

План вебинара

- И.И. Задачи для решения методами И.И.
- У Что такое нейронная сеть, как она устроена и в каких режимах функционирует. Типы нейронных сетей. Что такое машинное обучение.
- Программное обеспечение для работы с нейронными сетями и облачные сервисы
- > Методы повышения производительности нейронных сетей.
- > Технология работы с серверными платформами Xilinx.
- > Технология работы с оконечными устройствами Xilinx
- > Перспективы развития систем ИИ на платформе Xilinx
- Пример работы нейронной сети распознавания дорожных знаков на плате ZCU102.

1. И.И. (1) Задачи, решаемые с помощью ИИ

- Искусственный интеллект направление информатики, изучающее и разрабатывающее методы решения задач интеллектуального (творческого) характера с использованием различных технических средств - компьютеров, программируемой логики и др.
- Типовые задачи:
 - Распознавание образов
 - Перевод текстов
 - Анализ данных, поиск закономерностей, экспертные заключения
 - Самообучение
 - Замена человека в контуре управления
 - **>** ...

1. И.И. (2) Области применения

- Финансы
 - Анализ рисков
 - Высокочастотный трейдинг
- Компьютерные технологии
 - Машинный перевод
 - Распознавание речи, Понимание речи, общение с человеком на естественном языке
 - Распознавание образов, анализ изображений
- > Управление сложными устройствами и системами
 - ADAS для автомобилей
 - > Управление роботами
- **>** ..

1. И.И. (3) Классификация

Конвекционные

- > Экспертные системы: программы, которые, действуя по определенным правилам, обрабатывают большое количество информации, и в результате выдают заключение или рекомендацию на ее основе
- Рассуждение по аналогии (Case-based reasoning).
- Байесовские сети доверия: вероятностные модели, представляющие собой систему из множества переменных и их вероятностных зависимостей
- Поведенческий подход: модульный метод построения систем ИИ, при котором система разбивается на несколько сравнительно автономных программ поведения, которые запускаются в зависимости от изменений внешней среды

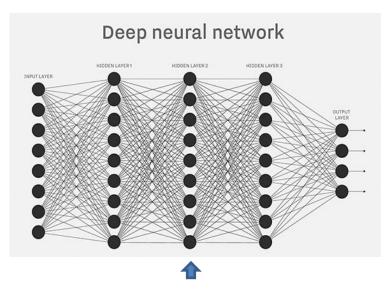
1. И.И. (4) Классификация

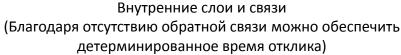
Вычислительные

- **Нейронные сети** модель вычисления на графах (появилась в результате математического моделирования структур мозга)
- Нечеткие системы: методики для рассуждения в условиях неопределенности
- ➤ Эволюционные вычисления: модели, использующие понятие естественного отбора, обеспечивающего отсеивание наименее оптимальных согласно заданному критерию решений.

2. Нейронные сети (1)

- Нейронные сети наиболее интенсивно развивающийся в данный момент метод построения систем ИИ
- Появились в результате попытки моделирования структур головного мозга, но далеко ушли от предмета изучения.
- Спосрбны к обучению и самообучению
- После обучения способны осуществлять классификацию для конечного числа вариантов. На данный момент в ряде областей по точности превосходят человека
- Мотивы предпочтения одного варианта другому не поддаются выяснению



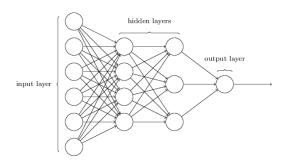

2. Нейронные сети (2)

Общая структура Н.С.

