillator characteristics ⁽¹⁾⁽²⁾ 61
Table24.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz) ⁽¹⁾ 61
Table25.	HSI oscillator characteristics ⁽¹⁾ 62

Table26.	LSI oscillator characteristics ⁽¹⁾ 63
Table27.	Low-power mode wakeup timings64
Table28.	PLL characteristics64
Table29.	Internal Flash memory characteristics64
Table30.	Internal Flash memory endurance and data retention65
Table31.	I/O static characteristics65
Table32.	NRST pin characteristics66
Table33.	TMRx ⁽¹⁾ characteristics67
Table34.	I2C characteristics68
Table35.	SCL frequency $(f_{PCLK1} = 36 \text{ MHz}, \text{VDD} = 3.3 \text{ V})^{(1)(2)}$
Table36.	SPI characteristics70
Table37.	I2S characteristics72
Table38.	ADC Characteristics74
Table39.	Temperature sensor characteristics 75
Table40.	ESD electricial parameter76
Table41.	MSL summary77
Table42.	Bagged storage conditions77
Table43.	Reflow profile conditions78
Table44.	Package thermal characteristics

List of Figure

Figure1.	V32G410x block diagram14
Figure2.	Clock tree17
Figure3.	V32G410CGU7 QFN48 pinout27
Figure4.	V32G410RGT7 LQFP64 pinout28
Figure5.	V32G410VUT7/ V32G410VGT7 LQFP100 pinout29
Figure6.	Memory map44
Figure7.	Pin loading conditions45
Figure8.	Pin input voltage46
Figure9.	Power supply scheme46
Figure10.	Power on reset/power down reset waveform51
Figure11.	Typical Current Consumption in Shutdown Mode vs. Temperature at Different VDD
Figure12.	High-speed external clock source AC timing diagram59
Figure13.	Low-speed external clock source AC timing diagram60
Figure14.	Typical application with an 8 MHz crystal61
Figure15.	Typical application with a 32.768 KHz crystal62
Figure16.	HSI oscillator frequency accuracy vs. Temperature63
Figure17.	Recommended NRST pin protection67
Figure18.	I2C bus AC waveforms and measurement circuit ⁽¹⁾ 68
Figure19.	SPI timing diagram - slave mode and CPHA = 070
Figure20.	SPI timing diagram - slave mode and CPHA = $1^{(1)}$
Figure21.	SPI timing diagram - master mode ⁽¹⁾ 71
Figure22.	I2S slave timing diagram (Philips protocol) ⁽¹⁾ 72
Figure23.	I2S master timing diagram (Philips protocol) ⁽¹⁾ 73
Figure24.	V _{SENSE} vs. temperature
Figure25.	A typical lead-free reflow mode78
Figure26.	LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline79

Figure27. LQFP64	10x10mm	64 pin low-prof	ile quad flat p	ackage outline	81
Figure28. QFN48 -	- 7 x 7 mm	48 pin low-prot	file quad flat p	oackage outline.	82

Revision History

Table1.	Document Version History	
---------	---------------------------------	--

Date	Revision	Description	
2022.08.19	V1.2	Initial Version;	
2022.10.28	V1.3	Add V32G410VGT7, and delete V32G410CGUB,V32G410CGTB,V32G410RGT7	
2023.01.09	V1.4	Delete V32G410LUT7	
2023.02.17	V1.5	Add V32G410RGT7	
		Delete GPIO open drain output and input pull-up mode	
2023.04.23	V1.6	I2C Delete Slave Mode I2S Delete Slave and Data Extension Mode	
		Remove LSE Stable signal	

ARM®-based 32-bit Cortex®-M4F MCU + FPU, with 4096 Kbyte Internal Flash Memory, 17 Timers, 2 ADCs, 16 Communication Interfaces

Feature

- Core: ARM[®]32-bit Cortex[®]-M4F CPU with FPU
 - 200 MHz maximum frequency, with a Memory Protection Unit (MPU), single cycle multiplication and hardware division
 - Floating Point Unit (FPU), DSP instructions
- Memory
 - Up to 4096 Kbytes of Flash instruction/data memory
 - SPIM interface: Extra interfacing up to 16 Mbytes of external SPI Flash
 - Up to 1536 Kbytes of SRAM
- Clock, Reset, and Power Management
 - 2.6 V ~ 3.6 V application supply and I/Os
 - POR/ PDR, and programmable voltage detector (PVD)
 - 4 to 25 MHz crystal oscillator
 - Internal 48 MHz factory-trimmed RC (accuracy 1% at TA=25 °C, 2.5 % at TA=-40 to +105 °C)
 - Internal 40 KHz RC oscillator
 - 32 KHz oscillator with calibration
- Low Power Consumption
 - Sleep, Stop, and Standby modes
 - 4 WKUP pins, which can wake up the standby mode
 - 2 12-bit A/D converters, 0.5 µs converting time (Up to 16 channels)
 - Conversion range: 0 V to 3.6 V
 - Triple sample and hold capability
 - Temparature sensor
- DMA: 14 channel DMA controller
 - Peripherals supported: timers, ADC, I2S, SPI, I2C, and USART
- Debug Mode
 - Serial Wire Debug (SWD) and JTAG interface
- Up to 86 Fast I/O Interfaces
 - 86 multifunctional and bidirectional I/Os, up to 79 GPIOs mappable to 16 external interrupt vectors and almost 5 V-tolerant
 - All fast I/Os, control registers accessable with f_{AHB} speed
- Up to 17 Timers
 - Up to 8 x 16-bit timers + 2 x 32-bit timers; each with 4 input capture/ output comparison/PWM or pulse counter and quadrature (incremental) encoder input.

Feature

- Up to 2 x 16-bit motor control PWM advanced timers with dead-time generator and emergency stop
- 2 x Watchdog timers (independent and window)
- SysTick timer: 24-bit downcounter
- 2 x 16-bit basic timers
- Up to 16 Communication Interfaces
 - Up to 3 x I2C interfaces (SMBus/ PMBus)
 - Up to 8 x USARTs (ISO7816 interface, LIN, IrDA capability, and modem control)
 - Up to 4 x SPIs (36 Mbit/s), all with I2S interface multiplexed
 - CAN interface (2.0A and 2.0B)
- CRC Calculation Unit
- Packaging
 - QFN48 7x7 mm (V32G410CGU7)
 - LQFP64 10x10 mm (V32G410RGT7)
 - LQFP100 14x14 mm (V32G410VUT7)
 - LQFP100 14x14 mm (V32G410VGT7)

1 Introduction

This article gives the function information of the V32G410x series products.

The introduction of the V32G410x series must be read together with the V32G410x series product manual and the V32G410x series reference manual. About internal flash storage Information about programming, erasing and protection of the device can also be obtained in the V32G410x series reference manual. For information about the Cortex®-M4 core, please refer to The Cortex-M4 technical reference manual can be downloaded from the ARM website: http://infocenter.arm.com

2 Description

The V32G410x incorporates the high-performance ARM® Cortex®-M4F 32-bit RISC core operating at 200MHZ. The Cortex®-M4F core features a Floating point unit (FPU) single precision which supports all ARM single-precision data processing instructions and data type. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The V32G410x incorporates high-speed embedded memories (up to 4096 Kbytes of Flash memory, up to 1536 Kbytes of SRAM), the extensive external SPI Flash (up to 16 Mbytes addressing capability), and enhanced I/Os and peripherals connected to two APB buses.

The V32G410x offers two 12-bit ADCs, eight general-purpose 16-bit timers plus two general- purpose 32-bit timers, and up to two PWM timers for motor control, as well as standard and advanced communication interfaces, up to three I2Cs, four SPIs (all multiplexed as I2S), eight USART/UART and a CAN.

The V32G410x operates in the -40 to +105 °C temperature range, from a 2.6 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power application.

2.1 Device overview

The V32G410x offers devices in four different package types: from 48 pins and 100 pins. The description below gives an overview of the complete range of peripherals proposed in different devices.

	Davit Nume have	V32G41	V32G41	V32G41	V32G41
	Part Number	0VGT7	0CGU7	0RGT7	0VUT7
(CPU frequency (MHz)		2	00	
	Flash (Kbytes)	1024	1024	1024	4096
	SRAM (Kbytes) ⁽¹⁾	1536	1536	1536	1536
	SPIM		0	0	0
	Advanced-control	2			
	32-bit general-purpose	2			
	16-bit general-purpose	8			
Timore	Basic	2			
Timers	SysTick	1			
	IWDG	1			
	WWDG	1			
	RTC			1	

Table2. V32G410x series device function and configuration

Description

V32G410x Datasheet

	I2C	3	1	3	3	
Comm	SPI_I2S	4	3	4/4	4	
Comm.	USART+UART	4+4	2+3	4+4	4+4	
	CAN	1	1	1	1	
Analog	12-bit ADC	2				
Analog	numbers/channels	16	10	16	16	
GPIOs		80	41	51	80	
Operating temperatures			-2	40 to +105	°C	
		LQFP100	QFN48	LQFP64	LQFP100	
Packages		14 x 14	7 x 7	10x10	14 x 14	
		mm	mm	mm	mm	

Note1:

In 1536KB mode, the flash memory capacity with zero wait state is disabled;

In 1408KB mode, the flash memory capacity with zero wait state is limited to 128K bytes; In 1280KB mode, the flash memory capacity with zero wait state is limited to 256K bytes; In 1152KB mode, the flash memory capacity with zero wait state is limited to 384K bytes; In 1024KB mode, the flash memory capacity with zero wait state is limited to 512K bytes; In 896KB mode, the flash memory capacity with zero wait state is limited to 640K bytes.

