MAKPO Website: www.macrogroup.ru

rPyrinr Email: mcu@macrogroup.ru

NanoPi R4S

Contents

= | Introduction
2 Hardware Spec
= 3 Diagram, Layout and Dimension
= 3.1 Layout
= 3.2 Differences Between R4S Standard Version & R4S Enterprise Version
4 Get Started
= 4.] Essentials You Need
= 4.2 Install OS
= 4.2.1 Download Image Files
= 4.2.2 Flash to TF
= 5 Work with FriendlyWrt
= 5.1 Introduction to FriendlyWrt
= 5.2 First boot
5.3 Account & Password
5.4 Login FriendlyWrt
5.5 Recommended security settings
5.6 Change LAN IP in LuCI
5.7 Safe shutdown operation
5.8 Soft Factory Reset
5.9 Install Software Packages
= 5.9.1 Set up openwrt official opkg source
5.9.2 Update Package List
5.9.3 List Available Packages
5.9.4 List Installed Packages
5.9.5 Install Packages
= 5.9.6 Remove Packages
5.10 Disable IPv6
5.11 Configure the function of the user button
5.12 Configuring Quectel EC20 (4G module) dial-up networking
5.13 Some common issues of FriendlyWrt
5.14 Use USB2LCD to view IP and temperature
5.15 How to Control Fan Speed for Cooling
5.16 How to use USB WiFi
= 5.16.1 Check USB WiFi Device with Command Line Utility
= 5.16.2 Configure a USB WiFi Device as AP
= 5.16.3 Common USB WiFi issues
= 5.16.4 Change the default WiFi hotspot configuration
= 5.17 Work with Docker Applications
= 5.17.1 Work with Docker: Install JellyFin
= 5.17.2 Work with Docker: Install Personal Nextcloud
= 5.17.3 Expand Docker Storage
= 5.17.4 Docker FAQ and solutions
= 5.17.4.1 Unable to access the network services provided by the Docker container
5.18 Mount smbfs
= 5.19 Use sdk to compile the package
= 5.19.1 Install the compilation environment
= 5.19.2 Download and decompress sdk from the network disk
= 5.19.3 Compile the package
= 5.19.4 Install the ipk to NanoPi
= 5.20 Build FriendlyWrt using GitHub Actions
= 6 Work with FriendlyCore
= 6.1 FriendlyCore User Account
= 6.2 Update Software Packages
= 6.3 Setup Network Configurations
= 6.3.1 Set static IP address
= 6.3.2 Seta DNS
= 6.3.3 Set up to use another network interface
= 6.4 Setup Wi-Fi
= 6.4.1 WiFi models supported
= 6.4.1.1 M.2 WiFi Module
= 6.4.1.2 Usb Dongle
= 6.5 Install the kernel-header package
= 6.6 Build kernel-header deb package
= 6.7 Config status LEDs
= 6.8 Delete QtS and related files
= 6.9 Configure parameters for serial port
= 7 Work with Debian11 Desktop
= 7.1 Introduction to Debianl1 Desktop
= 7.2 Account & Password
= 7.3 View IP address
= 7.4 Connect to Debian via SSH
= 7.5 Update Software Packages
= 7.6 Install x11vnc Server on Debian for Remote Access
= 7.6.1 Install x11vnc server

= 7.6.2 Set your password
= 7.6.3 Setup x11vnc server with systemd auto start up
= 7.6.4 Testing remote access
7.7 Install the kernel-header package
7.8 Change time zone
= 7.8.1 Check the current time zone
= 7.8.2 List all available time zones
= 7.8.3 Set the time zone (e.g. Shanghai)
= 7.9 Change startup LOGO and Wallpaper
= 7.9.1 Change startup LOGO
= 7.9.2 Change Wallpaper
7.10 Soft Factory Reset
7.11 Start the program automatically at startup(For example Kodi)
7.12 Disable auto-mounting
7.13 Setup Chinese language and Input method
= 7.13.1 Setup Chinese language
= 7.13.2 Installing Chinese input method
= 7.14 Installing Plex Multimedia Server
= 7.15 Install Docker on Debian
= 7.16 How to test NPU
= 8 Work with Debian10 Desktop
= 9 Buildroot Linux
= 10 How to Compile
= 10.1 Setup Development Environment
= 10.1.1 Method 1: Using docker to cross-compile
= 10.1.2 Method 2: Setup build environment on the host machine
= 10.1.2.1 Install required packages
= 10.1.2.2 Setting the compiler path
= 10.2 Build Openwrt/Friendlywrt
= 10.2.1 Download Code
= 10.2.1.1 FriendlyWrt 24.10
= 10.2.1.2 FriendlyWrt 23.05
10.2.2 First compilation step
10.2.3 Secondary compilation steps
10.2.4 Build u-boot only
10.2.5 Build kernel only
= 10.2.6 Build friendlywrt only
= 10.3 Build Buildroot
= 10.4 Build Other Linux
= 10.4.1 Kernel and u-boot versions
10.4.2 Build kernel linux-v4.4.y
10.4.3 Build u-boot v2014.10
10.4.4 Build kernel linux-v4.19.y
10.4.5 Build kernel linux-v6.1.y
10.4.6 Build u-boot v2017.09
10.4.7 Running the build
= 10.4.7.1 Install to target board
= 10.4.7.1.1 MBR partition
= 10.4.7.1.2 GPT partition
= 10.4.7.2 Packaging and creating an SD image
= 10.4.7.3 USB flashing
= 10.4.7.3.1 Linux
= 10.5 Build the code using scripts
= 10.5.1 Download scripts and image files
= 10.5.2 Compile the kernel
= 10.5.3 Compile the kernel headers
= 10.5.4 Compile the uboot
= 10.5.5 Generate new image
= 10.6 Building AOSP from source
= 10.6.1 Hardware and Software Requirements
= 10.6.2 Compile Android10
= 10.6.2.1 Download Android10 Source Code
= 10.6.2.2 Generate Image File
= 10.6.2.3 Make OTA Packages
= 10.6.2.4 Update System with New Image
= 10.6.3 Compile Android8.1
= 10.6.3.1 Download Android8.1 Source Code
= 10.6.3.2 Generate Image File
= 10.6.3.3 Update System with New Image
= 10.6.4 Compile Android7
= 10.6.4.1 Download Android7 Source Code
= 10.6.4.2 Generate Image File
= 10.6.4.3 Update System with New Image
= |1 Using On-Board Hardware Resources
= 11.1 Access Serial Interface
= 11.2 DTS files
= 12 Backup rootfs and create custom SD image (to burn your application into other boards)
= 12.1 Backup rootfs
=]2.2 Making a bootable SD card from a root filesystem
= 13 Configuring kernel command line parameters (only support for kernel4.4)
= 13.1 eMMC Boot
= 13.2 SD Boot
= 14 More OS Support
= 14.1 DietPi
= 15 Link to Rockchip Resources
= 16 Schematic, PCB CAD File
= 17 Known Issues List

= 18 Update Log

= 18.12023-12-01

= 18.1.1 FriendlyWrt
18.2 2023-05-26
= 18.2.1 FriendlyWrt

= 18.32023-04-26

= 18.3.1 FriendlyWrt:
= 18.42023-02-10

= 18.4.1 Added Debianl1
= 18.52023-01-09

= 18.5.1 FriendlyCore:
= 18.62022-12-04

= 18.6.1 FriendlyWrt:
= 18.72022-09-06

= 18.7.1 FriendlyWrt:
= 18.82022-08-03

= 18.8.1 FriendlyWrt:
= 18.92022-07-27

= 18.9.1 FriendlyWrt:
= 18.102021-10-29

= 18.10.1 FriendlyWrt:
= 18.11 2021-08-31

= 18.11.1 FriendlyWrt:
= 18.122020-12-23

1 Introduction

= The NanoPi R4S(as "R4S") is an open source platform with dual-Gbps Ethernet ports designed and
developed by FriendlyElec for IoT applications.

= The NanoPi R4S uses the RK3399 SoC. It has two Gbps Ethernet ports and 1G/4G DDR4 RAM.
FriendlyElec ported an OpenWrt system for it. It works with Docker CE. It is a good platform for developing
ToT applications, NAS applications etc.

2 Hardware Spec

= SoC: Rockchip RK3399
= CPU: big.LITTLE, Dual-Core Cortex-A72(up to 2.0GHz) + Quad-Core Cortex-A53(up to 1.5GHz)
= GPU: Mali-T864 GPU, supports OpenGL ES1.1/2.0/3.0/3.1, OpenCL, DX11, and AFBC
= VPU: 4K VP9 and 4K 10bits H265/H264 60fps decoding, Dual VOP, etc
= PMU: RK808-D PMIC, cooperated with independent DC/DC, enabling DVFS, software power-down, RTC
wake-up, system sleep mode
RAM: 1GB DDR3/4GB LPDDR4
Flash: no Onboard eMMC
Ethernet: one Native Gigabit Ethernet, and one PCle Gigabit Ethernet .
USB: two USB 3.0 Type-A ports Overview
Pin header extension interface
= 2x5-pin header: SPIx 1, 12Cx 1
= 4-pin header: USB 2.0
microSD Slot x 1
Debug: one Debug UART, 3 Pin 2.54mm header, 3V level, 1500000bps
LEDs: 1 x power LED and 3 x GPIO Controlled LED (SYS, LAN, WAN)
others:
= 2 Pin 1.27/1.25mm RTC battery input connector
= one User Button
= one 5V Fan connector
= Power supply: DC 5V/3A, via USB-C connector or Pin header
= PCB: 8 Layer, 66 mm x 66 mm
= Temperature measuring range: 0°C to 80°C

3 Diagram, Layout and Dimension

3.1 Layout

Front

= 2x5-pin header

Pin# | Assignment Pin# Assignment

1 VDD 5V 2 VDD _3.3V

3 VDD 5V 4 GPI04_C0/12C3_SDA(3V)

5 GND 6 GPIO4_C1/12C3_SCL(3V)

7 GPIO1_BI1/SPI1_CLK |8 GPIO1_BO0/SPI1_TXD/UART4-TX
9 GPIO1_B2/SPI1_CSn 10 |GPIO1_A7/SPIl_RXD/UART4-RX

= 4-pin header

1 2 3 4
VDD 5V USB DM USB DP GND

= Debug UART Pin Spec

3V level signals, 1500000bps

Pin# Assignment Description
1 GND ov

2 |UART2DBG TX output

3 |UART2DBG RXintput

= USB Port

Each USB 3.0 port has 2A overcurrent protection.
= RTC

RTC backup current is 27uA.