Входной слой (напр. двумерное изображение)

Выходной слой (каждый кружок – возможный вариант) Напр:

- Кошечка
- Собачка
- Человек
- Неведома зверюшка
- Все остальное

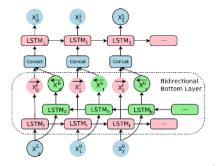


2. Нейронные сети (3)

Разновидности НС

Multi-Layer Perceptron

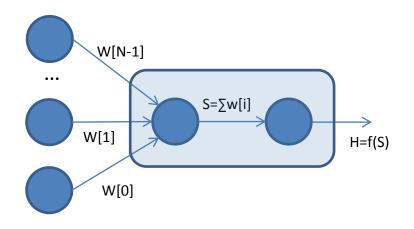
- Classification
- Universal Function Approximator
- Autoencoder

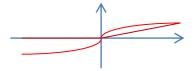

Convolutional Neural Network

- Feature Extraction
- Object Detection
- Image Segmentation

Recurrent Neural Network

- Sequence and Temporal Data
- Speech to Text
- Language Translation

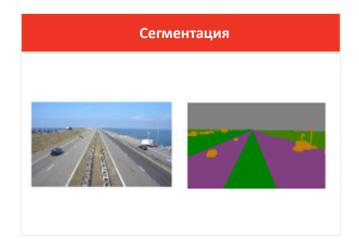



2. Нейронные сети (4)

Основной структурный элемент Н.С. - перцептрон (аналог нейрона)

Выход Н

- 1. f(S) нелинейная функция
- Выход **Н** нормирован в диапазоне [-1..+1]



2. Нейронные сети (5)

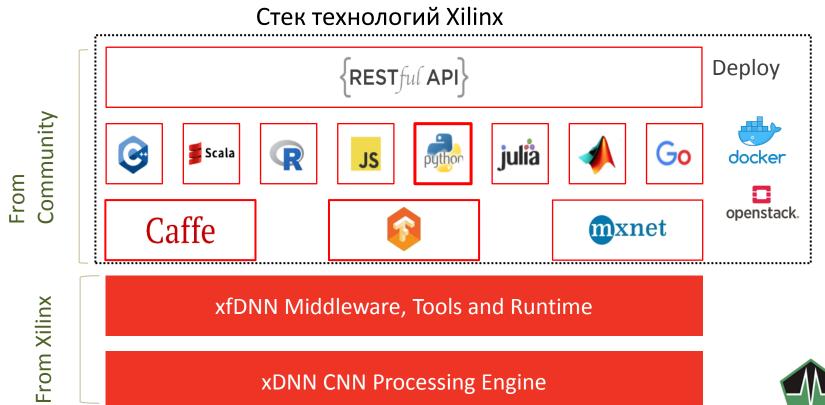
Типовые задачи для (сверточных) НС

2. Нейронные сети (6)

Этапы работы с сетью

	Этап	Действия	Прим.
1	Создание	Структура, кол-во слоев и т.д.	Нет четких правил
2	Обучение	Настройка параметров (послойно) на размеченной фиксированной входной последовательности	Чрезвычайно ресурсоемкий, требуется float point
3	Тестирование	Проверка на последовательностях, неизвестных сети при обучении	
4	Оптимизация	Необязательный (но важный)	
5	Применение	Обработка реальных данных	

2. Нейронные сети (7)


Для тех, кто хочет занырнуть поглубже:

3. Средства для работы с НС

3. Средства для работы с НС (2)

Инфраструктура работы с НС

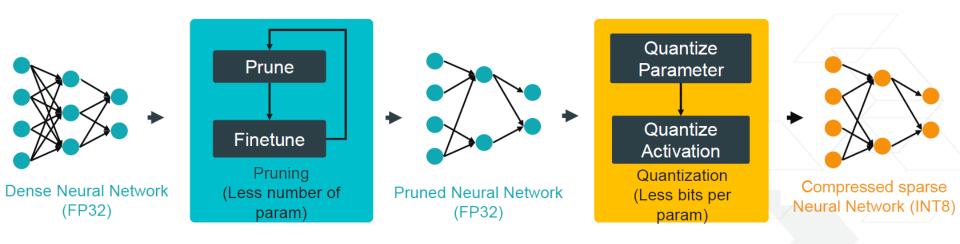
Язык разработки	Python	
Библотеки	TensorFlow, Keras	
Модели	Конфигурации сетей	
Датасеты	Cifar	
Фреймворки	Cafe, Jupiter Notebook	
Аппаратные ускорители	Nvidia GPUs	