2.2 Overview

The ARM Cortex®-M4F with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

2.2.1 ARM® Cortex®-M4F with FPU core and DSP instruction set

The ARM Cortex®-M4F with FPU 32-bit RISC processor features exceptional code efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using meta language development tools, while avoiding saturation.

With its embedded ARM core, the V32G410x is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the V32G410x.

Note1: Cortex®-M4F with FPU is binary compatible with Cortex®-M3.

Figure 1. V32G410x block diagram

V32G410x Datasheet

2.2.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

2.2.3 Flash memory

Up to 4096 Kbytes of embedded Flash is available for storing programs and data.

The V32G410x provides extra interface called SPIM (SPI memory), which interfaces the external SPI Flash memory storing programs and data. With maximum 16 Mbytes addressing capability, SPIM can be used as an extensive Flash memory Bank 2.

2.2.4 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial among other applications, CRCbased techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location.

2.2.5 Embedded SRAM

Up to 1536 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.2.6 Nested vectored interrupt controller (NVIC)

The V32G410x embed a nested vectored interrupt controller able to manage 16 priority levels and handle up to 79 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4 with FPU.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining

- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.2.7 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 18 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 86 GPIOs can be connected to the 16 external interrupt lines.

2.2.8 Clocks and startup

System clock selection is performed on startup, however the internal RC 48 MHz oscillator (HSI) through a divided-by-6 divider (8 MHz) is selected as default CPU clock on reset. An external 4 to 25 MHz clock (HSE) can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Multiple prescalers allow the configuration of the AHB and the APB (APB1 and APB2) frequency. The maximum frequency of the AHB domain is 200MHZ. The maximum allowed frequency of the APB domains are 100 MHz See Figure 2 for details on the clock tree.

Figure 2. Clock tree

2.2.9 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from user Flash. By default, boot from Flash memory bank 1 is selected.
 User can choose to boot from Flash memory bank 2 by setting a bit in the option bytes.
- Boot from system memory
- Boot from embedded SRAM

The bootloader is stored in system memory. The flash memory can be reprogrammed via USART1 or USART2. Table3 provides the the bootloader pin configurations.

Table3.	The bootloader	pin configurations
---------	----------------	--------------------

Interface	Pin
	PA9: USART1_TX
USART1	PA10: USART1_RX
	PA2: USART2_TX (remapped)
USART2	PA3: USART2_RX (remapped)

2.2.10 Power supply schemes

- $V_{DD} = 2.6 \sim 3.6$ V: external power supply for I/Os, RCL, XOL and the internal regulator provided externally through V_{DD} pins.
- $V_{DDA} = 2.6 \sim 3.6$ V: external analog power supplies for ADC\RCH\Tempersensor. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS} , respectively.

For more detail on how to connect power pins, refer to Figure9.

2.2.11 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2.6 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 13 for the characteristic values of V_{POR/PDR} and V_{PVD}.

2.2.12 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power down.

- Main mode (MR) is used in the nominal regulation mode (Run) and in the Stop mode
- Low-power mode (LPR) can be used in the Stop mode
- Power down mode is used in Standby mode: the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption of the regulator (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

2.2.13 Low-power modes

The V32G410x supports three low-power modes to achieve the best compromise between low- power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.1 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator is put in normal mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.1 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note1: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

2.2.14 Direct Memory Access Controller (DMA)

The flexible 14-channel general-purpose DMAs (7 channels for DMA1 and 7 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory, and memory-to-peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose, basic, and advanced-control timers TMRx, I2S, and ADC.

2.2.15 Real-time clock (RTC) and backup registers

The RTC and the backup registers are supplied with VDD. The backup registers are sixty- four 16-bit registers used to store 128 bytes of user application data. They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an

alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low- power RC oscillator, or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using a divied-by-64 output of TAMPER pin to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.2.16 Timers and watchdogs (TMR/WDG)

The V32G410x devices include up to 2 advanced-control timers, up to 10 generalpurpose timers, 2 basic timers, 2 watchdog timers, and a SysTick timer.

The table below compares the features of the advanced-control, general-purpose, and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complement ary outputs
TMR1, TMR8	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TMR2, TMR5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TMR3, TMR4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TMR9, TMR12	16-bit	Up	Any integer between 1 and 65536	No	2	No
TMR10, TMR11, TMR13, TMR14	16-bit	Up	Any integer between 1 and 65536	No	1	No
TMR6, TMR7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table4. Timer feature comparison

Advanced-control timers (TMR1 and TMR8)

The two advanced-control timers (TMR1 and TMR8) can each be seen a three-phase

PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TMRx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TMR timers which have the same architecture. The advanced-control timer can therefore work together with the TMR timers via the link feature for synchronization or event chaining.

General-purpose timers (TMRx)

There are 10 synchronizable general-purpose timers embedded in the V32G410x.

• TMR2, TMR3, TMR4, and TMR5

The V32G410x has 4 full- featured general-purpose timers: TMR2, TMR3, TMR4, and TMR5. The TMR2 and TMR5 timers are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. The TMR3 and TMR4 timers are based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. They all feature four independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs.

The TMR2, TMR3, TMR4, and TMR5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers via the link feature for synchronization or event chaining. In debug mode, their counter can be frozen. Any of these general-purpose timers can be used to generate PWM outputs.

The TMR2, TMR3, TMR4, and TMR5 are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

• TMR9 and TMR12

TMR9 and TMR12 are based on a 16-bit auto-reload up-counter, a 16-bit prescaler, and two independent channels for input capture/output compare, PWM, or one-pulse mode output. They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

• TMR10, TMR11, TMR13, and TMR14

These timers are based on a 16-bit auto-reload up-counter, a 16-bit prescaler, and one independent channels for input capture/output compare, PWM, or one-pulse mode output.

They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured

general-purpose timers. They can also be used as simple time bases.

Basic timers (TMR6 and TMR7)

These two timers can be used as a generic 16-bit time base.

Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog (WWDG)

The window watchdog is based on a 7-bit down-counter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Auto-reload capability
- Mask-able system interrupt generation when the counter reaches 0
- Programmable clock source

2.2.17 Inter-integrated-circuit interface (I2C)

Up to 3 I2C bus interfaces can operate master mode. They can support standard and fast modes.

They support 7/10-bit addressing. A hardware CRC generation/verification is included.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.2.18 Universal synchronous/asynchronous receiver transmitters (USART)

The V32G410x embeds 4 universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3, and USART6) and 4 universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These eight interfaces provide asynchronous communication, IrDA SIR ENDEC

support, multiprocessor communication mode, single-wire half-duplex communication mode, and have LIN Master/Slave capability.

These eight interfaces are able to communicate at speeds of up to 5.625 Mbit/s.

USART1, USART2, and USART3 provide hardware management of the CTS and RTS signals. USART1, USART2, USART3, and USART6 also provide Smart Card mode (ISO7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART/UA	USAR	USAR	USAR	UART	UART	USAR	UART	UART
RT name	Т1	Т2	Т3	4	5	Т6	7	8
Hardware	Yes	Yes	Yes	-	-	-	-	-
flow control								
for modem								
Continuous	Yes							
communicat								
ion using								
DMA								
Multiprocess	Yes							
or								
communicat								
ion								
Synchronou	Yes	Yes	Yes	-	-	Yes	-	-
s mode								
Smartcard	Yes	Yes	Yes	-	-	Yes	-	-
mode								
Single-wire	Yes							
half-duplex								
communicat								
ion								
IrDA SIR	Yes							
ENDEC								
block								
LIN mode	Yes							

Table5. USART/UART feature comparison

2.2.19 Serial peripheral interface (SPI)

Up to four SPIs are able to communicate up to 36 Mbits/s in slave and master modes in full- duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC/SDHC modes.

All SPIs can be served by the DMA controller.

2.2.20 Inter-integrated sound interface (I2S)

Four standard I2S interfaces (multiplexed with SPI) are available, that can be operated in master mode in half-duplex mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. The master clock can be output to the external CODEC at 256 times the sampling frequency.

2.2.21 Controller area network (CAN)

Two CANs are compliant with specifications 2.0A and B with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.2.22 General-purpose inputs/outputs (GPIO)

Each of the GPIO pins can be configured by software as output (push-pull), as input (with pull-down or without pull-up or pull-down), or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked, if needed, in order to avoid spurious writing to the I/Os registers by following a specific sequence.

2.2.23 Remap capability

This feature allows the use of a maximum number of peripherals in a given application. Indeed, alternate functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible.

For details refer to Table 6; it shows the list of remappable alternate functions and the pins onto which they can be remapped. See the V32G410x reference manual for software considerations.

2.2.24 Analog to digital converter (ADC)

Two 12-bit analog-to-digital converters are embedded into V32G410x devices and they share up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage

of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers and the advanced-control timers can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.2.25 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2.6 V \leq VDDA \leq 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.2.26 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

Figure4. V32G410RGT7 LQFP64 pinout

Figure 5. V32G410VUT7/ V32G410VGT7 LQFP100 pinout

The following table is the pin definition of V32G410x series. The multiplexing functions are arranged in order of priority. The basic principle is that the analog signal is higher than the digital signal, and the output digital signal is higher than the input digital signal.