Connector P/N: Molex 53398-0271
Notes

1. Power Input : SV/3A, via USB Type-C(USB PD Specification is not supported) or Pin1&Pin2 of Back
the 2x5-pin header

3.2 Differences Between R4S Standard Version & R4S Enterprise Version

The R4S Enterprise version has a built-in EEPROM chip (Model: 24AA025E48T) which has a globally unique
MAC address. This is a permanent and temper-proof address.

The R4S Standard version doesn't have this chip and has a MAC address that is generated by a software utility.
Apart from this difference, the two versions have the same hardware configuration.

The Standard version doesn't have a MAC-address built-in EEPROM chip while the Enterprise version does. Both
the Standard version and the Enterprise version have the same network chips (RealTek RTL8211E and R8111H).
For more details please refer to the following screenshot. Retail users are recommended to choose a Standard
version and enterprise users are recommended to choose an Enterprise version.

Tips: most of the existing embedded ARM boards such as RPi 3B have MAC addresses that are generated via
software utilities. This generally doesn't have impact on network communication. Globally unique MAC addresses
lead to better network performance in complicated network situations and are better for large-scale enterprise
applications that manage multiple network devices and operations such as IP binding.

Front

Position of the EEPROM Chip:

Globally Unique MAC Address Chip
(24RA025E48T)

2002
89%) Skl 1doun

RX3399
sasTiarn at

NanoPi R4S - 1GB NanoPi R4S - 4GB

Back

The NanoPi R4S Enterprise version has a globally unique MAC address which is by default allocated to the CPU's
internal Ethernet (1tl8211e) and the name of the device is ethO. This device is named "LAN2" on the PCB and
"WAN" on the board's case. This has been configured by default in FriendlyWrt.
Check MAC address on FriendlyWrt's website:

FriendyWrt &z

R

IPv4 L

i DHCP &EF i
it 192.168.1.237/24
MI%: 192.168.1.1

DNS 1: 192.168.1.1
ZIHARE): 11h 50m 16s
BE#E: 0h 9m 44s

N

MAC itifit: 04:91:62:B4:FD:23

Check it in a command-line utility:

Case

|1 _C
|
|

) WA
7 - B IRSYVAS
NI NNV VIR

B e e e]

root@FriendlyWrt:

root@FriendlyWrt:

root@FriendlyWrt:

root@FriendlyWrt:~# ifconfig eth@ | grep HWaddr

eth@ Link encap:Ethernet HWaddr ©4:91:62:B4:FD:23
root@Friendlyrt:~# ||

How to check whether or not it is a globally unique MAC address: Case

= Check the first byte of the address. If bit 2 is 1, it means that this address is only used locally, not globally
unique.

4 Get Started

4.1 Essentials You Need

Before starting to use your NanoPi R4S get the following items ready

= NanoPi R4S
= MicroSD Card/TF Card: Class 10 or Above, minimum 8GB SDHC
= 5V/3A and above USB Type-C interface power adapter (Note: QC/PD fast charger may have compatibility
issues), it is recommended to use the following or similar power adapter:
= 5V 4A Power Adapter (https://www.friendlyarm.com/index.php?
route=product/product&path=73&product id=238)
= If you need to develop and compile,you need a computer that can connect to the Internet. It is recommended
to install Ubuntu 20.04 64-bit system and use the following script to initialize the development environment,
or use docker container:
= How to setup the Compiling Environment on Ubuntu bionic (https:/github.comy/friendlyarm/build-env-
on-ubuntu-bionic)
= docker-cross-compiler-novnc (https://github.com/friendlyarm/docker-cross-compiler-novnc)

Case

4.2 Install OS
4.2.1 Download Image Files
4.2.2 Flash to TF

Visit download link (http://download.friendlyelec.com/NanoPiR4S)to download image files (in the "01 Official
images/01 SD card images" directory) and utilities (in the "05 Tools" directory):

Case

Fan
(ZHL5:24) Globally Unique MAC Address Chi

MicroSD Card Slot

Rockehip RK3399

RTLE2LIE

PCle to Gbps Ethernet
RE111H

User Button

RK808.D PMIC

NanoPi R4S Layout

Image Files

rk3399-sd-friendlywrt-24.10- FriendlyWrt image file, based on OpenWrt 24.10, kernel version

YYYYMMDD.img.gz 6.6.y

rk3399-sd-friendlywrt-24.10-docker- FriendlyWrt image file, built-in docker, based on OpenWrt . Mvmmi\jn‘
YYYYMMDD.img.gz 24.10, kernel version 6.6.y e
rk3399-sd-friendlywrt-23.05- FriendlyWrt image file, based on OpenWrt 23.05, kernel version .
YYYYMMDD.img.gz 6.6.y !
rk3399-sd-friendlywrt-23.05-docker- FriendlyWrt image file, built-in docker, based on OpenWrt

YYYYMMDD.img.gz 23.05, kernel version 6.6.y

Ubuntu 24.04 Core e
No desktop environment, command line only
Kernel version 4.19.y

Debian 12 Core
No desktop environment, command line only
Kernel version 4.19.y

Debian 11(Bullseye) Desktop e
Uses LXDE as default desktop

No pre-installed recommended software

Supports hardware acceleration NanoPi R4S Layout
Kernel version 4.19.y

Debian 11(Bullseye) Desktop

Uses LXDE as default desktop

Pre-installed mpv, smplayer and chromium brower
Supports hardware acceleration

Kernel version 4.19.y

rk3399-sd-ubuntu-noble-core-4.19-arm64-
YYYYMMDD.img.zip

rk3399-sd-debian-bookworm-core-4.19-arm64-
YYYYMMDD.img.gz

rk3399-sd-debian-bullseye-minimal-4.19-
arm64-YYYYMMDD.img.gz

rk3399-sd-debian-bullseye-desktop-4.19-arm64-
YYYYMMDD.img.gz

Other Image

FriendlyWrt (https://github.com/friendlyarm/Actions-

FriendlyWrt (Github Actions) FriendlyWrt/releases)

Alpine-Linux (https://github.com/friendlyarm/Actions-Alpine-

Alpine-Linux (Github Actions) Linux/relcases)

Flash Utility:

win32diskimager.rar Windows utility. Under Linux users can use "dd"

The detailed steps are as follows:

= Get an 8G SDHC card and backup its data if necessary;

= Download and extract the xxx.img.gz and win32diskimager;

= Run the win32diskimager utility under Windows as administrator. On the utility's main window select your SD card's drive, the wanted image file and click on
"write" to start flashing the SD card. Under Linux run "dd" to flash the tkXXXX-sd-OSNAME-YYYYMMDD.img file to your SD card;

= Take out the SD and insert it to NanoPi-R4S's microSD card slot;

= Power on NanoPi-R4S and it will be booted from your TF card;

5 Work with FriendlyWrt

5.1 Introduction to FriendlyWrt

FriendlyWrt is a customized system made by FriendlyElec based on an OpenWrt distribution. It is open source and well suitable for developing IoT applications, NAS
applications etc.

5.2 First boot

For the first boot, the system needs to do the following initialization work :

1) Extended root file system

2) Initial setup (will execute /root/setup.sh)

So you need to wait for a while (about 2~3 minutes) to boot up for the first time, and then set FriendlyWrt, you can enter the ttyd terminal on the openwrt webpage,
when the prompt is displayed as root@FriendlyWrt, it means the system has been initialized.

5.3 Account & Password

The default password is password (empty password in some versions). Please set or change a safer password for web login and ssh login. It is recommended to
complete this setting before connecting NanoPi-R4S to the Internet.

5.4 Login FriendlyWrt

Connect the PC to the LAN port of NanoPi-R4S. If your PC without a built-in ethernet port, connect the LAN port of the wireless AP to the LAN port of NanoPi-R4S,
and then connect your PC to the wireless AP via WiFi , Enter the following URL on your PC's browser to access the admin page:

= http://friendlywrt/
= http://192.168.2.1/
= http://[fd00:ab:cd::1]

The above is the LAN port address of NanoPi-R4S. The IP address of the WAN port will be dynamically obtained from your main router through DHCP.

5.5 Recommended security settings

The following settings are highly recommended to complete before connecting NanoPi-R4S to the Internet,
= Set a secure password
= Only allow access to ssh from lan, change the port

= Check the firewall settings

Set up as you wish.

5.6 Change LAN IP in LuCI

1) Click on Network — Interfaces, then click on the Edit button of the LAN Network;

2) In General Setup tab, input new IP address (for example: 192.168.11.1), click "Save" and then click "Save & Apply";

3) On the pop-up window with the title “Connectivity change®, click "Apply and revert on connectivity loss";

4) Wait a moment, enter the new address in your computer's browser and login to FriendlyWrt;

5.7 Safe shutdown operation

Enter the "Services" -> "Terminal", enter the "poweroff" command and hit enter, wait until the led light is off, and then unplug the power supply.