Подробнее здесь

4. оптимизация НС (1)

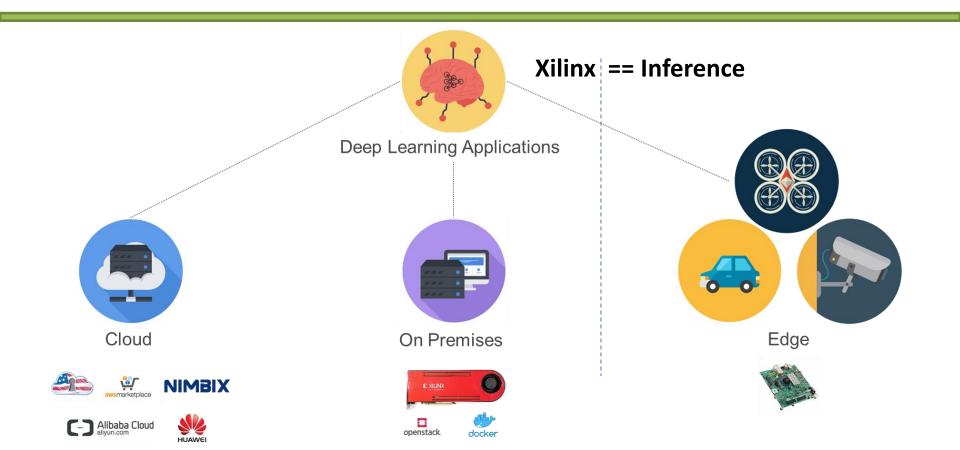
Режимы - обучение и работа (inference)

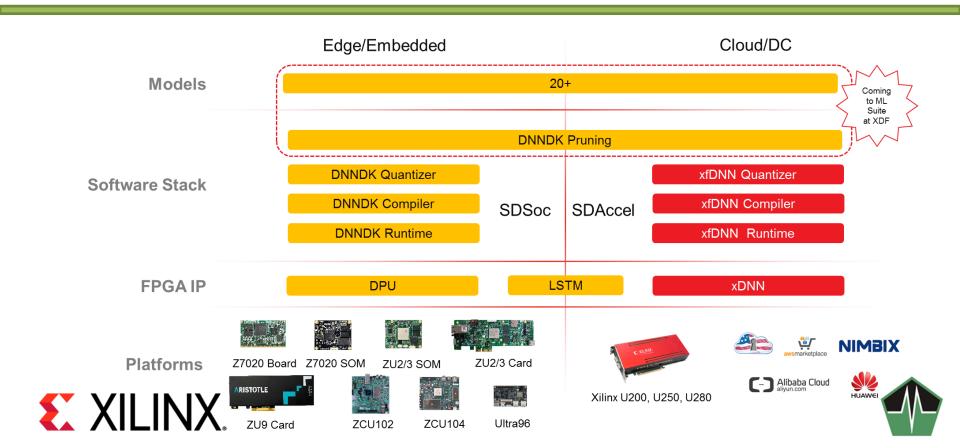
Критерии	Обучение	Работа
Характеристики	Точность	Скорость работыСкорость реакцииРеальное время
Вычислительные ресурсы	Огромные	Средние
Вычисления с FP	Обязательны	Нет



Вывод: Требования к режимам разные —> требуются оптимальные решения для каждого режима

4. оптимизация НС (2)


2 шага последовательных шага оптимизации — прореживание (Pruning) и квантизация (Quantization)


- Consists of two separate tools
 - Pruning Tool decent_p
 - · Quantization Tool decent q

- Effects
 - Compress model size 5x ~ 100x
 - Compress running time 1.5x 10x

5. Решения Xilinx для НС (1)

5. Решения Xilinx для НС (2)

6. Серверные/Облачные решения Xilinx (1)

6. Серверные/Облачные решения Xilinx(2)