Table6.V32G410x series pin definitions

Pin	number	- -						Alternate function	15 ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
1	-	-	-	NC	not co	nnected	•		
2	1	2	-	PE2	I/O	FT	PE2	SPI4_SCK ⁽⁷⁾ / I2S4_CK ⁽⁷⁾	-
3	2	-	-	PE3	I/O	FT	PE3	-	-
4	3	3	-	PE4	I/O	FT	PE4	SPI4_NSS ⁽⁷⁾ / I2S4_WS ⁽⁷⁾	-
5	4	4	-	PE5	I/O	FT	PE5	SPI4_MISO ⁽⁷⁾	TMR9_CH1
6	5	5	-	PE6	I/O	FT	PE6	SPI4_MOSI ⁽⁷⁾ / I2S4_SD ⁽⁷⁾	TMR9_CH2
7	-	-	-	NC	not co	nnected			
8	6	-	1	NC	not co	nnected			
9	7	-	2	TAMPER- RTC/PC13 ⁽⁵⁾	I/O	FT	PC13 (6)	TAMPER-RTC	-
10	8	-	3	OSC32_IN/ PC14 ⁽⁵⁾	I/O	FT	PC14 ⁽⁶⁾	OSC32_IN	-

Pin	number							Alternate function	Alternate functions (4)		
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap		
11	9	-	4	OSC32_OUT/ PC15 ⁽⁵⁾	I/O	FT	PC15	OSC32_OUT	-		
12	-	-	-	NC	not connected						
13	10	-	-	VSS_5	S	-	VSS_5	-	-		
14	11	-	-	VDD_5	S	-	VDD_5	-	-		
15	12	6	5	OSC_IN	I/O	TC	OSC_IN	-	-		
16	13	7	6	OSC_OUT	I/O	TC	OSC_OUT	-	-		
17	14	8	7	NRST	I/O	-	NRST	-	-		
18	-	-	-	NC	not con	nected					
19	15	-	8	PC0/WKUP3	I/O	FTa	PC0	ADC1/2_IN10/ WKUP3	-		
20	16	-	9	PC1	I/O	FTa	PC1	ADC1/2_IN11	-		
21	-	-		NC	not con	nected					
22	17	-	10	PC2	I/O	FTa	PC2	ADC1/2_IN12	UART8_TX		
23	18	-	11	PC3	I/O	FTa	PC3	ADC1/2_IN13	UART8_RX		
24	19	-	12	VSSA	S	-	VSSA	-	-		
25	-	-	-	NC	not con	nected					
26	20	-	-	VREF-	S	-	VREF-	-	-		
27	21	-	-	VREF+	S	-	VREF+	-	-		
28	22	9	13	VDDA	S	-	VDDA	-	-		

V32G410x Datasheet

Pin number								Alternate function	IS ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
29	23	10	14	PA0/WKUP1	I/O	FT	PA0	ADC1/2_IN0/ WKUP1/ USART2_CTS ⁽⁷⁾ / TMR2_CH1 ⁽⁷⁾ / TMR2_ETR ⁽⁷⁾ / TMR5_CH1/ TMR8_ETR	UART4_TX
30	24	11	15	PA1/WKUP2	I/O	FTa	PA1	ADC1/2_IN1/ WKUP2/ USART2_RTS ⁽⁷⁾ / TMR2_CH2 ⁽⁷⁾ / TMR5_CH2	UART4_RX
31	25	12	16	PA2	I/O	FTa	PA2	ADC1/2_IN2/ USART2_TX ⁽⁷⁾ / TMR2_CH3 ⁽⁷⁾ / TMR5_CH3/ TMR9_CH1 ⁽⁷⁾	-
32	-		-	NC	not conr	nected			
33	-		-	SPIM_IO0	I/O	FT	SPIM_IO0	PF2	-
34	26	13	17	PA3	I/O	FTa	PA3	ADC1/2_IN3/ USART2_RX ⁽⁷⁾ /	I2S2_MCK

Vango Technologies, Inc.

Pin	number							Alternate function	ns ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type (1)	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
								TMR2_CH4 ⁽⁷⁾ / TMR5_CH4/ TMR9_CH2 ⁽⁷⁾	
35	27		18	VSS_4	S	-	VSS_4	-	-
36	28		19	VDD_4	S	-	VDD_4	-	-
37	-		-	SPIM_SCK	0	FT	SPIM_SCK	PF4	-
38	29	14	20	PA4	I/O	FTa	PA4	ADC1/2_IN4/ USART2_CK ⁽⁷⁾ / SPI1_NSS ⁽⁷⁾ / I2S1_WS ⁽⁷⁾	USART6_TX/ SPI3_NSS/ I2S3_WS
39	30	15	21	PA5	I/O	FTa	PA5	ADC1/2_IN5/ SPI1_SCK ⁽⁷⁾ / I2S1_CK ⁽⁷⁾	USART6_RX
40	31	16	22	PA6	I/O	FTa	PA6	ADC1/2_IN6/ SPI1_MISO ⁽⁷⁾ / TMR3_CH1 ⁽⁷⁾ / TMR8_BKIN/ TMR13_CH1	I2S2_MCK/ TMR1_BKIN
41	-		-	SPIM_IO3	I/O	FT	SPIM_IO3	PF0	-
42	32	17	23	PA7	I/O	FTa	PA7	ADC1/2_IN7/	TMR1_CH1N

Pin	number							Alternate function	15 ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
								SPI1_MOSI ⁽⁷⁾ / I2S1_SD ⁽⁷⁾ / TMR3_CH2 ⁽⁷⁾ / TMR8_CH1N/ TMR14_CH1	
43	33		24	PC4/ WKUP4	I/O	FTa	PC4	ADC1/2_IN14/ WKUP4	-
44	34		25	PC5	I/O	FTa	PC5	ADC1/2_IN15	
45	35	18	26	PB0	I/O	FTa	PB0	ADC1/2_IN8/ I2S1_MCK ⁽⁷⁾ / TMR3_CH3 ⁽⁷⁾ / TMR8_CH2N	TMR1_CH2N
46	-		-	NC	not con	nected			
47	36	19	27	PB1	I/O	FTa	PB1	ADC1_IN9/ TMR3_CH4 ⁽⁷⁾ / TMR8_CH3N	TMR1_CH3N
48	37	20	28	PB2	I/O	FT	PB2 / BOOT1	-	-
49	38	21	-	PE7	I/O	FT	PE7	UART7_RX ⁽⁷⁾	TMR1_ETR
50	39	22	-	PE8	I/O	FT	PE8	UART7_TX ⁽⁷⁾	TMR1_CH1N
51	40		-	PE9	I/O	FT	PE9		TMR1_CH1

Pin	number							Alternate function	1S ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
52	-		-	NC	not con	nected	·	·	
53	41		-	PE10	I/O	FT	PE10		TMR1_CH2N
									SPI4_SCK/
54	42		-	PE11	I/O	FT	PE11		I2S4_CK/
									TMR1_CH2
									SPI4_NSS/
55	43		-	PE12	I/O	FT	PE12		I2S4_WS/
									TMR1_CH3N
56	-		-	NC	not con	nected			
57	44		-	PE13	I/O	FT	PE13		SPI4_MISO/
57	44		-	PEIS	1/0		PEIS		TMR1_CH3
									SPI4_MOSI/
58	45		-	PE14	I/O	FT	PE14		I2S4_SD/
									TMR1_CH4
59	46		-	PE15	I/O	FT	PE15		TMR1_BKIN
60	47		29	PB10	I/O	ст		USART3_TX ⁽⁷⁾ /	I2S3_MCK/
60	4/		29	PDIU	1/0		FT PB10	I2C2_SCL	TMR2_CH3
61	48		30	PB11	I/O	FT	PB11	USART3_RX ⁽⁷⁾ / I2C2_SDA	TMR2_CH4
62	49		31	VSS_1	S	-	VSS_1	-	-

Pin	Pin number							Alternate function	1S ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type (1)	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
63	50	1	32	VDD_1	S	-	VDD_1	-	-
64	-		-	NC	not con	nected			
65	-		-	NC	not con	nected			
66	51	24	33	PB12	I/O	FT	PB12	USART3_CK ⁽⁷⁾ / I2C2_SMBA/ SPI2_NSS / I2S2_WS/ TMR1_BKIN ⁽⁷⁾	-
67	52	25	34	PB13	I/O	FT	PB13	USART3_CTS ⁽⁷⁾ / SPI2_SCK/ I2S2_CK/ TMR1_CH1N ⁽⁷⁾	-
68	53	26	35	PB14	I/O	FT	PB14	USART3_RTS ⁽⁷⁾ / SPI2_MISO/ TMR1_CH2N ⁽⁷⁾ / TMR12_CH1	-
69	-		-	NC	not con	nected			
70	54	27	36	PB15	I/O	FT	PB15	SPI2_MOSI/ I2S2_SD/ TMR1_CH3N ⁽⁷⁾ /	-

Pin	number							Alternate function	1S ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
								TMR12_CH2	
71	55	28	-	PD8	I/O	FT	PD8	-	USART3_TX
72	56	29	-	PD9	I/O	FT	PD9	-	USART3_RX
73	-		-	NC	not con	nected			
74	57		-	PD10	I/O	FT	PD10	-	USART3_CK
75	58		-	PD11	I/O	FT	PD11	-	USART3_CTS
76	59		-	PD12	I/O	FT	PD12	-	USART3_RTS/ TMR4_CH1
77	60		-	PD13	I/O	FT	PD13	-	TMR4_CH2
78	-		-	NC	not coni	nected	1		
79	61		-	PD14	I/O	FT	PD14	-	TMR4_CH3
80	62		-	PD15	I/O	FT	PD15	-	TMR4_CH4
81	63	30	37	PC6	I/O	FT	PC6	USART6_TX ⁽⁷⁾ / I2S2_MCK ⁽⁷⁾ / TMR8_CH1	TMR3_CH1
82	64	31	38	PC7	I/O	FT	PC7	USART6_RX ⁽⁷⁾ / I2S3_MCK ⁽⁷⁾ / TMR8_CH2	TMR3_CH2
83	65		39	PC8	I/O	FT	PC8	USART6_CK/ I2S4_MCK ⁽⁷⁾ /	TMR3_CH3