5.8 Soft Factory Reset

Enter "System"->"Backup/Flash firmware", Click ‘“Perform reset Button, Your device's settings will be reset to defaults like when FriendlyWrt was first installed.
You can also do this in the terminal:

5.9 Install Software Packages

5.9.1 Set up openwrt official opkg source

Esed -i -e 's/mirrors.cloud.tencent.com/downloads.openwrt.org/g' /etc/opkg/distfeeds.conf !
lopkg update 3

5.9.2 Update Package List

Before install software packages update the package list:

. /root/setup.sh !
disable_ipvé
reboot

5.11 Configure the function of the user button

By default, the user button is configured to reboot the device, as shown below:

You can change its behavior by changing the configuration file above.
5.12 Configuring Quectel EC20 (4G module) dial-up networking

= Go to "Network" -> "Interfaces"

= Click "Delete" next to "WANG6", then click "Save & Apply"

= Click "Edit" next to "WAN", in the "Device" drop-down menu, select "Ethernet Adapter: wwan0", in the "Protocol" drop-down menu, select "QMI Cellular" and
click "Switch Protocol"

= Click the "Modem Device" drop-down menu, select "/dev/cdc-wdm0", fill in the APN information (e.g. for China Mobile, enter "cmnet")

= Click "Save" to close the dialog, Finally, click "Save & Apply" at the bottom of the page to initiate the dial-up process

= Devices connected to LAN will have access to the Internet, If your device has a WiFi module, you can enable wireless AP functionality on the "Wireless" page
and connect to the Internet via devices connected wirelessly

5.13 Some common issues of FriendlyWrt

= Unable to dial up
= Go to "Network" -> "Firewall" and set "Inbound Data", "Outbound Data" and "Forwarding" in "WAN Zone" to "Accept";
= Ifyou still cannot access the Internet, you can try to turn off IPV6;
= Dial-up successful, but no outgoing traffic
= Go to "Services" -> "Terminal" and type "fw4 reload" to try to reload the firewall settings again;
= Unable to power on
= Try to replace the power adapter and cable. It is recommended to use a power supply with specifications above 5V/2A;
= Note that some fast chargers with Type-C interface will have a delay, it may take a few seconds to start providing power;
= When doing secondary routing, the computer cannot connect to the Internet
= If your main network is IPv4, and NanoPi-R4S works in IPv6, the computer may not be able to connect to the Internet. It is recommended to turn off IPv6
(the method is described later in this WiKi), or switch the main route to IPv6;
= If you have questions or have better suggestions, please send an email to techsupport@friendlyarm.com;

5.14 Use USB2LCD to view IP and temperature

Plug the USB2LCD module to the USB interface ofNanoPi-R4S and power on, the IP address and CPU temperature will be displayed on the LCD:

5.15 How to Control Fan Speed for Cooling

(Note: The contents of this section are based on firmware released after 2021/08/31, kernel version kernel 5.10.xyz)

= The default behavior of the current PWM fan is: after a short wait (about 20 seconds) for power on, the fan will first work automatically for about 5 seconds, after
which the behavior is driven by the kernel, which decides the fan on/off and the speed according to the CPU temperature.

= The behavior of the fan can be changed by modifying the following script: /usr/bin/fa-fancontrol.sh. For example, to change the CPU temperature when the fan
starts working, you can change the following two lines:

echa 50000 > trip_point_3_temp # Indicates that the fan starts working at the lowest speed when the CPU temperature reaches 50 degrees
echa 55000 > trip_point_4_temp # Indicates that when the CPU temperature reaches 55 degrees, the fan rises to the second gear and above and automatically adjusts to the highest gear c

= If you need to adjust the speed of each gear, you can modify the kernel dts file and recompile the kernel to achieve the purpose, the specific dts and modified
location can be referred to the following commit: https://github.com/friendlyarm/kernel-rockchip/commit/f74ac319f02e2d22cdd33227e7f167e¢4232809f9

As shown below, the cooling-levels define 4 levels, with 0 being off and the highest level being 255:

fan: pwm-fan { !
compatible = "pwm-fan"; :
/* FIXME: adjust leveles for the connected fan */ H
cooling-levels = <@ 12 18 255>;
cooling-levels = <@ 18 102 170 255>;

r--q

= Ifyou are using kernel version 4.19.xyz, the fan is operated by PWM at the application level to achieve temperature control, the above content is not applicable,
you need to modify this script:

5.16 How to use USB WiFi
5.16.1 Check USB WiFi Device with Command Line Utility

(1) Click on "services>ttyd" to start the command line utility

(2) Make sure no USB devices are connected to your board and run the following command to check if any USB devices are connected or not

"Lsusb

1susb B

You will see a new device is detected. In our test the device's ID was 0BDA:C811

(4) Type your device's ID (in our case it was "0BDA:C811" or "VID _0BDA&PID C811") in a search engine and you may find a device that matches the ID. In our
case the device we got was Realtek 8811CU.

5.16.2 Configure a USB WiFi Device as AP

(1) Connect a USB WiFi device to the NanoPi-R4S. We recommend you to use the following devices:
) Distro Support

. 0s
WiFi Chipset FriendlyWrt Ubuntu Core AP Mode
2 OpenWrt 19.07.5 Ubuntu 20.04 64-bit
RTL8188CUS/8188EU 802.11n WLAN Adapter Preinstalled driver Yes x
RT2070 Wireless Adapter Preinstalled driver Yes X
RT2870/RT3070 Wireless Adapter Preinstalled driver ¥es x
RTL8192CU Wireless Adapter Preinstalled driver Yes x
Ralink MT7601/MT7601U Preinstalled driver Yes *®
5G USB WIFI RTL8821CU/RTL8811CU Plug and play, Yo v
(VID_OBDA & PID_C811} Access Point mode by default
5G USB WIFI RTL8812BU Plug and play, Vi vy
(VID_DBDA & PID_B812) Access Point mode by default
5G USB WiFi RTL8812AU Plug and play, Yon v
(VID_DBDA & PID_8812) Access Point mode by default
5G USB WIFI MediaTek MT7662 Plug and play, ” v
l b : 8 o
(VID_OESD & PID_7612) Access Point mode by default

Note: devices that match these VID&PIDs would most likely work.
(2) Click on "System>Reboot" and reboot your NanoPi-R4S

(3) Click on "Network>Wireless" to enter the WiFi configuration page
(4) Click on "Edit" to edit the configuration

(5) On the "Interface Configuration" page you can set the WiFi mode and SSID, and then go to "Wireless Security" to change the password. By default the password is
"password". After you make your changes click on "Save" to save

(6) After you change the settings you can use a smartphone or PC to search for WiFi
5.16.3 Common USB WiFi issues

1) It is recommended to plug in the usb wifi in the off state, then power it on, FriendlyWrt will automatically generate the configuration file /etc/config/wireless, if not,
see if there is wlan0 by ifconfig -a, if there is no wlan0, usually there is no driver.

2) If ifconfig -a sees wlan0, but the hotspot is not working properly, try changing the channel and country code, an inappropriate country code can also cause the WiFi
to not work.

3) Some USB WiFis (e.g. MTK MT7662) work in CD-ROM mode by default and need to be switched by usb_modeswitch, you can try to add usb_modeswitch
configuration to the following directory: /etc/usb_modeswitch.d.

5.16.4 Change the default WiFi hotspot configuration

FriendlyWrt sets the country, hotspot name and other parameters for USB WiFi by default, with the aim of being as plug-and-play as possible, but this does not
guarantee that all modules will be compatible with this setting, you can change these behaviors by moditying the following file :

5.17 Work with Docker Applications

5.17.1 Work with Docker: Install JellyFin

mkdir -p /jellyfin/config 3
mkdir -p /jellyfin/videos |
docker run --restart=always -d -p 8096:8096 -v /jellyfin/config:/config -v /jellyfin/videos:/videos jellyfin/jellyfin:10.1.8-armé4 -name myjellyfin 3

After installation, visit port 8096 and here is what you would find:

L PR

o, m L STV T

imkdir‘ /nextcloud -p
idocker run -d -p 8888:80 --name nextcloud -v /nextcloud/:/var/www/html/ --restart=always --privilege
h

L -

rue armé64v8/nextcloud

After installtion, visit port 8888.
5.17.3 Expand Docker Storage

= Stop docker service first:

= Format your drive as ext4, and mount it to the /opt directory:

Mount Points - Mount Entry

General settings ~ Advanced Settings

Enabled v

uuiD c632a1d7-0898-45a4-9e7b-469bebbe9507 (/dev/nvmeOn1p1, 238 v

@ If specified, mount the device by its UUID instead of a fixed device node

Mount point Jopt v

@ Specifies the directory the device is attached to

Dismiss SEVE

= Enter the command "mount | grep /opt" to check the mount status:

root@FriendlyWrt:~# mount | grep /opt
/dev/nvmednlpl on /opt type ext4 (rw,relatime)
root@FriendlyWrt:~#

= After reboot, go to the "Docker" -> "Overview" page, check the information in the "Docker Root Dir" line, you can see that the Docker space has been expanded:

FrlendIyWrt Status v System ~ Services v Docker v Network v Statisti

Docker - Overview

An overview with the relevant data is displayed here with which the LuCl docker client is connected.