Xilinx ML-SUITE

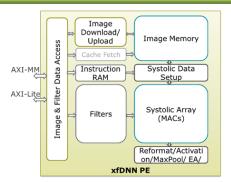
Open Source Software / Apps And Models

xfDNN Middleware

xfDNN Middleware, Tools and Runtime

xfDNN Compiler and Optimizer

Xilinx Platforms


Xilinx xfDNN Runtime

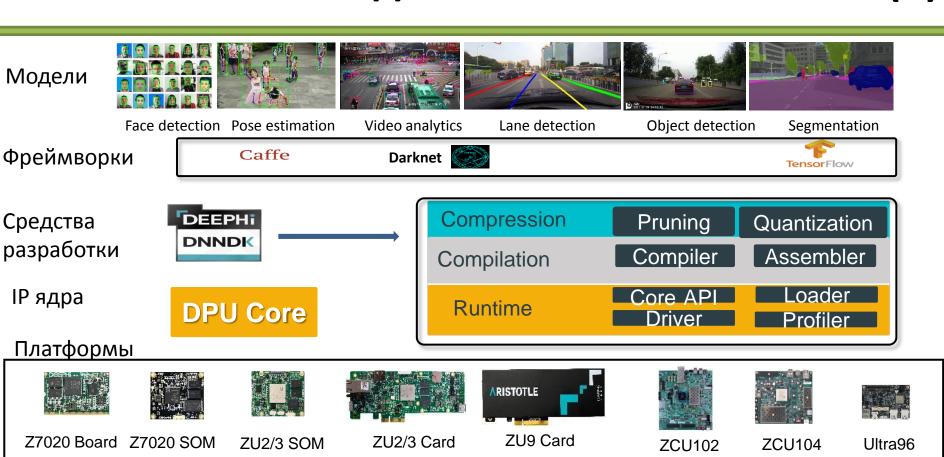
Xilinx Reconfigurable
Acceleration Platform

Boards / Platforms

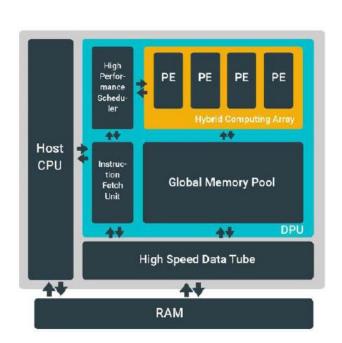
xDNN PE on Xilinx FPGAs

- Xilinx xDNNv2 IP
- 500Mhz
- Support for 16 and 8 bit

Features		Description	
		Kernel Sizes	1x1, 3x3, 5x5, 7x7
		Strides	1-8
		Padding	<= Kernel Size
	Convolution	Dilation	Factor: 1,2,4
		Activation	ReLU
		Bias	Per Channel
so.		Scaling	Scale & Shift Value Per Channel
Supported Operations		Kernel Sizes	2x2, 3x3, 4x4, 5x5, 6x6, 7x7
2	Max Pooling	Strides	1-7
ē		Padding	<= Kernel Size
P		Kernel Sizes	2x2, 3x3, 4x4, 5x5, 6x6, 7x7
ort	Avg Pooling	Strides	1-7
큡		Padding	<= Kernel Size
S	Element-wise Add	Width & I	Height must match; Depth can mismatch.
	DDR caching	Supported; See Documentation	
	Expanded set of image sizes	Square, Rectangular	
	Upsampling	Strides	Factor: 2,4,8,16
	Convolution Transpose		see Convolution
	Deconvolution	see Convolution	
S	Data width	16-bit or 8-bit	
Miscellaneous	Target Clock Speed	XDNN core: <= 300MHz; DSP Systolic Array: <= 500MHz;	
Misce	Networks Supported	Classification, Detection, Segmentation	