Pin	number							Alternate function	1S ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type (1)	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
								TMR8_CH3	
84	-		-	NC	not connected				
85	66		40	PC9	I/O	FT	PC9	I2C3_SDA ⁽⁷⁾ / TMR8_CH4	TMR3_CH4
86	67	32	41	PA8	I/O	FT	PA8	CLKOUT/ USART1_CK/ I2C3_SCL/ TMR1_CH1 ⁽⁷⁾	-
87	68	33	42	PA9	I/O	FT	PA9	USART1_TX ⁽⁷⁾ / I2C3_SMBA/ TMR1_CH2 ⁽⁷⁾	-
88	-		-	NC	not con	nected			
89	69	34	43	PA10	I/O	FT	PA10	USART1_RX ⁽⁷⁾ / TMR1_CH3 ⁽⁷⁾	I2S4_MCK
90	70	35	44	PA11	I/O	FT	PA11	USART1_CTS/ CAN1_RX ⁽⁷⁾ / TMR1_CH4 ⁽⁷⁾	-
91	71	36	45	PA12	I/O	FT	PA12	USART1_RTS/ CAN1_TX ⁽⁷⁾ / TMR1_ETR ⁽⁷⁾	-

Pin	number							Alternate function	ns ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	IO lever 2	Main function ⁽³⁾	Default Remap	Default Remap
92	72	37	46	PA13	I/O	FT	JTMS-SWDIO	-	PA13
93	73		-	NC	not con	nected		·	
94	74		47	VSS_2	S	-	VSS_2	-	-
95	75	23	48	VDD_2	S	-	VDD_2	-	-
96	-		-	NC	not con	nected	·		
97	-		-	NC	not con	nected			
98	76	38	49	PA14	I/O	FT	JTCK-SWCLK	-	PA14
99	77	39	50	PA15	I/O	FT	JTDI	SPI3_NSS ⁽⁷⁾ / I2S3_WS ⁽⁷⁾	PA15/ SPI1_NSS/ I2S1_WS/ TMR2_CH1/ TMR2_ETR
100	78		51	PC10	I/O	FT	PC10	UART4_TX ⁽⁷⁾	USART3_TX/ SPI3_SCK/ I2S3_CK
101	79		52	PC11	I/O	FT	PC11	UART4_RX ⁽⁷⁾	USART3_RX/ SPI3_MISO
102	-		-	NC	not con	nected			
103	80		53	PC12	I/O	FT	PC12	UART5_TX ⁽⁷⁾	USART3_CK/ SPI3_MOSI/

Pin	number							Alternate function	15 ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
									I2S3_SD
104	81		-	PD0	I/O	FT	PD0		CAN1_RX
105	82		-	PD1	I/O	FT	PD1		CAN1_TX
106	83		54	PD2	I/O	FT	PD2	UART5_RX ⁽⁷⁾ / TMR3_ETR	
107	-		-	NC	not con	nected	•	·	
108	84		-	PD3	I/O	FT	PD3	-	USART2_CTS
109	85		-	PD4	I/O	FT	PD4	-	USART2_RTS
110	86		-	PD5	I/O	FT	PD5	-	USART2_TX
111	-		-	NC	not con	nected			
112	87		-	PD6	I/O	FT	PD6	-	USART2_RX
113	88		-	PD7	I/O	FT	PD7	-	USART2_CK
114	89	40	55	PB3	I/O	FT	JTDO	SPI3_SCK ⁽⁷⁾ / I2S3_CK ⁽⁷⁾	PB3/ UART7_RX/ SPI1_SCK/ I2S1_CK/ TMR2_CH2
115	90	41	56	PB4	I/O	FT	NJTRST	SPI3_MISO ⁽⁷⁾	PB4/ SPI1_MISO/ I2C3_SDA/

V32G410x Datasheet

Pinouts and pin descriptions

Pin	number							Alternate function	ns ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	IO lever (2)	Main function ⁽³⁾	Default Remap	Default Remap
									UART7_TX/ TMR3_CH1
116	-		-	SPIM_NSS	0	FT	SPIM_NSS	PF5	-
117	91	42	57	PB5	I/O	FT	PB5	SPI3_MOSI ⁽⁷⁾ / I2S3_SD ⁽⁷⁾ / I2C1_SMBA ⁽⁷⁾	SPI1_MOSI/ I2S1_SD/ TMR3_CH2
118	92	43	58	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁷⁾ / TMR4_CH1 ⁽⁷⁾	USART1_TX/ I2S1_MCK/ SPI4_NSS/ I2S4_WS
119	93	44	59	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾ / TMR4_CH2 ⁽⁷⁾	USART1_RX/ SPI4_SCK/ I2S4_CK
120	-		-	SPIM_IO1	I/O	FT	SPIM_IO1	PF1	-
121	94	45	60	BOOT0	Ι	-	BOOT0	-	-
122	95	46	61	PB8	I/O	FT	PB8	TMR4_CH3 ⁽⁷⁾ / TMR10_CH1	UART5_RX/ SPI4_MISO/ I2C1_SCL/ CAN1_RX
123	96	47	62	PB9	I/O	FT	PB9	TMR4_CH4 ⁽⁷⁾ /	UART5_TX/

V32G410x Datasheet

Pin	number			Pin name SPIM_IO2				Alternate function	1S ⁽⁴⁾
V32G410x	V32G410VUT7 V32G410VGT7	V32G410CGU7	V32G410RGT7	Pin name	Type ①	lovor	Main function ⁽³⁾	Default Remap	Default Remap
								TMR11_CH1	SPI4_MOSI/ I2S4_SD/ I2C1_SDA/ CAN1_TX
124	-		-	SPIM_IO2	I/O	FT	SPIM_IO2	PF3	-
125	97	48	-	PE0	I/O	FT	PE0	UART8_RX ⁽⁷⁾ / TMR4_ETR	-
126	98		-	PE1	I/O	FT	PE1	UART8_TX ⁽⁷⁾	-
127	99		63	VSS_3	S	-	VSS_3	-	-
128	100		64	VDD_3	S	-	VDD_3	-	-

Note1: I = input, O = output, S = supply.

Note2: FT = general 5 V-tolerant I/O, FTa = 5 V-tolerant I/O with analog functionalities. FTa pin is 5 V- tolerant when configured as input floating, input pull-up, or input pull-down mode. However, it cannot be 5 V-tolerant when configured as analog mode. Meanwhile, its input level should not higher than VDD + 0.3 V.

Note3: Function availability depends on the chosen device.

Note4: If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).

Note5: PC13, PC14, and PC15 only sink a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the normal sourcing/sinking strength should be used with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).

Note6: Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because

these registers are not reset by the main reset). For details on how to manage these IOs, refer to the backup domain and BKP register description sections in the V32G410x reference manual.

Note7: This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the V32G410x reference manual.

4 Memory mapping

Figure6. Memory map

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to VSS.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production with an ambient temperature at TA = 25 °C and TA = TA max.

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

5.1.2 Typical values

Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V. They are given only as design guidelines and are not tested.

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure7.

Figure7. Pin loading conditions

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure8.

Figure8. Pin input voltage

5.1.6 Power supply scheme

Figure 9. Power supply scheme

Note1: In this figure, the 4.7 µF capacitor must be connected to VDD3.

5.1.7 Current consumption measurement

Figure 5-1 Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 8, Table 9, and Table 10 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
VDD-VSS	External main supply voltage (including VDDA and VDD)(1)	-0.3	4.0	
	Input voltage on FT I/O	VCC		
VIN	Input voltage on FTa I/O (set as input floating, input pull-up, or input pull-down mode)	VSS- 0.3	6.0	V
	Input voltage on TC I/O	VSS-	1.0	
	Input voltage on FTa I/O (set as analog mode)	0.3	4.0	
ΔVDDx	Variations between different VDD power pins	-	50	
VSSx-	Variations between all the different ground	-	50	mV
VSS	pins (2)			

Table7. Voltage characteristics

Note1: All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

Note2: VREF- included.

Table8.Current characteristics

Symbol	Ratings	Max	Unit
IVDD	Total current into VDD/VDDA power lines (source)(1)	150	
IVSS	Total current out of VSS ground lines (sink)(1)	150	
IIO	Output current sunk by any I/O and control pin	25	mA
110	Output current source by any I/Os and control pin	-25	

Note1: All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

Table9.Thermal characteristics

V32G410x Datasheet

Symbol	Ratings	Value	Unit
TSTG	Storage temperature range	-60 ~ +150	°C
ТЈ	Maximum junction temperature	105	

5.3 Operating conditions

5.3.1 General operating conditions

Table10. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f	Internal AHB clock		0	200	MHz
f _{HCLK} f _{PCLK1} f _{PCLK2} VDD VDDA ⁽¹⁾ VDD	frequency		0	200	I'II IZ
f	Internal APB1 clock		0	100	MHz
IPCLK1	frequency	-	0	100	1*11 1Z
f	Internal APB2 clock		0	100	MHz
IPCLK2	frequency	-	0	100	I*II IZ
חחא	Standard operating		2.6	3.6	V
VUU	voltage	-	2.0	5.0	v
	Analog operating	Must be the same potential	2.6	3.6	V
VDDA /	voltage	as VDD ⁽¹⁾	2.0	5.0	v
	Backup operating		2.2	3.6	V
VUU	voltage	-	2.2	5.0	v
PD	Power dissipation: TA			373	mW
FU	= 85 °C	-	-	3/3	11100
TA	Ambient temperature	-	-40	105	°C

Note1: It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and operation.

5.3.2 Operating conditions at power-up/ power-down

The parameters given in the table below are derived from tests performed under the ambient temperature condition summarized in Table10.