Info

Docker Version 20.10.12

Api Version 1.41

CPUs 4

Total Memory 1.91 GB

Docker Root Dir lopt/docker (220.71 GB Available)
Index Server Address https://index.docker.io/v1/

5.17.4 Docker FAQ and solutions

5.17.4.1 Unable to access the network services provided by the Docker container

Solution:

= @Go to the "Firewall" settings and set "Forwarding" to "Accept";
= Turn off "Software Offload";

5.18 Mount smbfs
mount -t cifs //192.168.1.10/shared /movie -o username=xxx,password=yyy,file_mode=0644 §
5.19 Use sdk to compile the package
5.19.1 Install the compilation environment
Download and run the following script on 64-bit Ubuntu (version 18.04+): How to setup the Compiling Environment on Ubuntu bionic
(https://github.com/friendlyarm/build-env-on-ubuntu-bionic)
5.19.2 Download and decompress sdk from the network disk
The sdk is located in the toolchain directory of the network disk:
Etar xvf openwrt-sdk-*-rockchip-armv8_gcc-11.2.0_musl.Linux-x86_64.tar.xz 3
w If the path is too long, it will cause some package compilation errors, so change the directory name here |
imv openwrt-sdk-*-rockchip-armv8_gcc-11.2.0_musl.Linux-x86_64 sdk i
Ecd sdk 3
1./scripts/feeds update -a |
i./scripts/feeds install -a |
5.19.3 Compile the package
download the source code of the example (a total of 3 examples are examplel, example2, example3), and copy to the package directory:
git clone https://github.com/mwarning/openwrt-examples.git
cp -rf openwrt-examples/example* package/
rm -rf openwrt-examples/
Then enter the configuration menu through the following command:
make menuconfig
In the menu, select the following packages we want to compile (actually selected by default):
examplel" :
"example3" :
"VPN" => "example2" |
execute the following commands to compile the three software packages:
make package/examplel/compile V=99 i
make package/example2/compile V=99 :
make package/example3/compile V=99 3
After the compilation is successful, you can find the ipk file in the bin directory, as shown below:
$ find ./bin -name example*.ipk |
./bin/packages/aarch64_generic/base/example3_1.0.0-220420.38257_aarch64_generic.ipk 3
./bin/packages/aarch64_generic/base/examplel_1.0.0-220420.38257_aarch64_generic.ipk |
./bin/packages/aarch64_generic/base/example2_1.0.0-220420.38257_aarch64_generic.ipk :

5.19.4 Install the ipk to NanoPi
You can use the scp command to upload the ipk file to NanoPi:

icd ./bin/packages/aarch64_generic/base/

Escp example*.ipk root@192.168.2.1:/root/

icd /root/

iopkg install example3_1.0.0-220420.38257_aarch64_generic.ipk

lopkg install examplel_1.0.8-220420.38257_aarch64_generic.ipk |
iopkg install example2_1.0.0-220420.38257_aarch64_generic.ipk

1

5.20 Build FriendlyWrt using GitHub Actions
Please refre this link: https:/github.com/friendlyarm/Actions-Friendly Wrt
6 Work with FriendlyCore

6.1 FriendlyCore User Account

= Non-root User:

H
i User Name: pi
H
H

Password: pi |

User Name: root
Password: fa

6.3 Setup Network Configurations

6.3.1 Set static IP address

By default "eth0" is assigned an IP address obtained via dhcp. If you want to change the setting you need to change the following file:

wi /etc/network/interfaces.d/ethe

For example if you want to assign a static IP to it you can run the following commands:

auto etho i

iface ethe inet static '
address 192.168.1.231 |
netmask 255.255.255.0 |
gateway 192.168.1.1 i

6.3.2 Set a DNS

You also need to modify the following file to add the DNS configuration:

ivi /etc/systemd/resolved.conf

For example, set to 192.168.1.1:

;[Resolve]

DNS=192.168.1.1 3

Restart the systemd-resolved service with the following command:

isudo systemctl restart systemd-resolved.service

Esudo systemctl enable systemd-resolved.service

6.3.3 Set up to use another network interface

To change the setting of "eth1" you can add a new file similar to eth0's configuration file under the /etc/network/interfaces.d/ directory.

6.4 Setup Wi-Fi

First, use the following command to check if Network-Manager is installed on your system:

If you have installed it, refer to this link to connect to WiFi: Use NetworkManager to configure network settings, If you do not have Network-Manager installed on your
system, please refer to the following method to configure WiFi,
By default the WiFi device is "wlan0". You need to create a configuration file under "/etc/network/interfaces.d/" for WiFi:

Eauto lo i
iiface lo inet loopback H
auto wlane@
iface wlan@ inet dhcp
pa-driver wext
pa-ssid YourWiFiESSID
pa-ap-scan 1
pa-proto RSN
pa-pairwise CCMP
pa-group CCMP
pa-key-mgmt WPA-PSK
pa-psk YourWiFiPassword

Please replace "YourWiFiESSID" and "YourWiFiPassword" with your WiFiESSID and password. After save and close the file you can connect to your WiFi source by
running the following command:

Esudo systemctl daemon-reload i
Esudo systemctl restart networking

After you power on your board it will automatically connect to your WiFi source.
Please note that if you use one TF card to boot multiple boards the WiFi device name will likely be named to "wlanl", "wlan2" and etc. You can reset it to "wlan0" by
deleting the contents of the following file and reboot your board: /etc/udev/rules.d/70-persistent-net.rules
6.4.1 WiFi models supported
6.4.1.1 M.2 WiFi Module
= RTL8822CE
6.4.1.2 Usb Dongle
= RTL8821CU (Vid: 0BDA, Pid: C811) (Test sample:TP-Link TL-WDN5200H)
= RTL8812AU (Vid: 0BDA, Pid: 8812)
= MediaTek MT7662 (Vid: 0E8D, Pid: 7612) (Test sample: COMFAST CF-WU782AC V2)

6.5 Install the kernel-header package

6.6 Build kernel-header deb package
Please refre to: https://github.com/friendlyarm/sd-fuse rk3399/blob/kernel-5.15.y/test/test-build-kernel-header-deb.sh
6.7 Config status LEDs

First determine whether the system already exists the leds initialization service:

Since there is no leds service in the early firmware, you need to refer to the following guide to manually configure the LEDs. First, set the following kernel modules to
be automatically loaded at boot:

imodprobe ledtrig-netdev H
Eecho ledtrig-netdev > /etc/modules-load.d/ledtrig-netdev.conf i

Put the following into the autorun script to associate the status leds with the ethernet interface, and you can configure it to behave in other ways by referring to these
content:

Eecho netdev > /sys/class/leds/wan_led/trigger
Eecho ethe > /sys/class/leds/wan_led/device_name
lecho 1 > /sys/class/leds/wan_led/link

Eecho netdev > /sys/class/leds/lan_led/trigger
Eecho ethl > /sys/class/leds/lan_led/device_name
iecho 1 > /sys/class/leds/lan_led/link

6.8 Delete Qt5 and related files

Execute the following commands :

H
isu root

wed /

Erm -rf usr/local/Trolltech/Qt-5.10.0-rk64one usr/local/Trolltech/Qt-5.10.08-rk64one-sdk usr/bin/setqtSenv* usr/bin/qtSdemo etc/qt5

Erm -rf opt/{qt5-browser,Qt5_CinematicExperience,qt5-multi-screen-demo,qt5-nmapper,qt5-player,qt5-smarthome,QtE-Demo,qt5-gml-image-viewer,dual-camera}

6.9 Configure parameters for serial port
Use the following serial parameters:

Baud rate 1500000

Data bit 8
Parity check None
Stop bit 1

Flow control None

7 Work with Debian11 Desktop

7.1 Introduction to Debian11 Desktop

Debianl11 Desktop is a light-weighted debian desktop system, it has the following features:

= Uses LXDE as default desktop;

= Mali GPU-based OpenGL support;

= Support Rockhip MPP video hard coding and hard decoding;

= Pre-installed mpv and smplayer, both support 4K video hardware decoding;

= Pre-installed Chromium browser, support vpu/gpu hardware acceleration (video hard decoding limited to h264/mp4 format);
= Compatible with Plex Server and Docker;

ABOD®
Trash

o
>,

LXTerminal

[

Chromium
Browser

®

Onboard

i
S

B,

File Manager
PCManFM

»

SMPlayer

7.2 Account & Password
Regular Account:
User Name: pi

Password: pi

Root:
the root user account is disabled by default, you may configure the root password through the 'sudo passwd root' command.

7.3 View IP address
Since the Debian Bullseye hostname is the hardware model by default, you can use the ping command to get the IP address:ping NanoPi-R4S
7.4 Connect to Debian via SSH

Run the following commandssh pi@NanoPi-R4S
The default password is: pi

7.5 Update Software Packages

7.6 Install x11vnc Server on Debian for Remote Access
7.6.1 Install x11vnc server

The following command to install x11vnc server:

7.6.2 Set your password

Esudo x1lvnc -storepasswd /etc/xllvnc.pwd
H i

7.6.3 Setup x11vnc server with systemd auto start up

Create service configuration file:

i[Unit]

iDcs(Fiption:Start x1lvnc at startup.
RRequires=display-manager.service
fter=syslog.target network-online.target
ants=syslog.target network-online.target

ype=simple

xecStart=/usr/bin/x11lvnc -display :@ -forever -loop -noxdamage -repeat -rfbauth /etc/xllvnc.pwd -rfbport 5900 -shared -capslock -nomodtweak
IExecStop=/usr/bin/x1l1lvnc -R stop

Restart=on-failure

Install]
antedBy=multi-user.target

isudo systemctl daemon-reload

Esudo systemctl enable xllvnc.service

isudo systemctl start xllvnc 1
|

7.6.4 Testing remote access

Start the VNC client software, input IP:5900 to connect:

debian

try to compile a kernel module:

-

udo apt update 3
udo apt install git gcc make bc

it clone https://github.com/RinCat/RTL88x2BU-Linux-Driver.git |
RTL88x2BU-Linux-Driver 3

ke -j$(nproc)
udo make install
udo modprobe 88x2bu

7.8 Change time zone

7.8.1 Check the current time zone

7.9 Change startup LOGO and Wallpaper

7.9.1 Change startup LOGO

Replace the following two files in the kernel source code directory and recompile the kernel :
kernel/logo.bmp

kernel/logo_kernel.bmp
Or use the script to operate, as shown below :

= Download scripts:

Egit clone https://github.com/friendlyarm/sd-fuse_rk3399.git -b kernel-4.19 --single-branch
Ecd sd-fuse_rk3399 3

iconvert files/logo.jpg -type truecolor /tmp/logo.bmp

Econvert files/logo.jpg -type truecolor /tmp/logo_kernel.bmp

isudo LOGO=/tmp/logo.bmp KERNEL_LOGO=/tmp/logo_kernel.bmp ./build-kernel.sh debian-bullseye-desktop-armé4
isudo ./mk-sd-image.sh debian-bullseye-desktop-armé4

Esudo ./mk-emmc-image.sh debian-bullseye-desktop-armé4

Note: If your system is not debian-bullseye-desktop-arm64, please specify according to the actual situation

7.9.2 Change Wallpaper

Modify the following configuration file:

7.10 Soft Factory Reset

Execute the following command in a terminal:

7.11 Start the program automatically at startup(For example Kodi)
Put the desktop file in the ~/.config/autostart/ directory, for example:

Emkdir ~/.config/autostart/
icp /usr/share/applications/kodi.desktop ~/.config/autostart/

isudo systemctl mask udisks2
isudo reboot

7.13 Setup Chinese language and Input method
7.13.1 Setup Chinese language

Enter the following command and select 'zh_ CN.UTF-8":

sudo dpkg-reconfigure locales

Add environment variables to .bashrc:

iecho "export LC_ALL=zh_CN.UTF-8" >> ~/.bashrc

echo "export LANG=zh_CN.UTF-8" >> ~/.bashrc |
lecho "export LANGUAGE=zh_CN.UTF-8" >> ~/.bashrc

Reboot device:

sudo reboot 3

7.13.2 Installing Chinese input method

Enter the following command to install fcitx and Pinyin input method:

isudo apt update

:sudo apt-get install fcitx fcitx-pinyin

isudo apt-get install im-config

isudo apt-get install fcitx-table*

isudo apt-get install fcitx-ui-classic fcitx-ui-light

isudo apt-get install fcitx-frontend-gtk2 fcitx-frontend-gtk3 fcitx-frontend-qt4
isudo apt-get remove --purge scim* ibus*

isudo reboot

After reboot, press Ctrl+Space to switch between Chinese and English input methods, and the input method icon will appear in the upper right corner, right-click the
input method icon in the upper right corner to switch input methods in the pop-up menu, as shown below:

*k#4£ 1- Mousepad

) FWEA(H)

SR L
Bekk L
MELHTHAE
.-

Edi)=0]

B

B E

7.14 Installing Plex Multimedia Server
Visit the Plex website: https://www.plex.tv/media-server-downloads/

On the download page, select the category "Plex Media Server", choose "Linux" for the platform and "Ubuntu(16.04+)/Debian(8+) - ARMvS8" for the version,
After downloading the deb package, use the dpkg command to install the package:

After installation, login to the Plex server by typing the following URL into your computer browser: http://IP3ilF:32400/web/
7.15 Install Docker on Debian

Pleasc refer to: How to Install Docker on Debian

7.16 How to test NPU

Please refer to: NPU
8 Work with Debian10 Desktop

= Referto:
= Debian Buster

9 Buildroot Linux

Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux systems through cross-compilation. It contains a boot-loader, kernel, rootfs, various
libraries and utilities(e.g. qt, gstreamer, busybox etc).

FriendlyELEC's Buildroot is based on Rockchip's version which is made with linux-sdk and maintained with git. FriendlyELEC's version is synced with Rockchip's
version;

= Rockchip's Buildroot: https://github.com/rockchip-linux/buildroot
= Buildroot's official site: https://buildroot.org

For a more detailed description of the Buildroot system, please refer to: Buildroot

10 How to Compile

10.1 Setup Development Environment

10.1.1 Method 1: Using docker to cross-compile

Please refre to docker-cross-compiler-novnc (https://github.com/friendlyarm/docker-cross-compiler-novnc)
10.1.2 Method 2: Setup build environment on the host machine

10.1.2.1 Install required packages

Install and run requirements ubuntu 20.04, install required packages using the following commands:

Esudo apt-get -y update

isudo apt-get install -y sudo curl

Esudo bash -c \

i "$(curl -fsSL https://raw.githubusercontent.com/friendlyarm/build-env-on-ubuntu-bionic/master/install.sh)"

The following cross-compilers will be installed:

Version | Architecture Compiler path Purpose

4.9.3 |armhf /opt/FriendlyARM/toolchain/4.9.3 Can be used to build 32-bit ARM applications

6.4 aarch64 /opt/FriendlyARM/toolchain/6.4-aarch64 | Can be used to build kernel 4.4

11.3 aarch64 /opt/FriendlyARM/toolchain/11.3-aarch64 | Can be used to build kernel 4.19 or higher and U-Boot

10.1.2.2 Setting the compiler path

Based on the table in the previous section, select the appropriate version of the compiler and add the compiler's path to PATH. For example, if you want to use the 11.3
cross-compiler, edit ~/.bashrc using vi and add the following content to the end:

export PATH=/opt/FriendlyARM/toolchain/11.3-aarch64/bin:$PATH
export GCC_COLORS=auto

non.

Run the ~/.bashre script to make it effective in the current commandline. Note: there is a space after ".

% aarch64-linux-gcc -v |
.Uslng built-in specs. |
ICOLLECT_GCC=aarch64- linux-gcc |
:COLLECTiLTOJRAPPER /opt/FriendlyARM/toolchain/11.3-aarch64/1libexec/gcc/aarch64-cortexa53-1inux-gnu/11.3.0/1to-wrapper i
iTarget: aarché4-cortexa53-linux-gnu |
icunfigured with: /home/cross/armé4/src/gcc/configure --build=x86_64-build_pc-linux-gnu --host=x86_64-build_pc-linux-gnu --target=aarch64-cortexa53-linux-gnu -»pr‘efix=/opt/Fr‘iendlyARM/t:
iThread model: posix |
iSupported LTO compression algorithms: zlib |
Egcc version 11.3.8 (ctng-1.25.0-119g-FA)

i (D >

10.2 Build Openwrt/Friendlywrt
10.2.1 Download Code
Two versions are available, please choose as required:

10.2.1.1 FriendlyWrt 24.10

H

inkdir friendlywrt24-rk3399

icd friendlywrt24-rk3399

:git clone https://github.com/friendlyarm/repo --depth 1 tools

Tools/repo init -u https://github.com/friendlyarm/friendlywrt_manifests -b master-v24.10 \
-m rk3399.xml --repo-url=https://github.com/friendlyarm/repo --no-clone-bundle

.tools/repo sync -c --no-clone-bundle

Emkdir friendlywrt23-rk3399

icd friendlywrt23-rk3399 |
git clone https://github.com/friendlyarm/repo --depth 1 tools !
itools/repo init -u https://github.com/friendlyarm/friendlywrt_manifests -b master-v23.85 \ |
-m rk3399.xml --repo-url=https://github.com/friendlyarm/repo --no-clone-bundle ;
itools/repo sync -c¢ --no-clone-bundle

All the components (including u-boot, kernel, and friendlywrt) are compiled and the sd card image will be generated, then execute the following command to generate
the image file for installing the system into the emmc:

Ecd friendlywrt i
imake menuconfig |
irm -rf ./tmp |
Emake -j${nproc} 3
wcd ../

i./build.sh sd-img |
i./build.sh emmc-img 3

10.2.5 Build kernel only

Or go to the friendlywrt directory and follow the standard openwrt commands. If you get an error with the above command, try using the following command to
compile in a single thread:

icd friendlywrt
H

make -j1 V=s

10.3 Build Buildroot
please refer to: Buildroot
10.4 Build Other Linux

10.4.1 Kernel and u-boot versions

Operating Kernel | U-boot | Cross-

System Version| version |compiler Partition type Packaging Tool Kernel branch

lubuntu

friendlycore-

arm64 linux |u-boot |6.4- MBR (https://github.com/friendlyarm/sd-
friendlydesktop- v4.4y v2014.10 aarch64 |fuse rk3399/blob/master/prebuilt/parameter.template)
arm64

sd-fuse nanopi4-linux-v4.4.y
(https://github.com/friendlyarm/sd- | (https://github.com/friendly
fuse rk3399/tree/master) rockchip/tree/nanopi4-linux

cflasher
buildroot

ubuntu-focal-
desktop-arm64

debian-bullseye-
desktop-arm64

debian-bullseye-
minimal-arm64 |linux | u-boot 11.3-
v4.19.y |v2017.09 aarch64

GPT (https://github.com/friendlyarm/sd- sd-fuse nanopi4-v4.19.y
fuse rk3399/blob/kernel- (https://github.com/friendlyarm/sd- | (https://github.com/friendly
friendlycore- 4.19/prebuilt/parameter.template) fuse_rk3399/tree/kernel-4.19) rockchip/tree/nanopid-v4.1¢

focal-arm64

debian-
bookworm-core-
arm64

ubuntu-noble-

core-arm64
openmediavault- GPT (https://github.com/friendlyarm/sd-
afm 64 fuse_rk3399/blob/kernel-6.1.y/prebuilt/parameter-
extd.txt) sd-fuse nanopi-r2-v6.1.y

frendlywr2! lin boot | 11.3- (https://github.com/friendlyarm/sd- Egtctlfcsh/l/g/lttr}zl/)nz(r)ﬁ/fnrgndley
friendlywrt21- el : fuse_rk3399/tree/kernel-6.1.y) P PI-L2-vO.
d v6.l.y |v2017.09 aarch64 . .

ocker GPT (https://github.com/friendlyarm/sd-
friendlywrt23 fuse_rk3399/blob/kernel-6.1.y/prebuilt/parameter.txt)
friendlywrt23-
docker

= Kernel git repo: https://github.com/friendlyarm/kernel-rockchip

U-boot git repo: https://github.com/friendlyarm/uboot-rockchip

The cross-compile toolchain is located in the path: /opt/FriendlyARM/toolchain/

The SD-Fuse is a helper script to make bootable SD card image.

Click on MBR and GPT in the table to view the partition layout (configuration file) for each system.