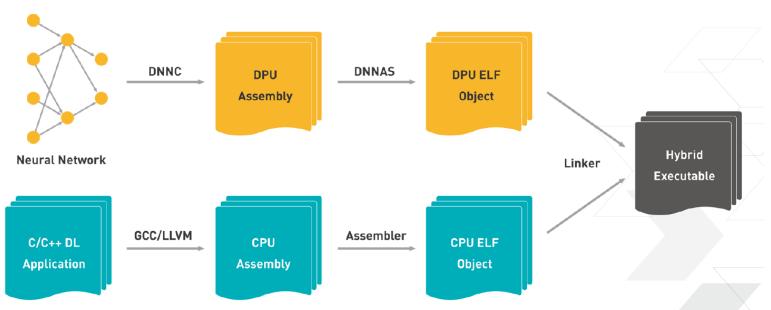

6. Серверные/Облачные решения Xilinx (3)

- ➤ ML-SUITE серверный/облачный продукт, 4 варианта: U200, U250, VCU1525, Cloud
- ➤ Ссылки: https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html
- ➤ Скачивать отсюда: https://www.xilinx.com/products/acceleration-solutions/xilinx-machine-learning-suite.html#overview
- **▶** Ресурсы на github: https://github.com/Xilinx/ml-suite



7. Решения Xilinx для автономных систем (1)

7. Решения Xilinx для автономных систем (2)


DPU

- ➤ Сопроцессор для CPU
- ➤ Soft IP-ядро, оптимизированное для операций с НС
- > Собственная система команд
- ▶ Несколько разновидностей, различающихся по производительности: В1152 ...В4096 ...
- Устанавливается в платформу и далее не меняется
- ➤ Аппаратный минимум Zynq7020

7. Решения Xilinx для автономных систем (3)

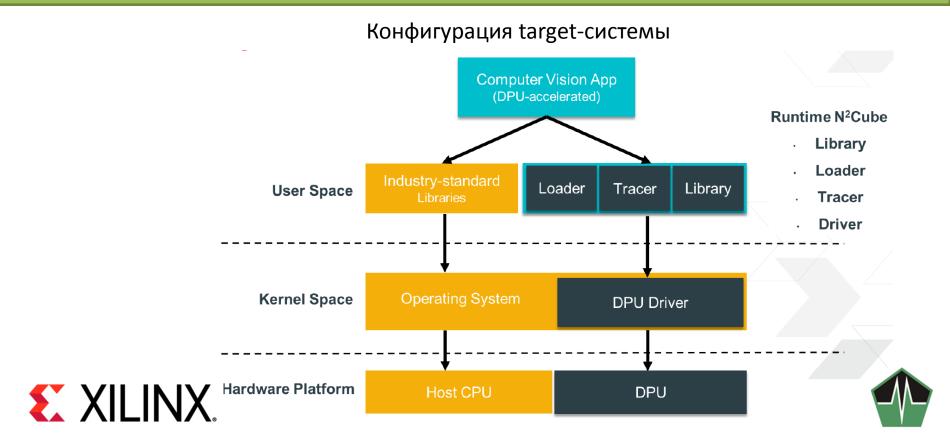
Разработка приложений

7. Решения Xilinx для автономных систем (4)

Структура DNNDK

```
$dnndk pkg
       | -- COPYRIGHT
        - host x86
                   -- install.sh
                   -- models
                  -- pkas
                       I-- ubuntu14.04
                      I-- ubuntu16.04
       | -- board name
             | -- install.sh
             | -- pkgs
              -- | -- bin
              -- | -- driver
              -- | -- include
              -- | -- lib
              -- samples
              -- common
              -- inception v1
              -- inception v1 mt
              -- resnet50
              -- resnet50 mt
              -- mobilenet
              -- mobilenet mt
              -- face detection
              -- pose detection
              -- video analysis
              -- adas detection
              -- segmentation
```