Table11. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	VDD rise time rate		0	$\infty^{(1)}$	ms/V
	VDD fall time rate	-	20	8	µs/V

Note1: If VDD rising time rate is slower than 120 ms/V, the code should access the backup registers after VDD higher than VPOR + 0.1V.

5.3.3 Embedded reset and power control block characteristics

The parameters given in the table below are derived from tests performed under

ambient temperature and VDD supply voltage conditions summarized in Table10.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PVDS[2:0] = 001 (rising edge)(1)	2.19	2.28	2.37	V
V _{PVD}		PVDS[2:0] = 001 (falling edge)(1)	2.09	2.18	2.27	V
		PVDS[2:0] = 010 (rising edge)	2.28	2.38	2.48	v
		PVDS[2:0] = 010 (falling edge)	2.18	2.28	2.38	v
		PVDS[2:0] = 011 (rising edge)	2.38	2.48	2.58	v
		PVDS[2:0] = 011 (falling edge)	2.28	2.38	2.48	v
	Programmable voltage	PVDS[2:0] = 100 (rising edge)	2.47	2.58	2.69	V
V PVD	detector level selection	PVDS[2:0] = 100 (falling edge)	2.37	2.48	2.59	V
		PVDS[2:0] = 101 (rising edge)	2.57	2.68	2.79	v
		PVDS[2:0] = 101 (falling edge)	2.47	2.58	2.69	v
		PVDS[2:0] = 110 (rising edge)	2.66	2.78	2.9	V
		PVDS[2:0] = 110 (falling edge)	2.56	2.68	2.8	V
		PVDS[2:0] = 111 (rising edge)	2.76	2.88	3	V
		PVDS[2:0] = 111 (falling edge)	2.66	2.78	2.9	V
$V_{PVDhyst}$ ⁽²⁾	PVD hysteresis	-	-	100	-	mV
V _{POR/PDR}	Power on/power down	Falling edge	1.85(3)	2.0	2.24	v
	reset threshold	Rising edge	2.03	2.16	2.42	V
$V_{\text{PDRhyst}}^{(2)}$	PDR hysteresis	-	-	160	-	mV
	Reset	EOPB0 = 0/1/2/3	-	0.7	-	4
	temporization:	EOPB0 = 4	-	70	-	4
T _{RSTTEMPO} ⁽²⁾	CPU starts	EOPB0 = 5	-	200	-	4
NOT LEFT U	execution after	EOPB0 = 6	-	270	-	ms
	VDD keeps higher than	EOPB0 = 7	-	330	-	

Table12. Embedded reset and power control block characteristics

VPOR for			
TRSTTEMPO			

- Note1: *PVDS*[2:0] = 001 may be not available for its voltage detector level may be lower than VPOR/PDR.
- Note2: Guaranteed by design, not tested in production.
- Note3: The product behavior is guaranteed by design down to the minimum VPOR/PDR value.

Figure10. Power on reset/power down reset waveform

5.3.4 Embedded reference voltage

The parameters given in the table below are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

 Table13. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{REFINT}	Internal reference voltage	-	1.13	1.20	1.27	V
$T_{S_vrefint}^{(1)}$	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
$T_{\text{Coeff}}^{(2)}$	Temperature coefficient	-	-100	-	100	ppm/°C

Note1: Shortest sampling time can be determined in the application by multiple iterations.

Note2: Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

Current consumption is a comprehensive index of many parameters and factors, including operating voltage, ambient temperature, I/O pin load, product software configuration, operating frequency, I/O pin flip rate, and executed code.

Typical current consumption

The microcontroller is under the following conditions:

• All I/O pins are on analog inputs.

All peripherals are turned off unless otherwise specified.

Instruction prefetch function is turned on (hint: this parameter must be set before setting clock and bus frequency division).

- Ambient temperature and VDD supply voltage conform to electrical characteristic parameters
- When the peripheral is turned on:
 - If $f_{HCLK} > 100$ MHz, $f_{PCLK1} = f_{HCLK}/2$, $f_{PCLK2} = f_{HCLK}/2$, $f_{ADCCLK} = f_{PCLK2}/4$;
 - If $f_{HCLK} \leq 100$ MHz, $f_{PCLK1} = f_{HCLK}$, $f_{PCLK2} = f_{HCLK}$, $f_{ADCCLK} = f_{PCLK2}/4$.

				Typical ⁽¹⁾			
Symbol	Parameter	Condition	FHCLK	Enable all	Close all	Unit	
				peripherals	peripherals		
			200 57.1 20.4	57.1	200	39.4	
			MHz	57.1	55.4		
			192	55.7	38.4		
			MHz	55.7	50.4		
			180	53.4	37.1		
			MHz	55.4	57.1		
			100	38.7	27.1		
	Supply		MHz	50.7	27.1		
	current in	External	48 MHz	25.4	19.5	mA	
IDD	operation	clock ⁽²⁾	24 MHz	19.4	16.0	ША	
	mode		8 MHz	13.6	12.5		
	mode		4 MHz	12.2	11.7		
			2 MHz	11.7	11.4		
			1 MHz	11.5	11.3		
			500	11.3	11.2		
			KHz	11.5	11.2		
			125	11.2	11.1		
			KHz	11.2	11.1		
		Operating	200	48.1	33.2	mA	

V32G410x Datasheet

	on high-	MHz			
	speed	192	46.7	32.3	
	internal	MHz	40.7	52.5	
	RC	180	44.8	31.2	
	oscillator	MHz	44.0	51.2	
	(HSI)	100	22.7	22.0	
		MHz	32.7	23.0	
		48 MHz	21.6	16.7	
		24 MHz	16.6	13.8	
		8 MHz	11.8	10.9	
		4 MHz	10.6	10.2	
		2 MHz	10.2	10.0	
		1 MHz	10.0	9.8	
		500	0.0	0.0	
		KHz	9.9	9.8	
		125	0.0	0.7	
		KHz	9.8	9.7	

Note1: Typical values are measured at TA = 25 °C and VDD = 3.3 V.

Note2: The external clock is 8 MHz and PLL is enabled when fHCLK > 8 MHz.

Table15. Typical Current Consumption in Sleep Mode

				Typical ⁽¹⁾		
Symbol	Parameter	Condition	FHCLK	Enable all	Close all	Unit
				peripherals	peripherals	
			200	36.4	20.7	
			MHz 50.4	20.7		
			192	35.2	18.0	
			MHz	55.2	10.0	
			180	33.7	17.6	
		External	MHz	55.7	17.0	mA
			100	24.3	12.9	
			MHz	2.113	1219	
	Supply		48	15.0	9.1	
IDD	current in	clock ⁽²⁾	MHz	15.0	5.1	
	sleep mode	ciocit	24	10.9	7.6	
			MHz			
			8 MHz	6.4	5.4	
			4 MHz	5.4	5.0	
			2 MHz	5.1	4.8	
			1 MHz	4.9	4.7	
			500	4.8	4.7	
			KHz			
			125	4.8	4.7	

V32G410x Datasheet

		1	1	1	1
		KHz			
		200	29.6	18.0	
		MHz	29.0	10.0	
		192	28.6	14.3	
		MHz	20.0	14.5	
		180	27.4	14.0	
		MHz	27.4	14.0	
	Orienting	100	10 5	10.0	-
	Operating	MHz	19.5	10.0	
	on high-	48	11.9 8.4	7.0	
	speed internal RC	MHz			
		24		5.7	mA
	oscillator	MHz	0.4	5.7	
	(HSI)	8 MHz	4.8	3.9	
	(1131)	4 MHz	3.9	3.5	
		2 MHz	3.6	3.4	
		1 MHz	3.5	3.4	
		500	3.4	24 24	
		KHz	5.4	3.4	
		125	3.4	3.3	
		KHz	5.4	5.5	

Note1: Typical values are measured at TA = 25 °C and VDD = 3.3 V.

Note2: The external clock is 8 MHz and PLL is enabled when fHCLK > 8 MHz.

Maximum current consumption

The microcontroller is under the following conditions:

- All I/O pins are on analog inputs.
- All peripherals are turned off unless otherwise specified.
- Instruction prefetch function is turned on (hint: this parameter must be set before setting clock and bus frequency division).
- When the peripheral is turned on:
 - If $f_{HCLK} > 100 \text{ MHz}$, $f_{PCLK1} = f_{HCLK}/2$, $f_{PCLK2} = f_{HCLK}/2$;
 - If $f_{HCLK} \leq 100$ MHz, $f_{PCLK1} = f_{HCLK}$, $f_{PCLK2} = f_{HCLK}$.

Table16. Maximum Current Consumption in Operating Mode

Symbol	Parameter	Condition	FHCLK	Maximum ⁽¹⁾	Unit
Symbol		Condition	FILLK	TA = 85 °C	Unit
			200 MHz	93.1	
	Supply current in operation mode	External clock ⁽²⁾ enables all peripherals	192 MHz	90.5	
			180 MHz	88.0	
IDD			100 MHz	71.8	mA
			48 MHz	58.5	
			24 MHz	53.0	

V32G410x Datasheet

	8 MHz	47.1	
	200 MHz	72.8	
	192 MHz	71.9	
The external	180 MHz	70.7	
clock ⁽²⁾ turns off	100 MHz	59.9	mA
all peripherals	48 MHz	52.5	
	24 MHz	49.7	
	8 MHz	46.1	

Note1: It is obtained from comprehensive evaluation and is not tested in production.

Note2: The external clock is 8 MHz and PLL is enabled when fHCLK > 8 MHz.