10.4.2 Build kernel linux-v4.4.y
This section applies to the following operating systems:
lubuntu | eflasher | friendlydesktop-arm64 | friendlycore-arm64

Clone the repository to your local drive then build:

H
Egit clone https://github.com/friendlyarm/kernel-rockchip --single-branch --depth 1 -b nanopi4-linux-v4.4.y kernel-rockchip
icd kernel-rockchip

Eexport PATH=/opt/FriendlyARM/toolchain/6.4-aarch64/bin/: $PATH

itouch .scmversion

i# Load configuration

Emake ARCH=armé64 CROSS_COMPILE=aarch64-linux- nanopi4_linux_defconfig i
W Optionally, if you want to change the default kernel config |
W# make ARCH=armé4 CROSS_COMPILE=aarch64-Llinux- menuconfig |
E# Start building kernel !

imake ARCH=armé4 CROSS_COMPILE=aarch64-linux- nanopié-images -3j$(nproc)

w Start building kernel modules

mkdir -p out-modules

ke ARCH=armé4 CROSS_COMPILE=aarch64-linux- INSTALL_MOD_PATH="$PWD/out-modules" modules -j$(nproc)
ke ARCH=armé4 CROSS_COMPILE=aarch64-linux- INSTALL_MOD_PATH="$PWD/out-modules"” modules_install
ERNEL_VER=$(make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 kernelrelease)

m -rf $PWD/out-modules/lib/modules/${KERNEL_VER}/kernel/drivers/gpu/arm/mali4ee/

cd $PWD/out-modules & find . -name *.ko | xargs aarch64-linux-strip --strip-unneeded)

! -f "$PWD/out-modules/lib/modules/${KERNEL_VER}/modules.dep”] && depmod -b $PWD/out-modules -E Module.symvers -F System.map -w ${KERNEL_VER}

After the compilation, the following files will be generated:
kernel.img | resource.img | The kernel modules are located in the out-modules directory

Run your build:
Please refre to #Running the build

10.4.3 Build u-boot v2014.10
This section applies to the following operating systems:
lubuntu | eflasher | friendlydesktop-arm64 | friendlycore-arm64

Clone the repository to your local drive then build:

git clone https://github.com/friendlyarm/uboot-rockchip --single-branch --depth 1 -b nanopi4-v2014.10_oreo
cd uboot-rockchip

export PATH=/opt/FriendlyARM/toolchain/6.4-aarch64/bin/:$PATH

make CROSS_COMPILE=aarch64-linux- rk3399_defconfig

make CROSS_COMPILE=aarch64-linux-

After the compilation, the following files will be generated:
uboot.img | trust.img| k3399 loader v1.22.119.bin (aka MiniLoaderAll.bin)

Installing the u-boot:
Please refre to #Running the build

10.4.4 Build kernel linux-v4.19.y

This section applies to the following operating systems:

ubuntu-focal-desktop- | debian-bullseye-desktop- |debian-bullseye-minimal- |friendlycore-focal- ubuntu-noble-core-

arm64 arm64 arm64 arm64 arm64

Clone the repository to your local drive then build:

arm64

H
igit clone https://github.com/friendlyarm/kernel-rockchip --single-branch --depth 1 -b nanopi4-v4.19.y kernel-rockchip
cd kernel-rockchip

lexport PATH=/opt/FriendlyARM/toolchain/11.3-aarch64/bin/:$PATH

ttouch .scmversion

Configuring the Kernel

Load default configuration

make ARCH=armé64 CROSS_COMPILE=aarch64-linux- nanopi4_linux_defconfig

¥ Optionally, Lload configuration for FriendlyWrt

make ARCH=armé4 CROSS_COMPILE=aarch64-Llinux- nanopi4_Linux_defconfig friendlywrt.config

Optionally, if you want to change the default kernel config

make ARCH=armé4 CROSS_COMPILE=aarch64-Llinux- menuconfig

Start building kernel

make ARCH=arm64 CROSS_COMPILE=aarch64-linux- nanopi4-images -j$(nproc)

Start building kernel modules

mkdir -p out-modules

make ARCH=arm64 CROSS_COMPILE=aarch64-linux- INSTALL_MOD_PATH="$PWD/out-modules" modules -j$(nproc)

make ARCH=armé4 CROSS_COMPILE=aarch64-linux- INSTALL_MOD_PATH="$PWD/out-modules" modules_install

KERNEL_VER=$(make CROSS_COMPILE=aarch64-linux-gnu- ARCH=armé4 kernelrelease)

rm -rf $PWD/out-modules/1lib/modules/${KERNEL_VER}/kernel/drivers/gpu/arm/mali4ee/

[! -f "$PWD/out-modules/lib/modules/${KERNEL_VER}/modules.dep”] && depmod -b $PWD/out-modules -E Module.symvers -F System.
(cd $PWD/out-modules && find . -name *.ko | xargs aarch64-linux-strip --strip-unneeded)

map -w ${KERNEL_VER}

After the compilation, the following files will be generated:
kernel.img resource.img | The kernel modules are located in the out-modules directory

Run your build:
Please refre to #Running the build

10.4.5 Build kernel linux-v6.1.y
This section applies to the following operating systems:
friendlywrt21 | friendlywrt2 1-docker | friendlywrt23 | friendlywrt23-docker openmediavault-arm64

Clone the repository to your local drive then build:

igit clone https://github.com/friendlyarm/kernel-rockchip --single-branch --depth 1 -b nanopi-r2-v6.1.y kernel-rockchip
cd kernel-rockchip

export PATH=/opt/FriendlyARM/toolchain/11.3-aarch64/bin/:$PATH

rtouch .scmversion

Configuring the Kernel

Load default configuration

make CROSS_COMPILE=aarch64-linux-gnu- ARCH=armé4 nanopi4_linux_defconfig

Optionally, Load configuration for FriendlyWrt

debian-bookworm-core-

buildroot

make CROSS_COMPILE=aarch64-linux-gnu- ARCH=armé4 nanopi4_Linux_defconfig friendlywrt.config

Optionally, if you want to change the default kernel config

7 make CROSS_COMPILE=aarch64-Llinux-gnu- ARCH=armé64 menuconfig

Start building kernel

make CROSS_COMPILE=aarch64-linux-gnu- ARCH=armé4 -3j$(nproc)

Start building kernel modules

mkdir -p out-modules & rm -rf out-modules/*

imake CROSS_COMPILE=aarch64-1linux-gnu- ARCH=armé4 INSTALL_MOD_PATH="$PWD/out-modules" modules -j$(nproc)
make CROSS_COMPILE=aarch64-linux-gnu- ARCH=arm64 INSTALL_MOD_PATH="$PWD/out-modules" modules_install
KERNEL_VER=$(make CROSS_COMPILE=aarch64-linux-gnu- ARCH=armé64 kernelrelease)

[! -f "$PWD/out-modules/lib/modules/${KERNEL_VER}/modules.dep”] && depmod -b $PWD/out-modules -E Module.symvers -F System.map -w ${KERNEL_VER}
i(cd $PWD/out-modules & find . -name *.ko | xargs aarch64-linux-strip --strip-unneeded)

H
:Mget https://raw.githubusercontent.com/friendlyarm/sd-fuse_rk3399/kernel-6.1.y/tools/mkkrnlimg && chmod 755 mkkrnlimg

Ewget https://raw.githubusercontent.com/friendlyarm/sd-fuse_rk3399/kernel-6.1.y/tools/resource_tool & chmod 755 resource_tool
wget https://raw.githubusercontent.com/friendlyarm/sd-fuse_rk3399/kernel-6.1.y/prebuilt/boot/logo.bmp

Ewget https://raw.githubusercontent.com/friendlyarm/sd-fuse_rk3399/kernel-6.1.y/prebuilt/boot/logo_kernel.bmp

1./mkkrnlimg arch/armé4/boot/Image kernel.img

imkdir kernel-dtbs

icp -f arch/armé4/boot/dts/rockchip/rk3399-nanopi-rds.dtb kernel-dtbs/rk3399-nanopi4-reve9.dtb

Ecp -f arch/armé4/boot/dts/rockchip/rk3399-nanopi-r4s.dtb kernel-dtbs/rk3399-nanopi4-reve@a.dtb

icp -f arch/armé4/boot/dts/rockchip/rk3399-nanopi-r4se.dtb kernel-dtbs/rk3399-nanopi4-reveb.dtb

Ecp -f arch/armé4/boot/dts/rockchip/rk3399-nanopc-t4.dtb kernel-dtbs/rk3399-nanopi4-revee.dtb

E./resourceitool --dtbname kernel-dtbs/*.dtb logo.bmp logo_kernel.bmp

After the compilation, the following files will be generated:
kernel.img resource.img | The kernel modules are located in the out-modules directory

Run your build:
Please refre to #Running the build

10.4.6 Build u-boot v2017.09
This section applies to the following operating systems:

ubuntu-focal-desktop- | debian-bullseye-desktop- |debian-bullseye-minimal- |friendlycore-focal- ubuntu-noble-core- | debian-bookworm-core-

arm64 arm64 arm64 arm64 arm64 arm64 buildroot

Clone the repository to your local drive then build:

git clone https://github.com/friendlyarm/rkbin --single-branch --depth 1 -b friendlyelec

git clone https://github.com/friendlyarm/uboot-rockchip --single-branch --depth 1 -b nanopi4-v2017.09
lexport PATH=/opt/FriendlyARM/toolchain/11.3-aarch64/bin/:$PATH

cd uboot-rockchip/

i-/make.sh nanopi4

After the compilation, the following files will be generated:
uboot.img trust.img rk3399 loader v1.24.126.bin (aka MiniLoaderAll.bin)

Run your build:
Please refre to #Running the build

10.4.7 Running the build

10.4.7.1 Install to target board

10.4.7.1.1 MBR partition

This section applies to the following operating systems:

lubuntu | eflasher | friendlydesktop-arm64 | friendlycore-arm64

The MBR partitioning is only used by the Linux v4.4 kernel. You can check the partition layout by clicking on this link: partmap (https://github.com/friendlyarm/sd-
fuse_rk3399/blob/master/prebuilt/parameter.template). To write an image file, you can use the dd command. For example, in the parameter.template file,

"0x00014000@0x00014000(kernel)" specifies that the kernel partition starts at 0x00014000, which is equivalent to 81920 in decimal. Therefore, the dd command
should be as follows:

10.4.7.1.2 GPT partition

This section applies to the following operating systems:

ubuntu-focal-desktop-arm64 | debian-bookworm-core-arm64 | debian-bullseye-desktop-arm64 | debian-bullseye-minimal-arm64
friendlycore-focal-arm64 | ubuntu-noble-core-arm64 friendlywrt21-kernel4 buildroot
friendlywrt21 friendlywrt21-docker friendlywrt23 friendlywrt23-docker