Пример программы


```
int main(int argc, char *argv[])
                                                                                      /* Run average pooling layer on CPU */
    DPUKernel *kernel conv;
                                                                                      run average pooling(output addr);
   DPUKernel *kernel_fc;
             *task conv
                                                                                      /* Set input tensor for FC task and run */
    DPUTask *task_fc;
                                                                                      input addr = dpuGetTensorAddress(dpuGetTaskInputTensor(task fc));
             *input addr;
                                                                                      setFCInputData(task fc, input addr);
              *output addr
                                                                                      dpuRunTask(task fc);
                                                                                      output addr = dpuGetTensorAddress(dpuGetTaskOutputTensor(task fc)):
    /* DNNDK API to attach to DPU driver */
                                                                                      /* Diaplay the Classification result from FC task */
    dpuInit();
                                                                                      displayClassificationResult(output_addr);
    /* DNNDK API to create DPU kernels for CONV & FC networks */
    kernel_conv = dpuLoadKernel("resnet50_conv", 224, 224);
                                                                                      /* DNNDK API to destroy DPU tasks/kernels */
    kernel fc = dpuLoadKernel("resnet50 fc", 1, 1);
                                                                                      dpuDestroyTask(task conv);
                                                                             41
                                                                                      dpuDestroyTask(task fc);
                                                                             42
    /* Create tasks from CONV & FC kernels */
                                                                             43
    task conv = dpuCreateTask(kernel conv);
                                                                                      dpuDestroyKernel(kernel conv);
    task fc = dpuCreateTask(kernel fc);
                                                                             44
                                                                                      dpuDestroyKernel(kernel_fc);
                                                                             45
    /* Set input tensor for CONV task and run */
                                                                                      /* DNNDK API to dettach from DPU driver and free DPU resources */
                                                                                      dpuFini();
    input addr = dpuGetTensorAddress(dpuGetTaskInputTensor(task conv));
    setInputImage(Mat &image, input addr);
                                                                                      return 0:
    output_addr = dpuGetTensorAddress(dpuGetTaskOutputTensor(task_conv));
```

Просто вызываем ф-ции АРІ

7. Решения Xilinx для автономных систем (5)

7. Решения Xilinx для автономных систем (6)

DeePhi DNNDK – быстрый старт

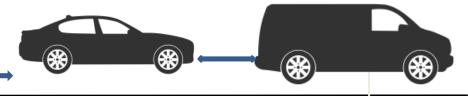
- 1. Загрузить соответствующий вашему оборудованию пакет
- 2. Установить на HOST-систему под linux (либо сразу взять сконфигурированную BM)
- 3. Сконфигурировать средства разработки для хоста
- 4. Сконфигурировать целевую платформу
- 5. Взять описание готовой обученной сети и провести оптимизацию
- 6. Скомпилировать оптимизированную сеть
- 7. Интегрировать сеть в собственное приложение (программу)
- 8. Выполнить программу на целевой платформе.

7. Решения Xilinx для автономных систем (7)

Преимущества технологии аппаратного ускорения Xilinx в системах реального времени

Driving Event: Car Stopped Ahead

Response:
Nvidia Engages Brakes


(Batch-size = 8 to 64)

49-320ms

2.7ms

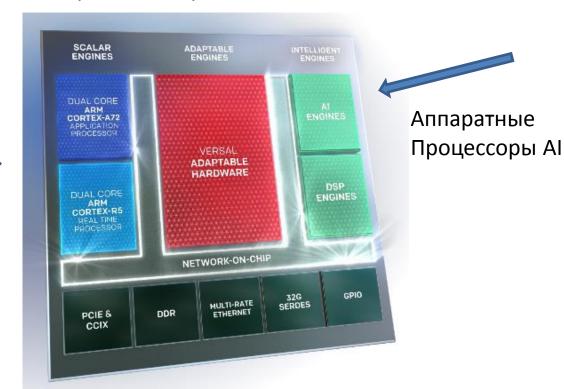
Notes:

- Xilinx: ZU9 running GoogLeNet @ batch = 1
- Nvidia TX1: 256 Cores; running GoogLeNet @ batch = 8
- Assuming the car was driving at 65 mph

7. Решения Xilinx для автономных систем (8)