Table17. Maximum Current Consumption in Sleep Mode

Symbol	Darameter	Condition	FHCLK	Maximum ⁽¹⁾	Unit
Symbol	Parameter	Condition	FILLK	TA = 85 ° C	Unit
			200 MHz	45.5	
			192 MHz	44.2	
		External clock	180 MHz	42.6	
		⁽²⁾ enables all	100 MHz	32.0	mA
	Supply current in sleep mode	peripherals	48 MHz	22.6	
			24 MHz	19.0	
IDD			8 MHz	14.4	
			200 MHz	27.2	
			192 MHz	26.7	
		The external clock ⁽²⁾ turns	180 MHz	26.2	
		off all	100 MHz	20.9	mA
		peripherals	48 MHz	17.3	
		periprierais	24 MHz	15.9	
			8 MHz	13.6	

Note1: It is obtained from comprehensive evaluation and is not tested in production.

Note2: The external clock is 8 MHz and PLL is enabled when fHCLK > 8 MHz.

Table18. Typical and Maximum Current Consumption in Shutdown and StandbyModes

			Typical ⁽¹⁾		Max ⁽²⁾	
Symbol	Parameter	Condition	VDD/VBAT = 2.6 V	VDD/VB AT = 3.3 V	TA = 85 °C	Unit
IDD	Supply current in shutdown mode	High-speed internal RC oscillator and high-speed external oscillator are	1.5	1.9	10.9	mA

		off (no independent watchdog)				
Supply current in standby mode	The low- speed external oscillator and RTC are in the off state	3.5	4.4	6.3	uA	
	standby TI mode sp ex os	The low- speed external oscillator and RTC are on	3.8	4.7	6.7	

Note1: Typical values are measured at TA = 25 °C.

Note2: It is obtained by comprehensive evaluation and is not tested in production.

Figure11. Typical Current Consumption in Shutdown Mode vs. Temperature at Different VDD

Table19. Comparison of typical current consumption in standby mode withtemperature at different VDD

VDD Voltage (V)	Temperature (℃)	Max TA = 85 ° C	Unit
2.6	-40	3.2	
	0	3.3	uA
	25	3.4	

			1
	55	3.7	
	70	4.0	
	85	4.9	
	-40	4.0	
	0	4.2	
3.3	25	4.2	
5.5	55	4.8	uA
	70	5.2	
	85	6.3	
	-40	119.5	
	0	4.7	
2.6	25	5.0	
3.6	55	5.8	uA
	70	6.3	
	85	7.7	

Internal peripheral current consumption

The current consumption of the built-in peripherals is listed in Table 18, and the operating conditions of the microcontroller are as follows:

• All I/O pins are on analog inputs.

All peripherals are turned off unless otherwise specified.

- The values given are calculated by measuring current consumption
 - Turn off all peripheral clocks
 - Turn on the clock of only one peripheral

Ambient temperature and VDD supply voltage conditions conform to electrical characteristics.

Table20. Current Consumption of Built-in Peripherals

Built-in peripheral		Typical value	Unit
	DMA1	3.0	
AHB (up to 200 MHz)	DMA2	4.6	µA/MHz
	CRC	1.0	
	TMR2	9.2	
	TMR3	7.7	
	TMR4	9.2	
	TMR5	11.5	
APB1 (up to 100 MHz)	TMR6	6.2	µA/MHz
	TMR7	3.8	
	TMR12	7.6	
	TMR13	6.5	
	TMR14	7.1	

	SPI2/I2S2	6.6	
	SPI3/I2S3	5.1	
	SPI4/I2S4	7.8	
	USART2	6.5	
	USART3	5.2	
	UART4	2.6	
	UART5	7.0	
	I2C1	7.1	
	I2C2	7.8	
	CAN	15.2	
	WWDG	5.5	
	PWR	6.2	
	ВКР	6.2	
	I2C3	7.5	
	AFIO	7.2	
	GPIOA	7.2	
	GPIOB	5.7	
	GPIOC	3.6	
	GPIOD	4.0	
	GPIOE	5.3	
	SPI1/I2S1	8.4	
	USART1	7.2	
APB2 (up to 100 MHz)	USART6	6.1	µA/MHz
	UART7	4.7	
	UART8	3.8	
	TMR1	11.7	
	TMR8	13.3	
	TMR9	8.4	
	TMR10	9.9	
	TMR11	9	
	ADC1+ADC2	5.2	

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in the table below result from tests performed using a highspeed external clock source, and under ambient temperature and supply voltage conditions summarized in Table10.

Table21.	High-speed	external	user	clock	characteristics
----------	------------	----------	------	-------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{oscin}	Crystal frequency	2.2V≤VDD≤3.6V	2	8	30	MHz

V _{HSEH}	OSC_IN input pin high level voltage		0.7 V _{DD}	-	V _{DD}	
V _{HSEL}	OSC_IN input pin		V _{ss}	-	0.3	V
	low level voltage				V_{DD}	
t _{w(HSE)}	OSC_IN high or		5		_	
t _{w(HSE)}	low time ⁽¹⁾		5	-	-	nc
t _{r(HSE)}	OSC_IN rise or fall		_	_	20	ns
t _{f(HSE)}	time ₍₁₎				20	
CHTAL	Recommended	-		20		pF
	matching					
	capacitance					
DuCy _(HSE)	Duty cycle	-	30	50	70	%
I	HSE driving current	VDD=3.3V,VIN=VSS		3		mA
		With 20pF load				
t _{su}	StatUp time			30		ms

Note1: *Guaranteed by design, not tested in production.*

Figure12. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

The characteristics given in the table below result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in Table10.

Table22. Low-speed external user clock characteristics

V32G410x Datasheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{LSE_ext}	User External clock		-	32.768	1000	KHz
	source frequency ⁽¹⁾					
V _{LSEH}	OSC32_IN input pin		0.7 V _{DD}	_	V _{DD}	
V LSEH	high level voltage		0.7 000		v DD	V
V	OSC32_IN input pin	,	V		0.3	V
V _{LSEL}	low level voltage	-	V_{SS}	-	V_{DD}	
t _{w(LSE)}	OSC32_IN high or		450			
$t_{w(LSE)}$	low time ⁽¹⁾		450	-	-	ns
t _{r(LSE)}	OSC32_IN rise or			-	50	
t _{f(LSE)}	fall tim ^{e(1)}		-		30	
C	OSC32_IN input					ъĘ
Cin(LSE)	capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
т	OSC32_IN input		_		±1	
IL	leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Note2: Guaranteed by design, not tested in production.

Figure13. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package,

accuracy).

Table23. HSE 4-25 MHz oscillator characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	25	MHz
$t_{SU(HSE)}^{(3)}$	Startup time	V_{DD} is stabilized	-	2	-	ms

Note1: Resonator characteristics given by the crystal/ceramic resonator manufacturer.

Note2: Guaranteed by characterization results, not tested in production.

Note3: $t_{SU(HSE)}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Figure14. Typical application with an 8 MHz crystal

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table24. LSE oscillator characteristics $(f_{LSE} = 32.768 \text{ kHz})^{(1)}$

Datasheet

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{SU(LSE)}	Startup time	V_{DD} is stabilized	-	150	-	ms

Note1: Guaranteed by characterization results, not tested in production.

For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance CL has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Figure15. Typical application with a 32.768 KHz crystal

5.3.7 Internal clock source characteristics

The parameters given in the table below are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	48	I	MHz
DuCy _(HSI)	Duty cycle	-	45	-	55	%
	Accuracy of the HSI	User-trimmed with the RCC_CTRL register	-	-	1 ⁽²⁾	%
ACCHSI	oscillator	TA = -40 ~ 85 °C	-2.5	-	2	
		TA = 0 ~ 70 °C	-1.5	-	1.5	
		TA = 25 °C	-1	-	1	
t _{su(HSI)} ⁽³⁾	HSI oscillator startup time	-	-	-	10	μs

Table25. HSI oscillator characteristics⁽¹⁾

Note1:

V32G410x Datasheet

I _{DD(HSI)} ⁽³⁾	$\frac{\text{HSI oscillator power}}{\text{consumption}} - \frac{1}{2}$	-	240	275	μA	
VDD = 3.3	/, TA = -40~85 °C, unless of	therwise specified.				

Note2: Guaranteed by design, not tested in production.

Note3: Guaranteed by characterization results, not tested in production.

Figure16. HSI oscillator frequency accuracy vs. Temperature

Low-speed internal (LSI) RC oscillator

Table26. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$f_{LSI}^{(2)}$	Frequency	-	30	40	60	kHz

Note1: VDD = 3.3 V, TA = -40 to 105 °C, unless otherwise specified.

Note2: Guaranteed by characterization results, not tested in production.

5.3.8 Wakeup time from low-power mode

The wakeup times given in the table below is measured on a wakeup phase with the HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the HSI RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode

All timings are derived from tests performed under ambient temperature and VDD

supply voltage conditions summarized in Table10.

 Table27.
 Low-power mode wakeup timings

Symbol	Parameter	Тур	Unit
t _{wusle} EP ⁽¹⁾	Wakeup from Sleep mode	3.3	μs
L (1)	Wakeup from Stop mode (regulator in run mode)		
twustop (1)	Wakeup from Stop mode (regulator in low- power mode)	320	μs
twustdby	Wakeup from Standby mode (EOPB0 = 1)	70	
(1)	Wakeup from Standby mode (EOPB0 = 0)	270	ms

Note1: wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

5.3.9 PLL characteristics

The parameters given in the table below are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

Table28.PLL characteristics

Symbol	Parameter	MIN	ТҮР	MAX	Unit
f _{DIV}	Divided reference	30		375000	KHz
IDIV	frequency range	50		373000	NIIZ
f _{оит}	Total output	1.88		375	MHz
	frequency range	1.00		575	MULT
P _P	Period jitter (P-P)			+/-2.5%	nc
гр	(max)			output cycle	ps
I _{PD}	Power dissipation		20@ 30MHz		uA
трр	(nom)		(/1 output)		uA
t _{RST}	Reset pulse width	5			μs
CRST	(min)	5			μο
t _{lock}	Lock time (min	500 div.			us
LUCK	allowed)	reference cycles			us

5.3.10 Memory characteristics

ango

The characteristics in Table 30 are given at TA = 25 °C and VDD = 3.3 V.