The OS uses GPT partitions by default which is using the Linux v4.19 and Linux v5.15 kernel, you can use the dd command, but be careful to choose the right output
device:

= The SD/TF Card device node: /dev/mmcblk0
= The eMMC device node: /dev/mmcblk2

The following is an example of how to update the kernel to eMMC:
Use the "parted' command to view the partition layout:

del: MMC BJITD4R (sd/mmc)

sk /dev/mmcblk2: 31.3GB

ctor size (logical/physical): 512B/512B
rtition Table: gpt

{
'
3
sk Flags: |
ENumber Start End Size File system Name Flags 3
i1 8389kB 12.6MB 4194kB uboot '
12 12.6MB 16.8MB 4194kB trust i
13 16.8MB 21.6MB 4194kB misc !
) 21.0MB 25.2MB 4194kB dtbo ;
is 25.2MB 41.9MB 16.8MB resource |
16 41.9MB 83.9MB 41.9MB kernel |
17 83.9MB 134MB 50.3MB boot '
18 134MB 2500MB 2366MB ext4 rootfs |
H 2500MB 31.3GB 28.8GB ext4 userdata
oo oo e e e e e e e e e e e et e e et e e e o 2t 8 o e o o mm o ot 2 e o ot mm e m 2t m e m e e m e mmmen i

as shown above, the resource partition is located at 5 and the kernel partition is located at 6. Use the dd command to write the resource.img and kernel.img files to these
partitions, the commands are as follows:

idd if=resource.img of=/dev/mmcblk2p5 bs=1M
Edd if=kernel.img of=/dev/mmcblk2p6 bs=1M
H

To update new driver modules, copy the newly compiled driver modules to the appropriate directory under /lib/modules.

10.4.7.2 Packaging and creating an SD image
To create a new OS image file, you need to use the "sd-fuse" packaging tool.

"sd-fuse" is a collection of scripts that can be used to create bootable SD card images for FriendlyElec boards. Its main features include:
= Creation of root filesystem images from a directory
= Building of bootable SD card images
= Simple compilation of kernel, U-Boot, and third-party drivers

Please click on the following link to find out more:

Kernel version Packaging Tool

linux v4.4.y sd-fuse (https://github.com/friendlyarm/sd-fuse rk3399/tree/master)

linux va-19.y 14 fuse_rk3399/kernel-4.19 (https://github.com/friendlyarm/sd-fuse_rk3399/tree/kernel-4.19)

linux v6.1.y sd-fuse 1k3399/kernel-6.1.y (https://github.com/friendlyarm/sd-fuse rk3399/tree/kernel-6.1.y)
10.4.7.3 USB flashing
Note: kernel v4.4.y is not supported

10.4.7.3.1 Linux

Reboot the board and enter loader mode with the following command:

isudo upgrade_tool di -k kernel.img
isudo upgrade_tool di -re resource.img
Esudo upgrade_tool di -u uboot.img
Esudo upgrade_tool RD

Note: "upgrade tool" is a command-line tool provided by Rockchip for Linux operating systems (Linux_Upgrade Tool).

10.5 Build the code using scripts

10.5.1 Download scripts and image files

Ecd sd-fuse_rk3399 i
mget http://112.124.9.243/dvdfiles/RK3399/images-for-eflasher/friendlycore-focal-armé4-images.tgz
1

10.5.2 Compile the kernel

Download the kernel source code and compile it. the relevant image files in the friendlycore-focal-arm64 directory will be automatically updated, including the kernel

modules in the file system:

Egit clone https://github.com/friendlyarm/kernel-rockchip --depth 1 -b nanopi4-v4.19.y kernel-rk3399
EKERNEL_SRC=$PWD/kerne17rk3399 ./build-kernel.sh friendlycore-focal-armé4

igit clone https://github.com/friendlyarm/kernel-rockchip --depth 1 -b nanopi4-v4.19.y kernel-rk3399
iMKiHEADERsiDEB=1 BUILD_THIRD_PARTY_DRIVER=@ KERNEL_SRC=$PWD/kernel-rk3399 ./build-kernel.sh friendlycore-focal-arm64
H

10.5.4 Compile the uboot

Download the uboot source code and compile it. the relevant image files in the friendlycore-focal-arm64 directory will be automatically updated:

Egit clone https://github.com/friendlyarm/uboot-rockchip --depth 1 -b nanopi4-v2017.69
{UBOOT_SRC=$PWD/uboot-rockchip ./build-uboot.sh friendlycore-focal-arm64

10.5.5 Generate new image

Repackage the image file in the friendlycore-focal-arm64 directory into sd card image:

10.6 Building AOSP from source

10.6.1 Hardware and Software Requirements

= Your computer should have at least 16GB of RAM and 300GB of disk space. We recommend using a machine with 32GB of RAM and a large-capacity, high-

speed SSD, and we do not recommend using virtual machines.

= [f you encounter compilation errors, they may be caused by problems with the compilation environment. We recommend using the following Docker container

for compilation: docker-cross-compiler-novnc (https://github.com/friendlyarm/docker-cross-compiler-novnc).
10.6.2 Compile Android10
10.6.2.1 Download Android10 Source Code
There are two ways to download the source code:

= repo archive file on netdisk

Netdisk URL: Click here (http://download.friendlyelec.com/NanoPiR4S)
File location on netdisk: "07_Source codes/rk3399-android-10.git-YYYYMMDD.tar.xz" (YYYYMMDD means the date of packaging)
After extracting the repo package from the network disk, you need to execute the sync.sh script, which will pull the latest code from gitlab:

Etar xf "/path/to/netdisk/@7_Source codes/rk3399-android-10.git-YYYYMMDD.tar.xz"
icd rk3399-android-10
E./sync.sh

= git clone from gitlab
NanoPi-R4S source code is maintained in gitlab, You can download it by running the following command:
Egit clone --recursive https://gitlab.com/friendlyelec/rk3399-android-10.git -b main

Note: If the following error "error: unknown option ‘recurse-submodules™ appears, please upgrade git to v2.0.0 or above.
10.6.2.2 Generate Image File

You can compile an Android source code and generate an image file (non-root user is recommended):

Ecd rk3399-android-10
i./build-nanopc-t4.sh -F -M

icd rk3399-android-10
lexport INSTALL_GAPPS_FOR_TESTING=yes
i./build-nanopc-t4.sh -F -M

10.6.2.3 Make OTA Packages

If you need the support of A/B (Seamless) System Updates, you need to do the following:

a) Build your own update server for http download of update files;

b) Customize the Updater application, the code is located in packages/apps/Updater, let it connect and download file from your server;
¢) Use the quick compilation script parameter -O or --ota to compile OTA Packages, as shown below:

icd rk3399-android-10
i./buildfnanopcft4.sh -F -0 -M

After the compilation is successfully completed, the OTA update related packages are located in the directory: rockdev/otapackage/ , Please do not delete this
directory.

After you have made some changes, compiling again with the parameter -O will generate ota-update-XXXXXXXX.zip, which is an incremental update package.
OTA Packages decides whether to generate incremental update package according to BUILD NUMBER, for details, please refer to build-nanopc-t4.sh.

To disable the A/B feature, you can refer to the following to modify device/rockchip/rk3399/nanopc-t4/BoardConfig.mk, and then recompile uboot and android:

10.6.2.4 Update System with New Image

After compilation is done a new image file will be generated in the "rockdev/Image-nanopc_t4/" directory under Android 10's source code directory. You can follow the
steps below to update the OS in NanoPi-R4S:

1) Insert an SD card which is processed with EFlasher to an SD card reader and insert this reader to a PC running Ubuntu. The SD card's partitions will be
automatically mounted;

2) Copy all the files under the "rockdev/Image-nanopc t4/" directory to the SD card's android10 directory in the "FRIENDLYARM" partition;

3) Insert this SD card to NanoPi-R4S and reflash Android

When flashing Android 10, EFlasher requires v1.3 or above. When flashing with Type-C, please use the tool AndroidTool v2.71 or Linux_Upgrade Tool v1.49
provided by Rockchip.

10.6.3 Compile Android8.1
10.6.3.1 Download Android8.1 Source Code

There are two ways to download the source code:
= repo archive file on netdisk

Netdisk URL: Click here (http://download.friendlyelec.com/NanoPiR4S)
File location on netdisk: sources/rk3399-android-8.1.git-YYYYMMDD.tgz (YYYYMMDD means the date of packaging)
After extracting the repo package from the network disk, you need to execute the sync.sh script, which will pull the latest code from gitlab:

itar xvzf /path/to/netdisk/sources/rk3399-android-8.1.git-YYYYMMDD.tgz !
icd rk3399-android-8.1
i./sync.sh

= git clone from gitlab

NanoPi-R4S source code is maintained in gitlab, You can download it by running the following command:

10.6.3.2 Generate Image File
You can compile an Android source code and generate an image file:

icd rk3399-android-8.1
i./buildfnanopcft4.sh -F -M

10.6.3.3 Update System with New Image

After compilation is done a new image file will be generated in the "rockdev/Image-nanopc_t4/" directory under Android 8.1's source code directory. You can follow
the steps below to update the OS in NanoPi-R4S:

1) Insert an SD card which is processed with EFlasher to an SD card reader and insert this reader to a PC running Ubuntu. The SD card's partitions will be
automatically mounted;

2) Copy all the files under the "rockdev/Image-nanopc_t4/" directory to the SD card's android8 directory in the "FRIENDLYARM" partition;

3) Insert this SD card to NanoPi-R4S and reflash Android

Here is an alternative guide to update OS: sd-fuse rk3399 (https://github.com/friendlyarm/sd-fuse rk3399)

10.6.4 Compile Android?7
10.6.4.1 Download Android7 Source Code

There are two ways to download the source code:

= repo archive file on netdisk

Netdisk URL: Click here (http://download.friendlyelec.com/NanoPiR4S)
File location on netdisk: sources/rk3399-android-7.git-YYYYMMDD.tgz (YYYYMMDD means the date of packaging)
After extracting the repo package from the network disk, you need to execute the sync.sh script, which will pull the latest code from gitlab:

itar xvzf /path/to/netdisk/sources/rk3399-android-7.git-YYYYMMDD.tgz !
icd rk3399-nougat !
i./sync.sh

= git clone from gitlab

NanoPi-R4S source code is maintained in gitlab, You can download it by running the following command:

10.6.4.2 Generate Image File
You can compile an Android7 source code and generate an image file:

H
Ecd rk3399-nougat !
i./buildfnanopcft4.sh -F -M

10.6.4.3 Update System with New Image

After compilation is done a new image file will be generated in the "rockdev/Image-nanopc_t4/" directory under Android7's source code directory. You can follow the
steps below to update the OS in NanoPi-R4S:

1) Insert an SD card which is processed with EFlasher to an SD card reader and insert this reader to a PC running Ubuntu. The SD card's partitions will be
automatically mounted;

2) Copy all the files under the "rockdev/Image-nanopc_t4/" directory to the SD card's android8 directory in the "FRIENDLYARM" partition;

3) Insert this SD card to NanoPi-R4S and reflash Android

Here is an alternative guide to update OS: sd-fuse rk3399 (https://github.com/friendlyarm/sd-fuse rk3399)

11 Using On-Board Hardware Resources

11.1 Access Serial Interface
For now only UART4 is available for users:

Serial Interface Serial Device

UARTO Used by Bluetooth

UART1 Used by Gbps Ethernet

UART2 Used by Serial Debug Port

UART3 Used by Gbps Ethernet

UART4 Available, device name is /dev/ttyS4 (note: this is only applicable for ROM released after 20180618)
11.2 DTS files

Please refer to DTS files
12 Backup rootfs and create custom SD image (to burn your application into other boards)

12.1 Backup rootfs

Run the following commands on your target board. These commands will back up the entire root partition:

Esudo passwd root i
isu root

ied /

Etar --warning=no-file-changed -cvpzf /rootfs.tar.gz \

--exclude=/rootfs.tar.gz --exclude=/var/lib/docker/runtimes \

--exclude=/etc/firstuser --exclude=/etc/friendlyelec-release \

--exclude=/usr/local/first_boot_flag --one-file-system /

Note: if there is a mounted directory on the system, an error message will appear at the end, which can be ignored.
12.2 Making a bootable SD card from a root filesystem

Run the following script on your Linux PC host, we'll only mention "debian-bullseye-desktop-arm64 os" for brevity, but you can apply the same process for every linux
Os.

isu root

igit clone https://github.com/friendlyarm/sd-fuse_rk3399 --single-branch -b kernel-4.19
icd sd-fuse_rk3399 !
Etar xvzf /path/to/netdrive/@3_Partition\ image\ files/debian-bullseye-desktop-armé4-images.tgz

itar xvzf /path/to/netdrive/@3_Partition\ image\ files/emmc-eflasher-images.tgz

iscp pi@BOARDIP: /rootfs.tar.gz /rootfs.tar.gz

mkdir rootfs

Etar xvzfp rootfs.tar.gz -C rootfs --numeric-owner --same-owner

i./build-rootfs-img.sh rootfs debian-bullseye-desktop-arm64

E-/mk-sd-image.sh debian-bullseye-desktop-armé4

E-/mk-emmc-image.sh debian-bullseye-desktop-armé4 autostart=yes

13 Configuring kernel command line parameters (only support for kernel4.4)

13.1 eMMC Boot

Here are the steps:

Make an eflahser bootable SD card (use the firmware file starting with rk3xxxx-eflasher-),

Insert the SD card into your computer, go to the SD card's OS-related directory, and edit the file parameter.txt, which is a text file containing command-line
parameters,

Then boot from the SD card and burn the system to the eMMC.

13.2 SD Boot

To modify the command line parameters of the SD card, you need to repackage the SD card image file,
you can use the sd-fuse script we provide to assist packaging:

igit clone https://github.com/friendlyarm/sd-fuse_rk3399.git -b master --single-branch
icd sd-fuse_rk3399

itar xvzf /path/to/netdrive/@3_Partition\ image\ files/friendlydesktop-armé4-images.tgz
Etar xvzf /path/to/netdrive/@3_Partition\ image\ files/emmc-flasher-images.tgz

wim friendlydesktop-armé4/parameter.txt # Edit command-line parameters
i./mk-sd-image.sh friendlydesktop-armé4 # Repackage sd image file
E./mk—emmc—image‘sh friendlydesktop-armé4 # Repackage sd-to-emmc image file

14 More OS Support

14.1 DietPi

DietPi

DietPi is a highly optimised & minimal Debian-based Linux distribution. DietPi is extremely lightweight at its core, and also extremely easy to install and use.
Setting up a single board computer (SBC) or even a computer, for both regular or server use, takes time and skill. DietPi provides an easy way to install and run
favourite software you choose.

For more information, please visit this link https://dietpi.com/docs/.

DietPi supports many of the NanoPi board series, you may download the image file from here:

= https://dietpi.com/docs/hardware/#nanopi-series-friendlyarm

15 Link to Rockchip Resources

= RK3399 datasheet V2.1 (http://opensource.rock-chips.com/images/d/d7/Rockchip RK3399 Datasheet V2.1-20200323.pdf)
= RK3399TRM V1.4 (http://opensource.rock-chips.com/images/e/ee/Rockchip RK3399TRM V1.4 Part1-20170408.pdf)

16 Schematic, PCB CAD File
= Schematic: NanoPi-R4S-1GB-2008-Schematic.pdf (https://wiki.friendlyelec.com/wiki/images/0/06/NanoPi-R4S-1GB-2008-Schematic.pdf) NanoPi-R4S-4GB-

2008-Schematic.pdf (https://wiki.friendlyelec.com/wiki/images/c/c2/NanoPi-R4S-4GB-2008-Schematic.pdf)

= PCB CAD File: NanoPi R4S 1GB_2008_dxf.zip (https://wiki.friendlyelec.com/wiki/images/a/ab/NanoPi R4S 1GB_2008_dxf.zip)
NanoPi_R4S_1GB_2008_dxf.zip (https://wiki.friendlyelec.com/wiki/images/1/18/NanoPi_R4S 4GB_2008_dxf.zip)

17 Known Issues List

. = Q: UGREEN 18W QC power adapter cannot power R4S?
= A: It needs to wait for a few seconds to work normally.

18 Update Log
18.1 2023-12-01
18.1.1 FriendlyWrt

= Update to kernel 6.1.63
= Update to openwrt-23.05.2

18.2 2023-05-26
18.2.1 FriendlyWrt

= Updated v22.03 to openwrt-22.03.5
= Updated v21.02 to openwrt-21.02.7

18.3 2023-04-26

18.3.1 FriendlyWrt:

= Upgrade v22.03 to openwrt-22.03.4
= Upgrade v21.02 to openwrt-21.02.6

18.4 2023-02-10
18.4.1 Added Debian11

There are three versions:

= Debianll Core: Command-line only
= Debianl]l Minimal: With Xfce desktop, lite version
= Debianll Desktop: With Xfce desktop, full version

18.52023-01-09

18.5.1 FriendlyCore:
= optimized the systemd service

18.6 2022-12-04

18.6.1 FriendlyWrt:

= Fix the issue that the storage space cannot be expanded
= Improve stability of the eMMC Tools

18.7 2022-09-06

18.7.1 FriendlyWrt:

= Improved eMMC read performance of NanoPi-R4SE
= Added Fullcone NAT support

= upgrade to 22.03.0

= Fix NanoPC-T4 eMMC stability issue

18.8 2022-08-03

18.8.1 FriendlyWrt:

Upgrade FriendlyWrt to the latest version 22.03-rc6

Fixed the problem that the R4S/R4SE may not recognize the pcie device (lan port) after a soft reboot (small probability)

Fixed the issue where the R4SE status led did not reflect the burn progress when burning the system to eMMC

Firewall settings adjustment: single-port devices (e.g. NanoPi-T4/NanoPi-M4) are set to allow WAN inbound traffic by default for easy web configuration, while
multi-port devices are still denied WAN inbound traffic by default

= Updated FriendlyWrt firmware with 4.19 kernel to match FriendlyWrt 21.02 docker with 5.15 kernel

18.9 2022-07-27
18.9.1 FriendlyWrt:

Beta version 22.03-rc3 is available, you can choose according to your package requirements, stable version 21.02.3 is recommended.

Both docker and non-docker versions are available, all features are the same except for docker.

Improved compatibility issues with third-party packages

Added support for "Soft Factory Reset" function

Added web-based tool eMMC-Tools, support install FriendlyElec and some third party firmware to eMMC, besides raw-image also support rockchip package

format firmware

= Other details: default timezone setting to Shanghai, new NAS category menu, remove lcd2usb, improve security settings, tune sysctl parameters, fix docker
firewall settings, etc.

= Add support for new hardware model: NanoPi-R4SE

18.10 2021-10-29

18.10.1 FriendlyWrt:
= FriendlyWrt has been updated to the official stable version 21.02.1, features are basically the same as 19.07.5, support docker, usb wifi, etc.

18.11 2021-08-31

18.11.1 FriendlyWrt:

= Upgraded kernel to 5.10.60

= Add a high-speed SG USB WiFi support, the network card model is Comfast CF-WU782AC V2, the chip model is MediaTek MT7662

= Improved USB WiFi compatibility

= Improved PWM fan support, fan controlled by kernel drive, temperature control support (Please search for "PWM fans" on the R4S WiKi page for details)
= Improved stability on first boot (previous version, bpfilter error occurred in some cases on first boot)

18.12 2020-12-23

= FriendlyWrt has been updated to the official stable version 19.07.5

Retrieved from "https://wiki.friendlyelec.com/wiki/index.php?title=NanoPi R4S&oldid=25852"

= This page was last modified on 20 May 2024, at 03:41.