Ссылки

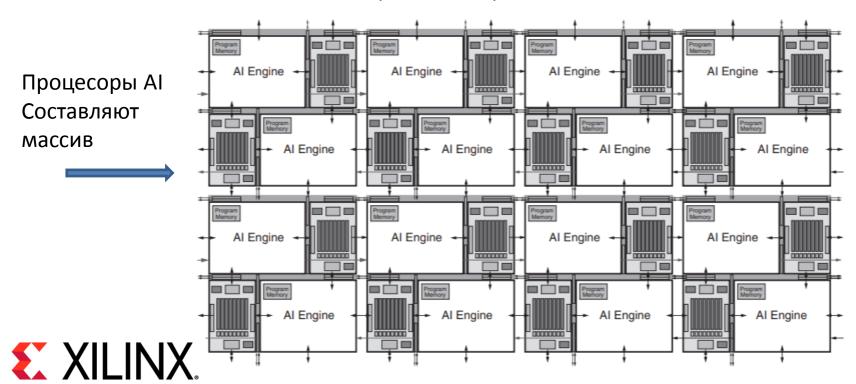
- ➤ Стартовая страница: https://www.xilinx.com/products/design-tools/ai-inference/ai-developer-hub.html#edge
- **▶** DNNDK User Guide https://www.xilinx.com/support/documentation/user_guides/ug1327dnndk-user-guide.pdf
- **➤** Wiki https://xilinx-wiki.atlassian.net/wiki/spaces/A/overview
- > Forum https://forums.xilinx.com/t5/Deephi-DNNDK/bd-p/Deephi
- **▶** Github https://github.com/Xilinx/Edge-AI-Platform-Tutorials

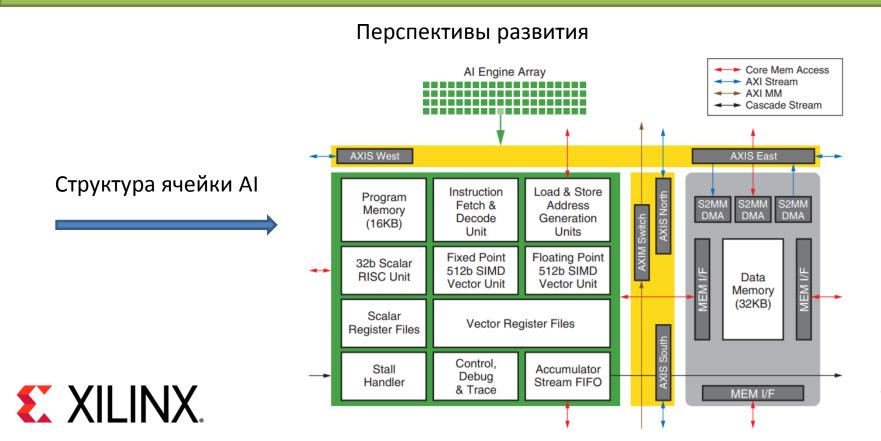


7. Решения Xilinx для автономных систем (8)

Перспективы развития

ACAP <u>Versal</u> 7nm Серия AI




7. Решения Xilinx для автономных систем (9)

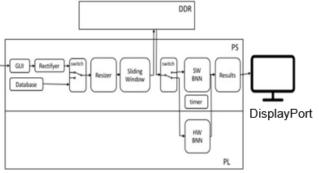
Перспективы развития

7. Решения Xilinx для автономных систем (10)

8. Практическая демонстрация

Platform	Device	Revision
ZCU102	ZU9EG	Rev D2, Rev 1.x
Ultra96	ZU3EG	Rev D and newer

1. Распознавание дорожных знаков с веб-камеры



Название:

AIC Design Example,

TechTip on Xilinx Wiki

ZCU102:

Tiles per second: ~19500 Images per second: ~90 Acceleration: ~8500 Ultra96: Tiles per second: ~14500 Images per second: ~66 Acceleration: ~6200

Спасибо за внимание!

Компания Макро Групп:

- ✓ Официальный партнер Xilinx
- √ Комплексная поставка электронных компонентов
- ✓ Техническая поддержка по всем вопросам применения продукции и ПО Xilinx
- ✓ Контрактное производство

Обращайтесь:

- ✓ <u>Vladimir.Vikulin@macrogroup.ru</u>
- ✓ <u>Dmitry.Khorkov@macrogroup.ru</u>
- √ fpga@macrogroup.ru