Table29. Internal Flash memory characteristics

	Symbol	Parameter	Conditions	Тур	Unit
411 5.	Symbol	Parameter	conditions	Bank Size	Unit
				-	

			1	2	4	8	16	МВ
T _{PROG}	Programming time	-			20			μs
t _{erase}	Page (4 KB) erase time	-	60	60	50	35		ms
t _{ме}	Mass erase time	-	7	10	15	30	60	S
I _{DD}	Supply current	Programming mode	9.3					mA
		Erase mode			2.2			

Table30. Internal Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
NEND	Endurance	TA = -40 ~ 105 °C	100	-	-	kcycles
t _{RET}	Data retention	TA = 85 °C	20	-	-	years

Note1: Guaranteed by design, not tested in production.

5.3.11 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the conditions summarized in Table10. All I/Os are CMOS and TTL compliant.

Table31. I/O static characteristics

Symb	Parameter	Min	Тур	Max	Unit
	Schmitt Trigger Low to High Threshold				
V _{T+}	Point with Pull-up/down resistor	1.75	1.97	2.18	V
	Disable				
	Schmitt Trigger High to Low Threshold				
V _{T-}	Point with Pull-up/down resistor	1.13	1.31	1.52	V
	Disable				
	Schmitt Trigger Low to High Threshold				
$V_{T+PUIPD}$	Point with Pull-up/down resistor	1.76	1.97	2.18	V
	Enable				
	Schmitt Trigger High to Low Threshold				
V _{T-PUIPD}	Point with Pull-up/down resistor	1.13	1.30	1.50	V
	Enable				
V	Schmitt Trigger Low to High Threshold	1.72	1.00	2.1.4	v
V _{T+PU}	Point with Pull-up Resistor Enable	1.72	1.92	2.14	v
V _{T-PU}	Schmitt Trigger High to Low Threshold	1.09	1.27	1.48	V

	Point with Pull-up Resistor Enable				
V _{T+PD}	Schmitt Trigger Low to High Threshold	1.79	2.02	2.24	V
▼T+PD	Point with Pull-down Resistor Enable	1.75	2.02	2.27	v
N/	Schmitt Trigger High to Low Threshold	1.15	1.34	1.54	v
V_{T-PD}	Point with Pull-down Resistor Enable	ull-down Resistor Enable		1.54	v
	Input Leakage Current@VI=3.3V or		2n	51n	А
т	0V@125℃		211	2111	А
I_{I}	Input Leakage Current@VI=3.3V or		2n	19n	А
	0V@85℃		211	1911	А
I _{oz}	Tri-state Output Leakage Current		2n	51n	А
102	@Vo=3.3V or 0V		211		
R _{PU}	Pull-up Resistor	27.37K	38.26K	59.09K	Ω
R _{PD}	Pull-down Resistor	26.1K	41.58K	75.84K	Ω
V_{OL}	Output Low Voltage			0.4	V
V _{OH}	Output High Voltage	2.4			V
I_{OL}	Low Level Output Current @VOL(max)	9.21	14.1	18.96	mA
I _{OH}	High Level Output Current @VOH(min)	22.17	31.45	40.44	mA

Note1:

The following IOs: IOA0, IOA1, IOC0, IOC4, IOC13, IOC14, IOC15, IOF0, IOF1, IOF2, IOF3, IOF4, IOF5 do not support the input of Schmitt hysteresis.

5.3.12 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see the table below).

Unless otherwise specified, the parameters given in the table below are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table10.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$V_{IL(NRST)}^{(1)}$	NRST input low level	_	-0.5	_	0.8	
VIL(NRST)	voltage	-	-0.5	-	0.8	v
$V_{IH(NRST)}^{(1)}$	NRST input high level	_	2		V _{DD} + 0.3	v
VIH(NRST)`´	voltage	-	Z	-	$v_{DD} + 0.3$	
	NRST Schmitt trigger					
$V_{hys(NRST)}$	voltage	-		500	-	mV
	hysteresis		-			
Rpu	Weak pull-up	$V_{IN} = V_{SS}$	30	40	50	kΩ
N PU	equivalent resistor	VIN – VSS	50	40	50	K32
$V_{F(NRST)}^{(1)}$	NRST input filtered	_		24	33.3	
VF(NRST)`´	pulse	_	_	27	55.5	μs
$V_{NF(NRST)}^{(1)}$	NRST input not filtered	-	66.7	46	-	μs

Table32. NRST pin characteristics

Electrical characteristics	V32G410x Datasheet

		pulse			
Noto1	Guarantood k	w docian			

Note1: Guaranteed by design.

Figure17. Recommended NRST pin protection

- Note1: The reset network protects the device against parasitic resets.
- Note2: The user must ensure that the level on the NRST pin can go below the VIL (NRST) max level specified in Table 40. Otherwise the reset will not be taken into account by the device.

5.3.13 TMR timer characteristics

The parameters given in the table below are guaranteed by design.

Refer to 5.3.11 for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table33.TMRx⁽¹⁾ characteristics

Symbol	Parameter	Conditions	Min	Мах	Unit
		-	1	-	t _{TMRxCLK}
t _{res(TMR)}	Timer resolution tim	f _{TMRxCLK} = 180MHZ	5.6	-	ns
	Timer external clock		0	fT _{MRxCLK} /2	MHz
f _{EXT}	frequency on CH1 to CH4	-	0	50	MHz

Note1: TMRx is used as a general term to refer to the TMR1 to TMR14.

5.3.14 Communications interfaces

I2C interface characteristics

The V32G410x I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL mapped to are not "true" open-drain.

When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present.

The I2C characteristics are described in the table below. Refer also to 5.3.12 I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I2C ⁽¹⁾⁽²⁾		Fast mode I2C ⁽¹⁾⁽²⁾		Unit	
		Min	Max	Min	Мах		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
$t_{w(SCLH)}$	SCL clock high time	4.0	-	0.6	-	μs	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	10	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	

Table34. I2C characteristics

Note1: Guaranteed by design, not tested in production.

- Note2: f_{PCLK1} must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve the fast mode I2C frequencies.
- Note3: The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region on the falling edge of SCL.

Figure 18. I2C bus AC waveforms and measurement circuit⁽¹⁾

Note1: Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}.

Table35. SCL frequency $(f_{PCLK1} = 36 \text{ MHz}, \text{VDD} = 3.3 \text{ V})^{(1)(2)}$

f (kH-)	I2C_CLKCTRL value
f _{SCL} (kHz)	RP = 4.7 kΩ
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

Note1: $R_P = External pull-up resistance, fSCL = I2C speed.$

Note2: For speeds around 200 kHz, the tolerance on the achieved speed is of $\pm 5\%$. For other speed ranges, the tolerance on the achieved speed $\pm 2\%$. These variations depend on the accuracy of the external components used to design the application.

SPI-I2S characteristics

Unless otherwise specified, the parameters given in Table 44 for SPI or in Table 45 for I2S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in Table10.

Refer to 5.3.11 for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{scк}	SPI clock	Master mode	-	36	MHz	
(1/t _{c(SCK)})(1)	frequency ⁽²⁾⁽³⁾	Slave mode	-	f _{PCLK} /2	MHZ	
t _{r(SCK)}	SPI clock rise and	Capacitive load: C =		8		
t _{f(SCK)}	fall time	30 pF	-	0	ns	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}	-	ns	
$t_{h(NSS)}^{(1)}$	NSS hold time	Slave mode	2t _{PCLK}	-	ns	
$t_{w(SCKH)}^{(1)}$ $t_{w(SCKL)}^{(1)}$	SCK high and low time	Master mode, $f_{PCLK} =$ 90 MHz, prescaler = 4	22	32	ns	
$t_{su(MI)}^{(1)}$	Data input setup	Master mode	5	-		
t _{su(SI)} ⁽¹⁾	time	Slave mode	5 -		ns	
$t_{h(MI)}^{(1)}$	Data input setup	Master mode	5	-		
t _{h(SI)} (1)	time	Slave mode	4	-	ns	
$t_{a(SO)}^{(1)(4)}$	Data output access time	Slave mode, fPCLK = 20 MHz	0	3t _{PCLK}	ns	
$t_{dis(SO)}^{(1)(5)}$	Data output disable time	Slave mode	2	10	ns	
$t_{v(SO)}^{(1)}$	Data output valid time	Slave mode (after enable edge)	-	25	ns	
$t_{v(MO)}^{(1)}$	Data output valid time	Master mode (after enable edge)	-	5	ns	
${\sf t}_{\sf h(SO)}^{(1)}$	Data output hold	Slave mode (after enable edge)	15	-	ns	
$t_{h(MO)}^{(1)}$	time	Master mode (after enable edge)	2	-	115	

Note1: Guaranteed by characterization results, not tested in production.

Note2: Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

Note3: Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Figure19. SPI timing diagram - slave mode and CPHA = 0

V32G410x Datasheet

Figure 20. SPI timing diagram - slave mode and CPHA = $1^{(1)}$

Figure 21. SPI timing diagram - master mode (1)

Vango Technologies, Inc.

Note1: Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}.

Symbol	Parameter	Conditions	Min	Мах	Unit	
		Master mode (data: 16				
f _{CK}	I2S clock	bits, audio frequency = 48	1.522	2 1.525 MI		
1/t _{с(СК)}	frequency	kHz)			MUL	
		Slave mode	0	6.5		
t _{r(CK)}	I2S clock rise	Capacitive leads C - E0 pE		0		
t _{f(CK)}	and fall time	Capacitive load: $C = 50 \text{ pF}$	-	8		
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode	3	-		
$t_{h(WS)}^{(1)}$	WS hold time	Master mode	2	-		
$t_{su(WS)}^{(1)}$	WS setup time	Slave mode	4	-		
$t_{h(WS)}^{(1)}$	WS hold time	Slave mode	0	-		
$t_{w(CKH)}^{(1)}$	CK high and	Master fPCLK = 16 MHz,	312.5	-		
$t_{w(CKL)}^{(1)}$	low time	audio frequency = 48 kHz	345	-		
$t_{su(SD_MR)}^{(1)}$	Data input	Master receiver	6.5	-		
$t_{su(SD_SR)}^{(1)}$	setup time	Slave receiver	1.5	-	nc	
$t_{h(SD_MR)}^{(1)(2)}$	Data input hold	Master receiver	0	-	ns	
$t_{h(SD_SR)}^{(1)(2)}$	time	Slave receiver	0.5	-		
	Data output	Slave transmitter (after		10		
$t_{v(SD_ST)}^{(1)(2)}$	valid time	enable edge)	- 18	18		
► (1)	Data output	Slave transmitter (after	11	-		
$t_{h(SD_ST)}^{(1)}$	hold time	enable edge)				
+ (1)(2)	Data output	Master transmitter (after	- 3			
$t_{v(\text{SD}_\text{MT})}{}^{(1)(2)}$	valid time	enable edge)				
t	Data output	Master transmitter (after	0 -			
$t_{h(SD_MT)}^{(1)}$	hold time	enable edge)				

Table37. I2S characteristics

Note1: Guaranteed by design and/or characterization results.

Note2: Depends on f_{PCLK} . For example, if $f_{PCLK}=8$ MHz, then $T_{PCLK}=1/f_{PCLK}=125$ ns.

Figure 22. I2S slave timing diagram (Philips protocol)⁽¹⁾

- Note1: Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}.
- Note2: LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 23. I2S master timing diagram (Philips protocol)⁽¹⁾

- Note1: Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}.
- Note2: LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

CAN (controller area network) interface

Refer to 5.3.11 for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

5.3.15 12-bit ADC characteristics

Table38. ADC Characteristics

Devenuetor Condition Minimum Tyrrical Maximum Unit									
Parameter	Condition	Minimum	Typical	Maximum	Unit				
Power supply voltage									
AVDD_ADC	-	2.6	3.3	3.63	V				
VDD_ADC	-	0.81	1.1	1.21	V				
IAVDD_ADC	@ fs=2msps		500		uA				
IVREFP_ADC	@ fs=2msps		80		uA				
IVDD_ADC	@ fs=2msps		5		uA				
PowerDown			30		nA				
Reference voltage									
VEREFP_ADC	-	1.8	3.3	3.63	V				

Electrical characteristics

V32G410x Datasheet

VREFN_ADC	-		0		V
Analog input					
Input range	ADC_SDIF=0	VREFN		VREFP	V
	ADC_SDIF=1	2* (VREFP-	VREFN)		V
Input common mode		(VREFP-VR	EFN)/2		V
Input sampling capacitor	Single-ended		5		рF
Input equivalent				1000	Ω
impedance					
Time sequence					
Clock cycle (Ts)				3333	nS
Duty cycle		40%	50%	60%	Ts
SOC setup time			2		nS
SOC hold time			2		nS
Sampling time			1.5		Ts
Sampling + conversion			14		Ts
time					
Channel selection to EOC		1.5		11	Ts
time					
ADC Performance (Sing	le Ended) 1				
THD			-75		dB
ENOB			10.5		bit
SNDR			65		dB
DNL			± 1.5		LSB
INL			± 2		LSB
Calibrable offset		-16		16	LSB
ADC Performance (Diffe	erential) 1				
THD			-75		dB
ENOB			11		bit
SNDR			68		dB
DNL			± 1.5		LSB
INL			± 2		LSB
Calibrable offset		-16		16	LSB

Note1: Fin=100kHz, fs=28Msps, power supply voltage 2.97 ~ 3.63 V, -40 C ~ 125 C;

Note2: In the case of single-ended input, the performance of odd channels passes through two-stage switches, and the performance decreases slightly;

5.3.16 Temperature sensor characteristics

Table39. Temperature sensor characteristics

Symbol	Parameter		Тур	Max	Unit
$T_{L}^{(1)}$	V _{SENSE} linearity with temperature	-	±1	±2	٥C
Avg_Slope ⁽¹⁾⁽²⁾	Average slope		2.2898		mV/ºC
$V_{25}^{(1)(2)}$	Sample value at 25 °C		2646		

Electrical characteristics

V32G410x Datasheet

t _{START} ⁽³⁾	Startup time	-	-	6	μs
$T_{S_{temp}}^{(3)(4)}$	ADC sampling time when reading	2	-	-	μs
	the temperature				

Note1: Guaranteed by characterization results, not tested in production.

- Note2: The temperature sensor output voltage changes linearly with temperature. The offset of this line varies from chip to chip due to process variation (up to 50 °C from one chip to another). The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.
- Note3: Guaranteed by design, not tested in production.
- Note4: Shortest sampling time can be determined in the application by multiple iterations.

Obtain the temperature using the following formula:

Temperature (in $^{\circ}$ C) = (V_{sense} - V₂₅) / Avg_Slope. Where,

 $V_{25} = V_{SENSE}$ value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. V_{SENSE} (given in mV/° C).

Figure 24. V_{SENSE} vs. temperature

5.4 ESD electricial character

Table40. ESD electricial parameter

V	Human Body Model(HBM)	-4000	4000	V
V _{ESD}	Charged Device Model(CDM)	-1000	1000	V

6 stroage

6.1 Hmidity sensitivity

Table41. MSL summary

MSL	Out-of-bag floor life	Comments				
1	Unlimited	≤30°C / 85%RH				
2	1 year	≤30°C / 60%RH				
2a	4 weeks	≤30°C / 60%RH				
3	168 hours	≤30°C / 60%RH				
4	72 hours	≤30°C / 60%RH				
5	48 hours	≤30°C / 60%RH				
5a	24 hours	≤30°C / 60%RH				
6	Time on Label(TOL)	≤30°C / 60%RH				

Note1: The moisture sensitivity level of V32G410x is MSL3.

6.2 Storage conditions

Table42. Bagged storage conditions

Packaging method	method Vacuum		
Storage temperature	-55°C ~150°C		

7 Reflow soldering process

All Wangao chips provided to customers are lead-free RoHS compliant products.

The reflow soldering process recommended in this article is a lead-free reflow soldering process, which is suitable for the pure lead-free process of lead-free solder paste. If customers need to use lead solder paste, please contact the smart chip FAE connect.

See Table43 for lead-free reflow profile conditions. This table is for reference only.

	QTI typical SMT reflow profile co only)	onditions(for reference
	Step	Reflow condition
Environment	N2 purge reflow usage (yes/no)	Yes, N2 purge used
	If yes, O2 ppm level	O2 < 1500 ppm
А	Preheat ramp up temperature 25°C -> 150°C	
	range	
В	Preheat ramp up rate	1.5~2.5 °C /sec
С	Soak temperature range	150°C -> 190°C
D	Soak time	80~110 sec
E	Liquidus temperature	217°C
F	Time above liquidus	60-90 sec
G	Peak temperature	240-250°C
Н	Cool down temperature rate	≤4°C /sec

Table43. Reflow profile conditions

The figure below shows a typical lead-free reflow mode.

Figure 25. A typical lead-free reflow mode

8 Package information

8.1 LQFP100 14 x 14 mm package information

Figure 26. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline

Package information

V32G410x Datasheet

Symbol	millimet	ers		inches(1)			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.60	-	-	0.063	
A1	0.05	-	0.15	0.002	-	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.17	0.20	0.26	0.007	0.008	0.010	
С	0.10	0.127	0.20	0.004	0.005	0.008	
D	16.00 BS	C.		0.630 BSC.			
D1	14.00 BS	C.		0.551 BSC.			
E	16.00 BS	C.		0.630 BSC.			
E1	14.00 BS	C.		0.551 BSC.			
е	0.50 BSC.			0.020 BSC.			
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1.00 REF. 0.039 REF.						

Note1:

Values in inches are converted from mm and rounded to 3 decimal digits.

8.2 LQFP64 10x10mm package information

Figure27. LQFP64 10x10mm 64 pin low-profile quad flat package outline

8.3 QFN48 7 x 7 mm package information

Figure 28. QFN48 – 7 x 7 mm 48 pin low-profile quad flat package outline

8.4 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in Table9.

The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated using the following equation:

 $T_{jmax} = T_{amax} + (P_{dmax} \times \Theta_{JA})$

Where:

- Tamax is the maximum ambient temperature in °C,
- OJA is the package junction-to-ambient thermal resistance, in °C/W,
- Pdmax is the sum of PINTmax and PI/Omax (Pdmax = PINTmax + PI/Omax),
- PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power.

 $P_{\ensuremath{\text{I/Omax}}}$ represents the maximum power dissipation on output pins where:

 $P_{I/Omax} = \Sigma(V_{OL} \times I_{OL}) + \Sigma((V_{DD} - V_{OH}) \times I_{OH}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Table44. Package thermal characteristics

symbol	Parameter	value	unit
Θ _{JA}	Thermal impedance from junction to environment	53.6	°C/W

Innovates for the Internet of Energy

VANGO TECHNOLOGIES, INC.

Add:368 Liuhe Rd, North Bldg, Hi-Tech Park, Binjiang, Hangzhou, China Tel:+86-571-88157065 Fax:+86-571-88157067 Email:service@vangotech.com https://www.vangotech.com/en